n-torsionfree objects and Frobenius Functors

Zhibing Zhao (Anhui University)

joint with X.-W. Chen, Z.-W. Li and X.-J Zhang

ICRA21 SJTU

うして ふゆう ふほう ふほう ふしつ

August 8, 2024

Contents

(2) *n*-torsionfree objects

3 Weakly Gorenstein categories

・ロト ・四ト ・ヨト ・ヨト ・ 日下

1. Introduction and Motivations

Gorenstein projective modules are central in Gorenstein homological algebra. It's well-known that the Gorenstein projectivity of modules is invariant under Frobenius extensions; see [R] and [Z1].

ション ふゆ マ キャット しょう くしゃ

Gorenstein projective modules are central in Gorenstein homological algebra. It's well-known that the Gorenstein projectivity of modules is invariant under Frobenius extensions; see [R] and [Z1].

A module is Gorenstein projective if and only if it is a module of G-dimension zero when it is a **finitely generated module over a two-sided Noetherian ring**. As the origin of Gorenstein homological algebra, the notion of modules of G-dimension zero was defined in terms of *n*-torsionfreeness in [AB].

Gorenstein projective modules are central in Gorenstein homological algebra. It's well-known that the Gorenstein projectivity of modules is invariant under Frobenius extensions; see [R] and [Z1].

A module is Gorenstein projective if and only if it is a module of G-dimension zero when it is a **finitely generated module over a two-sided Noetherian ring**. As the origin of Gorenstein homological algebra, the notion of modules of G-dimension zero was defined in terms of *n*-torsionfreeness in [AB].

[AB] M. Auslander and M. Bridger, Stable module theory, Memoirs of the Amer. Math. Soc. 94(1969).

[R] W. Ren, Gorenstein projective and injective dimensions over Frobenius extensions, Comm. Algebra 46(2008), 1-7.

[Z1] Z.-B. Zhao, Gorenstein homological invariant properties under Frobenius extensions, Sci.
China Math. 62(2019), 2487-2496.

1. Introduction and Motivations

Recall: Let R be a two-sided Noetherian ring. For a module $M \in R$ -mod, there is a projective resolution $P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$ in R-mod.

Applying by the functor $(-)^* = \operatorname{Hom}_R(-, R)$, we have an exact sequence

$$0 \longrightarrow M^* \longrightarrow P_0^* \xrightarrow{f^*} P_1^* \longrightarrow \operatorname{Coker} f^* \longrightarrow 0 ,$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

and call $\operatorname{Coker} f^*$ the transpose of M, denote it by $\operatorname{Tr} M$.

1. Introduction and Motivations

Recall: Let R be a two-sided Noetherian ring. For a module $M \in R$ -mod, there is a projective resolution $P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$ in R-mod.

Applying by the functor $(-)^* = \operatorname{Hom}_R(-, R)$, we have an exact sequence

$$0 \longrightarrow M^* \longrightarrow P_0^* \xrightarrow{f^*} P_1^* \longrightarrow \operatorname{Coker} f^* \longrightarrow 0 ,$$

and call $\operatorname{Coker} f^*$ the transpose of M, denote it by $\operatorname{Tr} M$.

An *R*-module *M* is said to be *n*-torsionfree if $\operatorname{Ext}_{R^{\operatorname{op}}}^{i}(\operatorname{Tr} M, R) = 0$ for $1 \leq i \leq n$.

Recall: Let R be a two-sided Noetherian ring. For a module $M \in R$ -mod, there is a projective resolution $P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$ in R-mod.

Applying by the functor $(-)^* = \operatorname{Hom}_R(-, R)$, we have an exact sequence

$$0 \longrightarrow M^* \longrightarrow P_0^* \xrightarrow{f^*} P_1^* \longrightarrow \operatorname{Coker} f^* \longrightarrow 0 ,$$

and call $\operatorname{Coker} f^*$ the transpose of M, denote it by $\operatorname{Tr} M$.

An *R*-module *M* is said to be *n*-torsionfree if $\operatorname{Ext}_{R^{\operatorname{op}}}^{i}(\operatorname{Tr} M, R) = 0$ for $1 \leq i \leq n$.

If an *R*-module *M* is *n*-torsionfree for any positive integer *n*, then it is called an ∞ -torsionfree module.

A module M in R-mod is said to be of **G-dimension zero**, denoted it by $\operatorname{G-dim}_R(M) = 0$, if it is satisfies: (1) M is reflexive; (2) $\operatorname{Ext}_R^i(M, R) = 0$ for all i > 0; (3) $\operatorname{Ext}_{R^{\operatorname{op}}}^i(M^*, R) = 0$ for all i > 0.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

A module M in R-mod is said to be of **G-dimension zero**, denoted it by $\operatorname{G-dim}_R(M) = 0$, if it is satisfies: (1) M is reflexive; (2) $\operatorname{Ext}^i_R(M, R) = 0$ for all i > 0; (3) $\operatorname{Ext}^i_{R^{\operatorname{op}}}(M^*, R) = 0$ for all i > 0.

By definition of *n*-torsionfreeness and the fact that $\operatorname{Tr}(\operatorname{Tr} M) \cong M$, we have, for an *R*-module *M*, $\operatorname{G-dim}_R(M) = 0$ if and only if $M \in {}^{\perp}R$ and *M* is ∞ -torsionfree if and only if *M* and $\operatorname{Tr} M$ (as a right *R*-module) are both ∞ -torsionfree.

1. Introduction and Motivations

In [Z], Zhao obtain that n-torsion freeness of modules is preserved under Frobenius extensions.

Theorem

([Z] Theorem 3.5) Let R and S be two-sided Noetherian rings and $l: R \to S$ be a Frobenius extension. Let M be an S-module and n a positive integer. Then M is n-torsionfree as an S-module if and only if M is n-torsionfree as an R-module.

うして ふゆう ふほう ふほう ふしつ

1. Introduction and Motivations

In [Z], Zhao obtain that *n*-torsionfreeness of modules is preserved under Frobenius extensions.

Theorem

([Z] Theorem 3.5) Let R and S be two-sided Noetherian rings and $l: R \to S$ be a Frobenius extension. Let M be an S-module and n a positive integer. Then M is n-torsionfree as an S-module if and only if M is n-torsionfree as an R-module.

Question: What is happened in *R*-Mod over arbitrary ring?

[Z] Z.-B. Zhao, k-torsionfree modules and Frobenius extensions, J. Algebra 624 (2024), 49-65.

うして ふゆう ふほう ふほう ふしつ

Recall: Let C be a full subcategory of an Abelian category \mathcal{A} and $C \in \mathcal{C}$, $A \in \mathcal{A}$. An \mathcal{A} -homomorphism $A \to C$ is said to be a **left** C-approximation of A if $\operatorname{Hom}_{\mathcal{A}}(C, X) \to \operatorname{Hom}_{\mathcal{A}}(M, X)$ is epic for any $X \in C$. A subcategory C is said to be **covariantly finite** in \mathcal{A} if every object in \mathcal{A} has a left C-approximation. Let \mathcal{A} be an abelian category with enough projective objects. The latter condition means that for each object M, there is an epimorphism $P \to M$ with P projective.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Let \mathcal{A} be an abelian category with enough projective objects. The latter condition means that for each object M, there is an epimorphism $P \to M$ with P projective.

Definition

Let $n \geq 0$ be an integer. An object M in \mathcal{A} is said to be *n*-torsionfree provided that there exists an exact sequence $0 \longrightarrow M \xrightarrow{f_1} P_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} P_n$ with $P_i \in \mathcal{P}(\mathcal{A})$, such that each $\operatorname{Im} f_i \to P_i$ is a left $\mathcal{P}(\mathcal{A})$ -approximation of $\operatorname{Im} f_i$ for $1 \leq i \leq n$. We denote the full subcategory of \mathcal{A} consisting of all *n*-torsionfree objects by $\mathcal{T}^n(\mathcal{A})$.

An object M is called an ∞ -torsionfree if it is n-torsionfree for any positive integer n.

Remark: Let the abelian category \mathcal{A} be the left finitely generated *R*-module category *R*-mod with *R* a two-sided Noetherian ring. Then an object *M* which is *n*-torsionfree in \mathcal{A} is just an *n*-torsionfree module; see [AB].

[AB] M. Auslander and M. Bridger, Stable module theory, Memoirs of the Amer. Math. Soc. 94(1969).

うして ふゆう ふほう ふほう ふしつ

Let $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$ be two additive functors. We say that (F, G) is a **Frbenius pair** between \mathcal{A} and \mathcal{B} , provided that both (F, G) and (G, F) are adjoint pairs; see [M65] or [CGN]. We call the functor F a **Frobenius functor**, if it fits into a Frobenius pair (F, G). In this case, the functor G is also a Frobenius functor. In other words, Frobenius functors always appear in pairs.

Let $F : \mathcal{A} \to \mathcal{B}$ and $G : \mathcal{B} \to \mathcal{A}$ be two additive functors. We say that (F, G) is a **Frbenius pair** between \mathcal{A} and \mathcal{B} , provided that both (F, G) and (G, F) are adjoint pairs; see [M65] or [CGN]. We call the functor F a **Frobenius functor**, if it fits into a Frobenius pair (F, G). In this case, the functor G is also a Frobenius functor. In other words, Frobenius functors always appear in pairs.

[CGN] F. Castaño Iglesias, J. Gómez Torrecillas, and C. Năstăsescu, Frobenius functors: applications, Comm. Algebra 27 (10)(1999) 4879-4900.

うして ふゆう ふほう ふほう ふしつ

[M65] K. Morita, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 9 (1965) 40-71. **Remark:** By Theorem 1.2 in [Kad], a ring extension (or a ring homomorphism) $l: R \to S$ is Frobenius if and only if $({}_{S}S \otimes_{R} - (\cong \operatorname{Hom}_{R}({}_{R}S_{S}, -)), \operatorname{Res})$ is a Frobenius pair between R-Mod and S-Mod. We refer to [Kad] for more details, and the examples can found in Example 2.4 in [Z1].

[Kad] L. Kadison, New examples of Frobenius extensions, University Lecture Series, Vol 14, AMS. Provedence, Rhode Island, 1999.

[Z1] Z.-B. Zhao, Gorenstein homological invariant properties under Frobenius extensions, Sci. China Math. 62(2019), 2487-2496.

Setup and notation. Throughout, we assume that both \mathcal{A} and \mathcal{B} are abelian categories with enough projective objects. Denote by $\mathcal{P}(\mathcal{A})$ and $\mathcal{P}(\mathcal{B})$ the full subcategories of projective objects of \mathcal{A} and \mathcal{B} , respectively.

Setup and notation. Throughout, we assume that both \mathcal{A} and \mathcal{B} are abelian categories with enough projective objects. Denote by $\mathcal{P}(\mathcal{A})$ and $\mathcal{P}(\mathcal{B})$ the full subcategories of projective objects of \mathcal{A} and \mathcal{B} , respectively.

Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor with a right adjoint $G : \mathcal{B} \to \mathcal{A}$. we will denote the adjoint pair (F, G) by $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$.

Setup and notation. Throughout, we assume that both \mathcal{A} and \mathcal{B} are abelian categories with enough projective objects. Denote by $\mathcal{P}(\mathcal{A})$ and $\mathcal{P}(\mathcal{B})$ the full subcategories of projective objects of \mathcal{A} and \mathcal{B} , respectively.

Let $F : \mathcal{A} \to \mathcal{B}$ be an additive functor with a right adjoint $G : \mathcal{B} \to \mathcal{A}$. we will denote the adjoint pair (F, G) by $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$. **Aim:** We will give some properties of *n*-torsionfree objects and investigate the transfer of *n*-torsionfreeness under Frobenius functors in this note.

An object M in \mathcal{A} is said to be *n*-torsionfree provided that there exists an exact sequence $0 \longrightarrow M \xrightarrow{f_1} P_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} P_n$ with $P_i \in \mathcal{P}(\mathcal{A})$, such that each $\operatorname{Im} f_i \to P_i$ is a left $\mathcal{P}(\mathcal{A})$ -approximation of $\operatorname{Im} f_i$ for $1 \leq i \leq n$.

うして ふゆう ふほう ふほう ふしつ

An object M in \mathcal{A} is said to be *n*-torsionfree provided that there exists an exact sequence $0 \longrightarrow M \xrightarrow{f_1} P_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} P_n$ with $P_i \in \mathcal{P}(\mathcal{A})$, such that each $\operatorname{Im} f_i \to P_i$ is a left $\mathcal{P}(\mathcal{A})$ -approximation of $\operatorname{Im} f_i$ for $1 \leq i \leq n$. **Remark:** Every object in \mathcal{A} is 0-torsionfree and every projective

object is ∞ -torsionfree. An object M is m-torsionfree must be n-torsionfree when m > n. And we have a decreasing sequences of subcategories of \mathcal{A}

$$\mathcal{T}^1(\mathcal{A}) \supseteq \mathcal{T}^2(\mathcal{A}) \supseteq \cdots \supseteq \mathcal{T}^n(\mathcal{A}) \supseteq \cdots$$

Proposition 2.1. Let \mathcal{A} be an abelian category with enough projective objects and n be a positive integer. The subcategory $\mathcal{T}^n(\mathcal{A})$ is closed under direct sums and summands.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Proposition 2.1. Let \mathcal{A} be an abelian category with enough projective objects and n be a positive integer. The subcategory $\mathcal{T}^n(\mathcal{A})$ is closed under direct sums and summands.

The following observation gives a recurrence relation of n-torsion fr -eeness.

Proposition 2.2. Let $0 \longrightarrow M \xrightarrow{f} P \longrightarrow N \longrightarrow 0$ be a short exact sequence in \mathcal{A} with f a left $\mathcal{P}(\mathcal{A})$ -approximation of M and let $n \ge 1$ be an integer. Then M is n-torsionfree if and only if N is (n-1)-torsionfree.

2. n-torsion free objects

Analogy to the notion of classical the module with G-dimension zero.

Definition

Let \mathcal{A} be an abelian category with enough projective objects. An object M is said to be of **G-dimension zero**, denoted it by $\operatorname{G-dim}(M) = 0$, if it is satisfies: (1) $\operatorname{Ext}^{i}_{\mathcal{A}}(M, \mathcal{P}(\mathcal{A})) = 0$ for all i > 0; (2) M is ∞ -torsionfree.

うして ふゆう ふほう ふほう ふしつ

2. *n*-torsionfree objects

Recall that an acyclic complex

$$P^{\bullet} = \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$

of projective objects is said to be **totally acyclic**, provided it remains acyclic after applying $\operatorname{Hom}_{\mathcal{A}}(-, P)$ for any projective object $P \in \mathcal{A}$. An object $M \in \mathcal{A}$ is called **Gorenstein projective** if there is a totally acyclic complex P^{\bullet} such that M is isomorphic to its zeroth cocycle $Z^{0}(P^{\bullet})$.

Recall that an acyclic complex

$$P^{\bullet} = \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$

of projective objects is said to be **totally acyclic**, provided it remains acyclic after applying $\operatorname{Hom}_{\mathcal{A}}(-, P)$ for any projective object $P \in \mathcal{A}$. An object $M \in \mathcal{A}$ is called **Gorenstein projective** if there is a totally acyclic complex P^{\bullet} such that M is isomorphic to its zeroth cocycle $Z^{0}(P^{\bullet})$.

We use $\mathcal{GP}(\mathcal{A})$ to denote the subcategory consisting of all Gorenstein projective objects of \mathcal{A} .

Proposition 2.3. Let \mathcal{A} be an abelian category with enough projective objects and M be an object in \mathcal{A} . Then M is Gorenstein projective if and only if M is of G-dimension zero.

As a generalization of notion Gorenstein algebras, Ringel and Zhang in [RZ] introduced that of weakly Gorenstein algebra.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

As a generalization of notion Gorenstein algebras, Ringel and Zhang in [RZ] introduced that of weakly Gorenstein algebra.

Definition

Let \mathcal{A} be an abelian category with enough projective objects. We call that \mathcal{A} is **weakly Gorenstein** if $\mathcal{GP}(\mathcal{A}) = {}^{\perp}\mathcal{P}(\mathcal{A})$, where ${}^{\perp}\mathcal{P}(\mathcal{A}) = \{X \mid \operatorname{Ext}^{i}_{\mathcal{A}}(X, \mathcal{P}(\mathcal{A})) = 0 \text{ for } i \geq 1\}.$

An artin algebra A is said to be left (resp. right) weakly Gorenstein if the category of all left (resp. right) finitely generated A-modules is weakly Gorenstein.

[RZ] C.M.Ringel and P. Zhang, Gorenstein-projective modules and semi-Gorenstein-projective modules, Algebra Number Theory 14(2020) 1-36.

The following is analogy to Theorem 1.2 in [RZ].

Proposition 3.1. Let \mathcal{A} be an abelian category with enough projective objects. The following statements are equivalent.

- (1) The category \mathcal{A} is weakly Gorenstein.
- (2) Every object in ${}^{\perp}\mathcal{P}(\mathcal{A})$ is ∞ -torsionfree.

(3) Every object in ${}^{\perp}\mathcal{P}(\mathcal{A})$ is *n*-torsionfee, where *n* is a positive integer.

Proposition 3.2. Let \mathcal{A} be an abelian category with enough projective objects. If $\mathcal{T}^n(\mathcal{A}) = \mathcal{T}^{n+1}(\mathcal{A})$ for some positive integer n, then \mathcal{A} is weakly Gorenstein.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Proposition 3.2. Let \mathcal{A} be an abelian category with enough projective objects. If $\mathcal{T}^n(\mathcal{A}) = \mathcal{T}^{n+1}(\mathcal{A})$ for some positive integer n, then \mathcal{A} is weakly Gorenstein.

Corollary 3.3. Let \mathcal{A} be an abelian category with enough projective objects. If \mathcal{A} has only finitely many isomorphism classes of *n*-torsionfree objects for some positive integer *n*, then \mathcal{A} is weakly Gorenstein.

Remark: Recall that an artin algebra *A* is said to be **torsionless-finite** if there are only finitely many isomorphism classes of indecomposable torsionless left *A*-modules.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Remark: Recall that an artin algebra *A* is said to be **torsionless-finite** if there are only finitely many isomorphism classes of indecomposable torsionless left *A*-modules.

In [RZ], Ringel and Zhang show that any torsionless-finite artin algebra is left weakly Gorenstein; see ([RZ] 3.6). The corollary above implies that if an artin algebra A has only finitely many isomorphism classes of indecomposable n-torsionfree modules for some n, then A is left weakly Gorenstein.

4. Frobenius Functors

In this section, we will investigate the transfer of n-torsion freeness under Frobenius functors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

In this section, we will investigate the transfer of n-torsion freeness under Frobenius functors.

Proposition 4.1. Let $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ be a Frobenius pair between two abelian categories with enough projective objects. Assume that F is faithful and X be an object in \mathcal{A} . Then we have $X \in {}^{\perp}\mathcal{P}(\mathcal{A})$ if and only if $F(X) \in {}^{\perp}\mathcal{P}(\mathcal{B})$.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Theorem 4.2. Let $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ be a Frobenius pair between two abelian categories with enough projective objects. Assume that F is faithful and X be an object in \mathcal{A} . Then X is *n*-torsionfree in \mathcal{A} if and only if so is F(X) in \mathcal{B} .

ション ふゆ マ キャット マックシン

Theorem 4.2. Let $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ be a Frobenius pair between two abelian categories with enough projective objects. Assume that F is faithful and X be an object in \mathcal{A} . Then X is *n*-torsionfree in \mathcal{A} if and only if so is F(X) in \mathcal{B} .

Remark: The faithful condition is necessary. Take another abelian category \mathcal{A}' with enough projective objects. An object (X, X') in the product category $\mathcal{A} \times \mathcal{A}'$ is *n*-torsionfree if and only if so are X and X'.

Consider the canonical projection functor $Pr : \mathcal{A} \times \mathcal{A}' \to \mathcal{A}$ and inclusion functor $Inc : \mathcal{A} \to \mathcal{A} \times \mathcal{A}'$. Then (Pr, Inc) is a Frobenius pair. It is clear that X is n-torsionfree in \mathcal{A} can not induce that (X, X') is n-torsionfree in the product category $\mathcal{A} \times \mathcal{A}'$. Hence, the Frobenius functor Pr does not reflect ntorsionfree objects in general. **Example:** A Frobenius extension $l : R \to S$ yields a classical Frobenius pair $(S \otimes_R -, Res)$ between *R*-Mod and *S*-Mod. It is clear that the restriction functor *Res* is faithful. It follows from Theorem 4.2 that a left *S*-module $_SM$ is *n*-torsionfree if and only if the underlying *R*-module $_RM$ is *n*-torsionfree. This result is due to Theorem 3.5 in [Z].

Example: A Frobenius extension $l: R \to S$ yields a classical Frobenius pair $(S \otimes_R -, Res)$ between *R*-Mod and *S*-Mod. It is clear that the restriction functor *Res* is faithful. It follows from Theorem 4.2 that a left *S*-module $_SM$ is *n*-torsionfree if and only if the underlying *R*-module $_RM$ is *n*-torsionfree. This result is due to Theorem 3.5 in [Z].

In a Frobenius extension $l: R \to S$, we assume further that S is progenerator as a right R-module. Then the Frobenius functor $S \otimes_R - : R$ -Mod $\to S$ -Mod is faithful. We apply Theorem 4.2 to obtain that a left R-module $_RM$ is n-torsionfree if and only if so is the left S-module $_SS \otimes_R M$.

Corollary 4.3. Let $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ be a Frobenius pair between two abelian categories with enough projective objects. Assume that F is faithful and X be an object in \mathcal{A} . Then X is ∞ torsionfree in \mathcal{A} if and only if so is F(X) in \mathcal{B} .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Corollary 4.3. Let $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ be a Frobenius pair between two abelian categories with enough projective objects. Assume that F is faithful and X be an object in \mathcal{A} . Then X is ∞ torsionfree in \mathcal{A} if and only if so is F(X) in \mathcal{B} .

Combining Proposition 4.1 and Corollary 4.3, we have the following well-known result.

Proposition 4.4.([CR] Theorem 3.2) Let $F : \mathcal{A} \rightleftharpoons \mathcal{B} : G$ be a Frobenius pair between two abelian categories with enough projective objects. Assume that F is faithful and M is an object in \mathcal{A} . Then M is Gorenstein projective (or M is of G-dimension zero) in \mathcal{A} if and only if so is F(M) in \mathcal{B} .

[CR] X. -W. Chen and W. Ren, Frobenius functors and Gorenstein homological properties, J. Algebra 610 (2022), 18-37.

A two-sided Noetherian ring R is called *left (right) quasi n*-*Gorenstein* if the left (right) flat dimension of the *i*-st term in a minimal injective resolution of R as a left (right) R-module is less than or equal to *i* for any $1 \le i \le n$; see [H2].

A two-sided Noetherian ring R is called *left (right) quasi n*-*Gorenstein* if the left (right) flat dimension of the *i*-st term in a minimal injective resolution of R as a left (right) R-module is less than or equal to *i* for any $1 \le i \le n$; see [H2].

Corollary 4.5. Let $l : R \to S$ be a Frobenius extension with S a generator as a right R-module and n a positive integer. Then R is a left (resp. right) quasi n-Gorenstein ring if and only if so is S.

[H2] Z. -Y. Huang, ω^t -approximation representations over quasi k-Gorenstein algebras, Sci. China (Series A), 42 (1999), 945-956.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

A ring extension $l: R \to S$ is called **excellent extensions** if it satisfies: (1) S is left R-projective, that is, if ${}_{S}M$ is a module and ${}_{S}N$ is a submodule then ${}_{R}N|_{R}M$ implies that ${}_{S}N|_{S}M$, where N|M means that N is a summand of M. (2) S is a **free normal** extension of R, i.e. $S = \sum_{i=1}^{n} s_{i}R$ and S is free with common basis $\{s_{1} = 1, s_{2}, \dots, s_{n}\}$ as both a left R-module and a right Rmodule, such that $s_{i}R = Rs_{i}$ for $1 \leq i \leq n$; see [P]. The examples of excellent extensions can be found in Example 2.2 in [HS].

A ring extension $l: R \to S$ is called **excellent extensions** if it satisfies: (1) S is left R-projective, that is, if $_{S}M$ is a module and $_{S}N$ is a submodule then $_{B}N|_{B}M$ implies that $_{S}N|_{S}M$, where N|M means that N is a summand of M. (2) S is a free normal extension of R, i.e. $S = \sum_{i=1}^{n} s_i R$ and S is free with common basis $\{s_1 = 1, s_2, \cdots, s_n\}$ as both a left *R*-module and a right *R*module, such that $s_i R = R s_i$ for $1 \le i \le n$; see [P]. The examples of excellent extensions can be found in Example 2.2 in [HS]. **Corollary 4.6** Let $\theta : R \to S$ be an excellent extension. Then R is a left (resp. right) quasi *n*-Gorenstein ring if and only if so is S.

[HS] Z. -Y. Huang and J. -X. Sun, Invariant properties of reprenstations under excellent extensions, J. Algebra, 358 (2012), 87-101.

A two-sided Noetherian ring is said to satisfy the **Auslander** condition if the flat dimension of the *i*-th term of minimal injective coresolution of R as an right R-module at most i - 1 for any $i \ge 1$; see [FGR].

A two-sided Noetherian ring is said to satisfy the **Auslander** condition if the flat dimension of the *i*-th term of minimal injective coresolution of R as an right R-module at most i - 1 for any $i \ge 1$; see [FGR].

A known result in theory of commutative ring states that a commutative Noetherian ring is Gorenstein if and only if it satisfies the Auslander condition. Based on it, Auslander and Reiten [AR] conjectured that an Artin algebra satisfying the Auslander condition is Gorenstein. We call this conjecture **ARC** for short. [FGR] R. M. Fossum, P. A. Griffith and I. Reiten, Trivial Extensions of Abelian Categories, in: Homological Algebra of Trivial Extensions of Abelian Categories with Applications to Ring Theory, in: Lecture Notes in Math., vol. 456, Springer-Verlag, Berlin, New York, 1975. [AR] M. Auslander and I. Reiten, *k*-Gorenstein algebras and syzygy modules, J. Pure Appl.

Algebra 92 (1994), 1-27.

In [H], Huang proved the following.

Theorem 4.7. ([H] Corollary 4.12) Let R be an Artin algeba. If R satisfies the Auslander condition, then the following statements are equivalent.

- (1) R is Gorenstein.
- (2) R is left or right weakly Gorenstein.
- (3) R is left and right weakly Gorenstein.

In [H], Huang proved the following.

Theorem 4.7. ([H] Corollary 4.12) Let R be an Artin algeba. If R satisfies the Auslander condition, then the following statements are equivalent.

- (1) R is Gorenstein.
- (2) R is left or right weakly Gorenstein.
- (3) R is left and right weakly Gorenstein.

[H] Z.-Y. Huang, Auslander-type conditions and weakly Gorenstein algebras, Preprint, 2024.

Proposition 4.8. Suppose that \mathcal{A} and \mathcal{B} are two abelian categories with enough projective objects. Let F be a faithful Frobenius functor from \mathcal{A} to \mathcal{B} . If \mathcal{B} is weakly Gorenstein, then so is \mathcal{A} .

Proposition 4.8. Suppose that \mathcal{A} and \mathcal{B} are two abelian categories with enough projective objects. Let F be a faithful Frobenius functor from \mathcal{A} to \mathcal{B} . If \mathcal{B} is weakly Gorenstein, then so is \mathcal{A} .

Corollary 4.9. Let $l : R \to S$ be a Frobenius extension. If the base ring R is weakly Gorenstein, then so is S.

ション ふゆ マ キャット マックシン

By Theorem 4.7 above and Corollary 4.9, we have

Corollary 4.10. Let *R* and *S* be two Artin algebras and $l : R \rightarrow S$ be a Frobenius extension. If **ARC** holds true for the base ring *R*, then **ARC** also holds true for the extension ring *S*.

ション ふゆ マ キャット マックシン

4. Frobenius Functors

Corollary 4.11. Let R and S be two Artin algebras and $l: R \to S$ be an excellent extension. Then **ARC** holds true for the base ring R if and only if **ARC** holds true for the extension ring S.

Thank you for your attention!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?