A modular construction of Positroid varieties

Zheng Hua

University of Hong Kong

ICRA21 Aug 6, 2024

joint work with A. Polishchuk(Oregon) arxiv: 2404.03935

Affine permutations

Definition (Bounded affine permutation)

Given integers, 0 < k < n, a bijection $f:\mathbb{Z}\to\mathbb{Z}$ is called a bounded affine permutation of period n and average k if

1.
$$f(i+n) = f(i) + n$$
,

$$2. i \le f(i) \le i+n$$

3.
$$\sum_{i=1}^{n} f(i) - i = k \cdot n.$$

We denote by B(k,n) the set of such permutations.

Example

Let M be a full rank $k\times n$ matrix and v_1,\ldots,v_n be the column vectors of M. Set

$$f_M(i) = \min\{j \ge i \middle| v_i \in \operatorname{span}(v_{i+1}, \dots, v_j)\}$$

where the index are modulo n. One can check that $f_M \in B(k, n)$.

Positroid varieties

Definition (Positroid varieties)

Given $f \in B(k,n)$, the (open) positroid variety of type f is defined to be

$$\Pi_f = GL_k \setminus \{ M \in Mat_{k \times n} \middle| f_M = f \},\$$

where GL_k acts by row transformations.

Remark (Properties of Π_f)

- 1. Π_f is nonempty and $G(k,n) = \bigsqcup_{f \in B(k,n)} \Pi_f$,
- 2. Π_f is smooth, affine and irreducible,
- 3. $\overline{\Pi_f} = \bigsqcup_{g \ge f} \Pi_g$ and $\overline{\Pi_f}$ has CM singularities,
- 4. Elements of B(k,n) is in one to one correspondence with pairs (v,w) where v is a grassmannian permutation and $w \le v$.

Poisson structure on moduli of complexes

Let Y be a projective variety. Denote by $\mathbf{Cplx}(Y)$ the moduli stack of bounded complexes of vector bundles on Y up to *chain isomorphisms*. Denote by $\mathbf{Vect}^{\mathbb{Z}}(Y)$ the stack of \mathbb{Z} -graded vector bundles and by $\mathbf{Perf}(Y)$ the stack of perfect complexes.

Definition (Calabi-Yau varieties)

A projective variety Y is called nCY if it is a Gorenstein n-fold such that $\omega_Y\cong \mathcal{O}_Y.$

Theorem (Pantev-Toen-Vaquie-Vezzosi)

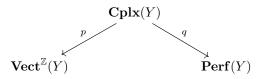
Let Y be a nCY variety. The moduli stack $\operatorname{Perf}(Y)$ (resp. $\operatorname{Vect}^{\mathbb{Z}}(Y)$) admits a (2-n)-shifted symplectic structure.

Example (CY curves)

When n = 1, all CY curves (with planar singularities) are classified by Kodaira. Semi-stable ones are precisely smooth elliptic curves and Kodaira cycles (Neron polygons).

Poisson structure on moduli of complexes

Consider the roof diagram



where p forgets the differential of the complex and q sends the chain complex to the underlying object in the derived category.

Theorem (H-Polishchuk)

Let Y be a nCY variety. The above diagram is a Lagrangian correspondence with respect to the (2 - n)-shifted symplectic structure of PTVV. And $\mathbf{Cplx}(Y)$ is equipped with a (1 - n)-shifted Poisson structure.

Theorem (H-Polishchuk)

When n = 1, the fibers of p (resp. of q) are Poisson and the fibers of (p,q) are symplectic.

Grassmannian with Feigin-Odesskii Poisson structure

Let C be a CY curve and ξ be a simple vector bundle of degree n on C. For 0 < k < n, let $\mathcal{N}_{\xi,k}$ be the moduli stack of complexes $\mathcal{O}^k \to E$ with fixed quotient $E/\mathcal{O}^k \cong \xi$ and a stability condition. One can show that $\mathcal{N}_{\xi,k}$ is a \mathbb{G}_m -gerbe over G(k, n).

Corollary

Given a pair (C, F) of CY curve and a simple bundle of degree n on C, we get a Poisson structure $\pi_{C,F}$ on G(k,n). The sub moduli space of complexes $\mathcal{O}^k \to E$, where E is fixed up to isomorphisms, is symplectic.

Example (Feigin-Odesskii elliptic Poisson structure)

When C is a smooth elliptic curve, ξ is a simple bundle and k = 1, we get the Feigin-Odesskii Poisson structure on $\mathbb{P}\text{Ext}^1(\xi, \mathcal{O})$.

We will call $\pi_{C,F}$ the (generalized) Feigin-Odesskii Poisson structure.

Positroid varieties as T-Poisson subvariety

Let $C = C^n$ be the Kodaira cycle with n irreducible components, i.e. the Neron n-gon. And L be a line bundle with degree vector $(1, \ldots, 1)$. Denote by $T \subset \mathbb{G}_m^n \subset Aut(C^n)$ the sub torus defined by $t_1t_2 \ldots t_n = 1$. Since L is T-invariant, the morphism

$$p: \mathcal{N}_{L,k} \to \mathbf{Vect}^L(C)$$

is *T*-equivariant. Here $\mathbf{Vect}^L(C)$ is the stack of vector bundles with determinant L and p sends $\mathcal{O}^k \to E$ to E.

Theorem (H-Polishchuk)

The Feigin-Odesskii poisson structure $\pi_{C^n,L}$ is *T*-invariant. As a consequence, the *p*-preimage of a *T* orbit in $\mathbf{Vect}^L(C)$ is a *T*-Poisson variety.

Symplectic fibration on Positroid varieties

Let $E = \bigoplus_{i=1}^{p} E_i$ such that E_i are indecomposables. *T*-action preserves the *numerical invariants* of E_i .

Theorem (H-Polishchuk)

Let E be a vector bundle in the image of $p : \mathcal{N}_{L,k} \to \mathbf{Vect}^L(C)$.

- 1. The *T*-orbits of *E* are in one to one correspondence with elements of B(k, n).
- 2. Given $f \in B(k, n)$, denote by E_f the *T*-orbits in $\mathbf{Vect}^L(C)$ that corresponds to f. The adjacency order coincides with the Bruhat order on B(k, n).
- **3**. $p^{-1}(E_f) \cong \Pi_f$.
- 4. The restricted map $p: p^{-1}(E_f) \to E_f$ is a smooth morphism with connected and symplectic fibers.

Remark

 $\pi_{C^n,L}$ coincides with the induced Poisson structure by the Drinfeld-Jimbo trignometric r-matrix on GL_n .

Generalized Positroid varieties

Define $f_{n,k} \in B(k,n)$ by $f_{n,k}(i) = i + k$ for $i \in \mathbb{Z}$. It is the unique minimal element in B(k,n). We call $D = \bigsqcup_{g > f_{n,k}} \prod_g$ the *degeneracy divisor*. Note that D does not have simple normal crossing singularities. Our modular construction gives several generalizations of positroid varieties.

- 1. When $C = C^n$ is a Kodaira cycle and $L(\mathbf{d})$ is a degree n line bundle with degree vector $\mathbf{d} = (d_1, \ldots, d_n) \in \mathbb{Z}^n$. We get a codimension one torus $T(\mathbf{d}) \subset \mathbb{G}_m^n \subset Aut(C^n)$ such that the poisson structure $\pi_{C, nL(\mathbf{d})}$ is $T(\mathbf{d})$ -invariant.
- 2. The previous poisson structure can be further generalized to $\pi_{C^n,F}$ where F is a simple vector bundle with determinant $L(\mathbf{d})$. Similarly, there exists a codimension one torus T_F such that $\pi_{C^n,F}$ is T_F -invariant.
- 3. When C is chosen to be other Kodaira fibers, the Poisson structure might still admit a torus symmetry but of smaller dimension, e.g. C being a cuspidal curve.

The *T*-Poisson vareities appear in these general context are called *generalized positroid varieties*.

Some open problems

Let C be a CY curve and F be a simple vector bundle of degree n. For 0 < k < n, recall that the moduli stack $\mathcal{N}_{F,k}$ is a \mathbb{G}_m -gerbe over G(k,n), equipped with Poisson structure $\pi_{C,F}$. Denote by Π_0 the sub moduli stack of complex $\mathcal{O}^k \to E$ where

- E simple when gcd(n, k + rk(F)) = 1,
- E is semi-simple when gcd(n, k + rk(F)) > 1.

Question (Work in progress)

Is Π_0 log Calabi-Yau in the sense of Gross-Hacon-Keel? If yes, are all minimal models "modular"?

Question

When $C = C^n$ is a Neron polygon, does Π_0 admit a cluster algebra structure?

Thank you!