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R: an associative ring with identity

Mod R: the category of left R-modules

mod R: the category of finitely generated left R-modules

For a module M ∈ Mod R, we use idR M and fdR M to
denote the injective and flat dimensions of M, respec-
tively.

For an R-module M, we use

0→ M → E0(M)→ E1(M)→ · · · → Ei(M)→ · · ·

to denote a minimal injective coresolution of M.
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A left and right Noetherian ring R is called Gorenstein if idR R =
idRop R <∞.

(Bass 1963) A commutative Noetherian ring R is Goren-
stein⇐⇒ fdR Ei(R) ≤ i for any i ≥ 0.

(Auslander 1975) For a left and right Noetherian ring R,
fdR Ei(RR) ≤ i for any i ≥ 0⇐⇒ fdRop Ei(RR) ≤ i for any i ≥ 0.
In this case, R is said to satisfy the Auslander condition.

Auslander–Gorenstein Conjecture (AGC)
(Auslander–Reiten 1994)
An artin algebra satisfying the Auslander condition is Goren-
stein.

Generalized Nakayama Conjecture =⇒ AGC
=⇒ Nakayama conjecture.
All these conjectures remain open.
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Gorenstein Symmetry Conjecture (GSC)
For any artin algebra R, idR R <∞⇐⇒ idRop R <∞.

(Auslander–Reiten 1994) GSC holds true for an artin
algebra satisfying the Auslander condition.

Non-commutative rings satisfying the Auslander con-
dition is a non-commutative analogue of commutative
Gorenstein rings. Such rings play a crucial role in
homological theory, representation theory of algebras
and non-commutative algebraic geometry, and others.
It is also interesting from the viewpoint of some un-
solved homological conjectures, e.g. the finitistic di-
mension conjecture, the (generalized) Nakayama con-
jecture, the Gorenstein symmetry conjecture, and so
on.
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H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

H–Iyama (2007) introduced and studied Auslander-type
conditions of rings, which are extensions of the Aus-
lander condition.

Aims
(1) Introduce and study modules satisfying Auslander-

type conditions, and give a conversion of AGC.

(2) Give some equivalent characterizations of (weakly)
Gorenstein algebras in terms of Gorenstein projective
modules and modules satisfying Auslander-type con-
ditions.

(3) Provide some support for several homological conjec-
tures as well as a reduction of AGC.

Zhaoyong Huang Nanjing University Auslander-type Conditions and Weakly Gorenstein Algebras



Contents Introduction Modules satisfying Auslander-type conditions (Weakly) Gorenstein algebras Main References

This talk is based on the following two papers:

(1) Z. Y. Huang, On Auslander-type conditions of modules, Publ.
Res. Inst. Math. Sci. 59 (2023), 57–88.

(2) Z. Y. Huang, Auslander-type conditions and weakly Goren-
stein algebras, Bull. London Math. Soc. (to appear)
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Modules satisfying Auslander-type conditions

2. Modules satisfying Auslander-type conditions
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Definition 2.1.
Let M ∈ Mod R and let m, n ≥ 0. Then M is said to be Gn(m) if
fdR Ei(M) ≤ m + i for any 0 ≤ i ≤ n − 1, and M is said to be
G∞(m) if it is Gn(m) for all n. In particular, M is said to satisfy the
Auslander condition if it is G∞(0).

Example 2.2.
Let R be a left and right Noetherian ring. Then we have
(1) RR is Gn(m) ⇐⇒ the ring R is Gn(m)op in the sense of H–

Iyama (2007).
(2) Let idRop R = m(< ∞). Then fdR E ≤ m for any injective left

R-module E (Iwanaga 1980). So any module in Mod R is
G∞(m).
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Example 2.2. (continued)
(3) Let K be an algebraically closed field, and let Q be the

quiver

1 2oo 3oo · · ·oo n + 1oo

and R = KQ/J2, where J is the Jacobson radical of
KQ. Then gl.dim R = n. Moreover, we have that S(1)
is Gn+1(0) and hence G∞(0), and S(i) is both Gn−i+1(0)
and G∞(i− 1) for any 2 ≤ i ≤ n + 1.
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Example 2.2. (continued)

(4) Let K be an algebraically closed field, and let Q be the quiver

5 // 4 //oo 3 //

��

2 // 1oo

6

��
...

��
k + 5

��
k + 6

and R = KQ/J2 with n ≥ 1. Then gl.dim R =∞. Moreover, we have
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Example 2.2. (continued)
(i) none of RR, P(1), P(3) and P(4) is Gn(m) for any n,m ≥

0;
(ii) both P(2) and P(5) are injective;
(iii) for any 7 ≤ i ≤ k+6, S(i) is Gi−6(0) but not Gi−5(0), and

S(6) is not Gn(m) for any n,m ≥ 0.
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For any m ≥ 0, we write

G∞(m) := {M ∈ Mod R | M is G∞(m)}.

We have the following inclusion chain

G∞(0) ⊆ G∞(1) ⊆ · · · ⊆ G∞(m) ⊆ · · · .

For an R-module M, we use

· · · → Fi(M)
πi(M)−→ · · · π2(M)−→ F1(M)

π1(M)−→ F0(M)
π0(M)−→ M → 0

to denote a minimal flat resolution of M, where πi(M) :
Fi(M) → Im πi(M) is a flat cover of Im πi(M) for any
i ≥ 0.
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Theorem 2.3.

For a left Noetherian ring R, consider the following conditions.

(1) RR satisfies the Auslander condition (that is, RR ∈ G∞(0)).

(2) Any flat left R-module satisfies the Auslander condition.

(3) fdR Ei(M) ≤ fdR M + i for any left R-module M and i ≥ 0.

(4) fdR E0(M) ≤ fdR M for any left R-module M.

(5) idRop Fi(E) ≤ i for any injective right R-module E and i ≥ 0.

(6) idRop Fi(N) ≤ idRop N + i for any right R-module N and i ≥ 0.

(7) idRop F0(N) ≤ idRop N for any right R-module N.

We have (1)⇐⇒ (2)⇐⇒ (3)⇐⇒ (4) =⇒ (5)⇐⇒ (6)⇐⇒ (7). If R is further
right Noetherian, then all of the above and below conditions are equivalent.

(i)op The opposite version of (i) (1 ≤ i ≤ 7).

When R is a right coherent and left Noetherian projective K-algebra over a
commutative ring K, the equivalence (1) ⇐⇒ (4) has been known (Miyachi
2000).
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The following result is a conversion of AGC.

Theorem 2.4
Let R be an artin algebra satisfying the Auslander condi-
tion. TFAE.
(1) R is Gorenstein.
(2) G∞(0) ∩mod R is contravariantly finite in mod R.
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(Weakly) Gorenstein algebras

3. (Weakly) Gorenstein algebras
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In this section, R is an artin algebra.

Recall that a module M ∈ mod R is called Gorenstein projective
if there exists an exact sequence

· · · → P1 → P0 → P0 → P1 → · · ·

in mod R with all Pi,Pi projective, such that it remains exact after
applying the functor HomR(−,R) and M ∼= Im(P0 → P0).

We write

GP(mod R) := {Gorenstein projective modules in mod R}.

For any s ≥ 0, we write

GP(mod R)≤s := {M ∈ mod R | G-pdRM ≤ s}.
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Theorem 3.1.
TFAE for any m ≥ 0.
(1) RR ∈ G∞(m) and R is Gorenstein.
(2) RR ∈ G∞(m) and idR R <∞.
(3) GP(mod R) ⊆ G∞(m) ∩mod R ⊆ GP(mod R)≤m.
(4) GP(mod R)≤s ⊆ G∞(m + s) ∩ mod R ⊆ GP(mod R)≤m+s

for any s ≥ 0.
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We write

⊥
RR := {M ∈ mod R | Ext≥1

R (M,R) = 0}.

(Ringel–Zhang 2020) The algebra R is called left weakly
Gorenstein if GP(mod R) = ⊥

RR. Symmetrically, the right
weakly Gorenstein algebra is defined.
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Let M be an R-module. An injective coresolution

0→ M → E0 δ1

−→ E1 δ2

−→ · · · δn

−→ En δn+1

−→ · · ·

is called ultimately closed if there exists some n such that
Im δn = ⊕Wj with each Wj isomorphic to a direct summand
of some Im δij with ij < n. An artin algebra R is said to be
of ultimately closed type if the minimal injective coreso-
lution of any finitely generated left R-module is ultimately
closed (Tachikawa 1973).

Remark 3.2.
(1) The following classes of algebras are left weakly

Gorenstein.
(1.1) algebras R such that RR admits an ultimately closed injective

coresolution (in particular, R is of ultimately closed type);
(1.2) (Beligiannis 2011) algebras R such that ⊥RR is of finite type.
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Remark 3.2. (continued)
(2) (Tachikawa 1973; Ringel 2012; Ringel–Zhang 2020)

The class of algebras of ultimately closed type in-
cludes

(2.1) algebras with radical square zero;
(2.2) representation-finite algebras;
(2.3) algebras R with Loewy length m such that R/Jm−1 is

representation-finite, where J is the Jacobson radical of R.
(2.4) the class of torsionless-finite algebras which includes:

(a) algebras R with R/ Soc(RR) representation-finite, where
Soc(RR) is the socle of RR;

(b) Minimal representation-infinite algebras;
(c) algebras stably equivalent to hereditary algebras;
(d) Left or right glued algebras;
(e) Special biserial algebras without indecomposable projective-

injective modules.
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Theorem 3.3.
Assume that RR ∈ G∞(m) and RR ∈ G∞(m′)op with m,m′ ≥ 0.
TFAE.
(1) R is Gorenstein.
(2) idR R <∞.
(3) idRop R <∞.
(4) R is left and right weakly Gorenstein.
(5) R is left weakly Gorenstein.
(6) R is right weakly Gorenstein.
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Compare the following result with Theorem 3.3.

Theorem 3.4.
Assume that RR ∈ G∞(1) (in this case, R is called quasi
Auslander). TFAE.
(1) R is Gorenstein.
(2) idR R <∞.
(3) idRop R <∞.
(4) R is left and right weakly Gorenstein.
(5) R is right weakly Gorenstein.
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As a consequence of Theorems 3.1, 3.3 and 3.4, we get
the following corollary.

Corollary 3.5.
TFAE.
(1) R is Auslander–Gorenstein (that is, R satisfies the Aus-

lander condition and R is Gorenstein).
(2) R satisfies the Auslander condition and R is left weakly

Gorenstein.
(3) GP(mod R) = G∞(0) ∩mod R.
(4) GP(mod R)≤s = G∞(s) ∩mod R for any s ≥ 0.

(i)op Opposite version of (i) with 2 ≤ i ≤ 4.

The equivalence (1)⇐⇒ (3) in this result has been known
(Wang–Li–Wu–Hu 2023).
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Marczinzik (2016) posed the following question: Is a left weakly
Gorenstein artin algebra also right weakly Gorenstein? For the
sake of convenience, we state this question as the following con-
jecture.

Weakly-Gorenstein Symmetry Conjecture (WGSC)
An artin algebra is left weakly Gorenstein ⇐⇒ it is right weakly
Gorenstein.

Observation. (Ringel–Zhang 2020)
WGSC =⇒ GSC.

Proof. Suppose that WGSC holds. Let idR R = n < ∞. Then R is right
weakly Gorenstein, and hence is left weakly Gorenstein. It follows that any n-
syzygy module in mod R is in ⊥

RR = GP(mod R). So G-pdRM ≤ n for any M ∈
mod R, and hence R is n-Gorenstein (Enochs–Jenda 2000). Symmetrically, if
idRop R = n, then R is n-Gorenstein.
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Conclusions.
(1) RR ∈ G∞(m) and RR ∈ G∞(m′)op with m,m′ ≥ 0:

both WGSC and GSC hold (Theorem 3.3).
(2) RR ∈ G∞(1) (that is, R is quasi Auslander):

GSC holds, but we do not know whether WGSC holds or
not (Theorem 3.4).

(3) RR ∈ G∞(0) (that is, R satisfies the Auslander condition):
both WGSC and GSC hold (Corollary 3.5).
Note that GSC holds true for an artin algebra R satisfying
the Auslander condition has been proved by Auslander–
Reiten (1994). Moreover, we have that R is Gorenstein⇐⇒
it is left or right weakly Gorenstein. This is a reduction of
AGC, since Gorenstein algebras are left and right weakly
Gorenstein, but the converse does not hold true in general
(Remark 3.2).
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Thank you!
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