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Goals

To define a Hall algebra for the m-periodic derived category Dm(A) of a

hereditary abelian category A , and use it to provide a global, unified and

explicit characterization for the algebra structure of Bridgeland’s Hall

algebra or semi-derived Ringel-Hall algebra of m-periodic complexes of A .
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Hall algebras of abelian categories

Let A be a finitary abelian category. Given three objects

X ,Y , L ∈ A , one defines

F L
XY := |{E ≤ L | E ∼= Y , L/E ∼= X}|.

For an object X in a category, denote by [X ] the isomorphism class of X .

Definition [Ringel]

The Hall algebra H(A ) of the abelian category A is a Z-module with the

basis {u[X ] | X ∈ A} and the multiplication defined by

u[X ]u[Y ] =
∑
[L]

F L
XY u[L].
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Hall algebras of triangulated categories

Definition [Toën, Xiao-Xu]

Let T be a (left homologically finite) triangulated category. The Hall al-

gebra H(T ) of T is a Q-vector space with the basis {u[X ] | X ∈ T } and

the multiplication defined by

u[X ]u[Y ] =
∑
[L]

HL
X ,Y u[L],

where

HL
X ,Y =

|Ext 1T (X ,Y )L|
|HomT (X ,Y )|

· 1

{X ,Y }
.

• Ext 1T (X ,Y )L denotes the subset of HomT (X ,Y [1]) consisting of

morphisms X → Y [1] whose cone is isomorphic to L[1].

• For any objects X ,Y ∈ T , {X ,Y } :=
∏
i>0

|HomT (X [i ],Y )|(−1)i < +∞.

• For example, Db(A ) is left homologically finite.
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Let T be a (left homologically finite) triangulated category. The Hall al-

gebra H(T ) of T is a Q-vector space with the basis {u[X ] | X ∈ T } and

the multiplication defined by

u[X ]u[Y ] =
∑
[L]

HL
X ,Y u[L],

where

HL
X ,Y =

|Ext 1T (X ,Y )L|
|HomT (X ,Y )|

· 1

{X ,Y }
.

• Ext 1T (X ,Y )L denotes the subset of HomT (X ,Y [1]) consisting of

morphisms X → Y [1] whose cone is isomorphic to L[1].

• For any objects X ,Y ∈ T , {X ,Y } :=
∏
i>0

|HomT (X [i ],Y )|(−1)i

< +∞.

• For example, Db(A ) is left homologically finite.

Haicheng Zhang Periodic derived Hall algebras of hereditary abelian categories



Hall algebras of triangulated categories

Definition [Toën, Xiao-Xu]
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The m-periodic derived categories

In what follows, we always assume that A is a hereditary k-linear abelian

category over a finite field k = Fq

and set v =
√
q.

For any positive integer m, let Dm(A ) be the orbit category

Db(A )/[m], called the m-periodic derived category of A , which is a

triangulated category with suspension functor denoted by [1].

Notices that the periodic triangulated categories do not satisfy the (left)

homological finiteness conditions. So, the definitions of derived Hall

algebras defined by Toën, Xiao-Xu do not apply to periodic triangulated

categories.

However, the derived Hall algebras of odd periodic triangulated

categories have been defined by Xu-Chen.

[Xu-Chen] F. Xu, X. Chen, Hall algebras of odd periodic triangulated

categories, Algebr. Represent. Theory 16(3) (2013), 673–687.
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Euler forms

For any objects M,N ∈ A, set

〈M,N〉 := dim kHomA (M,N)− dim kExt
1
A (M,N)

and it descends to give a bilinear form

〈·, ·〉 : K (A)× K (A) −→ Z
known as the Euler form. The symmetric Euler form

(·, ·) : K (A)× K (A) −→ Z
is defined by (α, β) = 〈α, β〉+ 〈β, α〉 for any α, β ∈ K (A).
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Triangles associated to 5-term exact sequences

In order to relate the exact sequences in A with the triangles in Db(A ),

we need the following

Lemma

For any 5-term exact sequence 0 → K → X
f1→ Y

f2→ Z → C → 0 in

A , there exist δ1, δ2 such that we have the following triangle in Db(A ):

X ⊕ C [−1]
(f1,δ1) // Y

(δ2f2 )
// K [1]⊕ Z .

In what follows, we fix a positive integer m, and denote the quotient ring

Z/mZ by Zm = {0, 1, . . . ,m − 1}.
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Relations between the extensions in Dm(A ) and Db(A )

For any triangle in Dm(A )⊕
i∈Zm

B̃i [i ] −→
⊕
i∈Zm

M̃i [i ] −→
⊕
i∈Zm

Ãi [i ] −→
⊕
i∈Zm

B̃i [i + 1]

such that Ai ,Bi ,Mi ∈ A with i ∈ Zm, by considering the
homologies, we have the following periodic exact sequence in A
· · · −→ B0 −→ M0 −→ A0

fm−1−−−−→ Bm−1 −→ Mm−1 −→ Am−1 −→ · · ·
f1−→ B1 −→ M1 −→ A1

f0−→ B0 −→ · · ·.

Thus, for each i ∈ Zm, taking Ii = Im fi , we obtain the exact sequences

in A
0 // Ii // Bi

// Mi
// Ai

// Ii−1 // 0.

Hence, for each i ∈ Zm, we obtain the following triangle in Db(A )

Bi ⊕ Ii−1[−1] // Mi
// Ii [1]⊕ Ai .
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Relations between the extensions in Dm(A ) and Db(A )

Proposition [Z. 2023]

For any Ai ,Bi ,Mi ∈ A with i ∈ Zm, we have that

|Ext 1Dm(A )(
⊕
i∈Zm

Ai [i ],
⊕
i∈Zm

Bi [i ]) ⊕
i∈Zm

Mi [i ]|

=
∑

[I0],[I1],...,[Im−1]∈Iso(A )

∏
i∈Zm

|Ext 1Db(A )(Ii [1]⊕ Ai ,Bi ⊕ Ii−1[−1])Mi |
aIi

,

where for an object X ∈ A we set aX = |AutA (X )|.

Hence, we can use the (dual) derived Hall numbers HMi

Ii [1]⊕Ai ,Bi⊕Ii−1[−1]

with i ∈ Zm to define the Hall numbers of m-periodic derived Hall

algebras.
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The m-periodic extended derived Hall algebra

Definition [Z. 2023]

The Hall algebra DHe
m(A ),

called the m-periodic extended de-
rived Hall algebra of A , is the C-vector space with the basis
{u ⊕

i∈Zm
Mi [i ]

∏
i∈Zm

Kαi ,i | [Mi ] ∈ Iso(A ), αi ∈ K (A ) for all i ∈ Zm}, and

with the multiplication defined on basis elements by
(u ⊕

i∈Zm
Ai [i ]

∏
i∈Zm

Kαi ,i
)(u ⊕

i∈Zm
Bi [i ]

∏
i∈Zm

Kβi ,i
) =

va0
∑

[Ii ],[Mi ]∈Iso(A ),i∈Zm

v

−(Îm−1,α0+β0)+
m−1∑
i=1

(Îi ,αi−1+βi−1)+
∑

i∈Zm
〈M̂i−M̂i+1,Îi 〉+

m−1∑
i=1
〈Îi−1,Îi 〉−〈Î0,Îm−1〉

∏
i∈Zm

H
Mi
Ii [1]⊕Ai ,Bi⊕Ii−1[−1]

aIi

u ⊕
i∈Zm

Mi [i ]

∏
i∈Zm

K
Îi+αi+βi ,i

,

where a0 =
∑
i∈Zm

〈Âi , B̂i 〉 +
∑
i∈Zm

(αi , B̂i − B̂i+1) +
m−1∑
i=1

(αi , βi−1) −

(αm−1, β0). By convention,
m−1∑
i=1

xi = x1, if m = 1.
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(Îi ,αi−1+βi−1)+
∑

i∈Zm
〈M̂i−M̂i+1,Îi 〉+
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u ⊕
i∈Zm

Ai [i ]
u ⊕
i∈Zm

Bi [i ]
= v

∑
i∈Zm

〈Âi ,B̂i 〉 ∑
[Ii ],[Mi ]∈Iso(A ),i∈Zm

v

∑
i∈Zm

〈M̂i−M̂i+1,Îi 〉+
m−1∑
i=1
〈Îi−1,Îi 〉−〈Î0,Îm−1〉

∏
i∈Zm

H
Mi
Ii [1]⊕Ai ,Bi⊕Ii−1[−1]

aIi

u ⊕
i∈Zm

Mi [i ]

∏
i∈Zm

K
Îi ,i

,

∏
i∈Zm

Kαi ,i

∏
i∈Zm

Kβi ,i
= v
−(αm−1,β0)+

m−1∑
i=1

(αi ,βi−1) ∏
i∈Zm

Kαi+βi ,i
,

(
∏

i∈Zm

Kαi ,i
)u ⊕

i∈Zm
Bi [i ]

= v

∑
i∈Zm

(αi ,B̂i−B̂i+1)

u ⊕
i∈Zm

Bi [i ]

∏
i∈Zm

Kαi ,i
,

∏
i∈Zm

Kαi ,i

∏
i∈Zm

Kβi ,i
= v

∑
i∈Zm

(αi ,βi−1−βi+1) ∏
i∈Zm

Kβi ,i
∏

i∈Zm

Kαi ,i
.
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The m-periodic extended derived Hall algebra

Theorem [Z. 2023]

The m-periodic extended derived Hall algebra DHe
m(A ) is an associative

algebra.

Proof: It is proved by using the associativity of derived Hall algebra of

Db(A ) or Green’s formulas in A .

Proposition [Z. 2023]

The m-periodic extended derived Hall algebra DHe
m(A ) has a basis given

by

{
∏
i∈Zm

uAi [i ]

∏
i∈Zm

Kαi ,i | [Ai ] ∈ Iso(A ), αi ∈ K (A ) for all i ∈ Zm}.
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The m-periodic extended derived Hall algebra

Theorem [Z. 2023]

The m-periodic extended derived Hall algebra DHe
m(A ) is isomorphic to

Bridgeland’s Hall algebra (if A has enough projectives) and semi-derived

Ringel-Hall algebras of m-periodic complexes.

Theorem [Z. 2023]

The 2-periodic extended derived Hall algebra DHe
2(A ) is isomorphic to

the Drinfeld double Hall algebra of A .

Haicheng Zhang Periodic derived Hall algebras of hereditary abelian categories



The m-periodic extended derived Hall algebra

Theorem [Z. 2023]

The m-periodic extended derived Hall algebra DHe
m(A ) is isomorphic to

Bridgeland’s Hall algebra (if A has enough projectives) and semi-derived

Ringel-Hall algebras of m-periodic complexes.

Theorem [Z. 2023]

The 2-periodic extended derived Hall algebra DHe
2(A ) is isomorphic to

the Drinfeld double Hall algebra of A .

Haicheng Zhang Periodic derived Hall algebras of hereditary abelian categories



Odd periodic derived Hall algebras

Let m be an odd positive integer.

Definition [Z. 2023]

The Hall algebra DHm(A ), called the m-periodic derived Hall algebra of

A , is the C-vector space with the basis

{u ⊕
i∈Zm

Mi [i ] | [Mi ] ∈ Iso(A ) for all i ∈ Zm},

and with the multiplication defined on basis elements by

u ⊕
i∈Zm

Ai [i ]u
⊕

i∈Zm
Bi [i ]

= v

∑
i∈Zm
〈
m−1∑
k=0

(−1)k Âi+k ,B̂i 〉 ∑
[Ii ],[Mi ]∈Iso(A ),i∈Zm

∏
i∈Zm

HMi

Ii [1]⊕Ai ,Bi⊕Ii−1[−1]

aIi
u ⊕

i∈Zm
Mi [i ].
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Remarks for even periodic derived Hall algebras

If m is an even positive integer,

we fail to define the m-periodic derived

Hall algebra of A without appending the K -elements.

If A is a hereditary abelian category with Euler form skew

symmetric, i.e. (α, β) = 0 for any α, β ∈ K (A ), then the K -elements

are central in the m-periodic extended derived Hall algebra

DHe
m(A ). Hence, in this case, the m-periodic derived Hall algebra

DHm(A ) can be defined without appending the K -elements.

We remark that Chen, Lu and Ruan have defined the Hall algebra of root

categories without appending K -elements.

J. Chen, M. Lu, S. Ruan, Derived Hall algebras of root categories,

arXiv:2303.01670, 2023.

In fact, their Hall numbers are defined in root categories by splitting the

set Hom(M, L)Z [1] into smaller subsets Hom(M, L)Z [1],δ for δ ∈ K (A ).
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Odd periodic derived Hall algebras

Theorem [Z. 2023]

Let m be an odd positive integer. The m-periodic derived Hall algebra

DHm(A ) is an associative algebra and isomorphic to the derived Hall

algebra of Dm(A ) defined by Xu-Chen.
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Odd periodic derived Hall algebras

Corollary [Z. 2023]

Let m be an odd positive integer. For any Ai ,Bi ,Ci ,Mi ∈ A with i ∈ Zm,

we have that∑
[Ii ],[Xi ],[Ji ]∈Iso(A ),i∈Zm

q
−

∑
i∈Zm
〈Îi−1,Ĉi 〉 ∏

i∈Zm

(
HXi

Ii [1]⊕Ai ,Bi⊕Ii−1[−1]

aIi

HMi

Ji [1]⊕Xi ,Ci⊕Ji−1[−1]

aJi
)

=
∑

[Ii ],[Yi ],[Ji ]∈Iso(A ),i∈Zm

q
−

∑
i∈Zm
〈Âi ,Ĵi 〉 ∏

i∈Zm

(
HMi

Ii [1]⊕Ai ,Yi⊕Ii−1[−1]

aIi

HYi

Ji [1]⊕Bi ,Ci⊕Ji−1[−1]

aJi
).

This formula may be viewed as the odd periodic version of Green’s

formula.
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An algebra embedding

Let m be an odd positive integer.

Theorem [Z.-Zhang-Zhu 2023]

There exists an embedding of algebras ϕm : DHm(A )→ DHe
m(A ) defined

by
uM0
7→ uM0

K− 1
2
M̂0

, if m = 1;

and

u ⊕
i∈Zm

Mi [i ]
7→v

1
4

m−1∑
i=1
〈
m−1∑
k=0

(−1)k M̂i+k ,
m−1∑
k=0

(−1)k M̂i+1+k 〉−
1
4
〈
m−1∑
k=0

(−1)k M̂1+k ,
m−1∑
k=0

(−1)k M̂k 〉+
m−1∑
i=0
〈M̂i ,

m−1∑
k=1

(−1)k M̂i+k 〉

u ⊕
i∈Zm

Mi [i ]

∏
i∈Zm

K
− 1

2

m−1∑
k=0

(−1)k M̂i+1+k ,i

, if m > 1;

for any Mi ∈ A with i ∈ Zm.
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Revisit: m-periodic extended derived Hall algebra

Definition

The Hall algebra DHe
m(A ), called the m-periodic extended de-

rived Hall algebra of A , is the C-vector space with the basis
{u ⊕

i∈Zm
Mi [i ]

∏
i∈Zm

Kαi ,i | [Mi ] ∈ Iso(A ), αi ∈ 1
2K (A ) for all i ∈ Zm}, and

with the multiplication defined on basis elements by
(u ⊕

i∈Zm
Ai [i ]

∏
i∈Zm

Kαi ,i
)(u ⊕

i∈Zm
Bi [i ]

∏
i∈Zm

Kβi ,i
) =

va0
∑

[Ii ],[Mi ]∈Iso(A ),i∈Zm

v

−(Îm−1,α0+β0)+
m−1∑
i=1

(Îi ,αi−1+βi−1)+
∑

i∈Zm
〈M̂i−M̂i+1,Îi 〉+

m−1∑
i=1
〈Îi−1,Îi 〉−〈Î0,Îm−1〉

∏
i∈Zm

H
Mi
Ii [1]⊕Ai ,Bi⊕Ii−1[−1]

aIi

u ⊕
i∈Zm

Mi [i ]

∏
i∈Zm

K
Îi+αi+βi ,i

,

where a0 =
∑
i∈Zm

〈Âi , B̂i 〉+
∑
i∈Zm

(αi , B̂i−B̂i+1)+
m−1∑
i=1

(αi , βi−1)−(αm−1, β0).

By convention,
m−1∑
i=1

xi = x1, if m = 1.
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Remark

As the m-periodic extended derived Hall algebra DHe
m(A ) is isomorphic

to the twisted semi-derived Ringel-Hall algebra, the theorem above can

give an embedding of algebras from the odd periodic derived Hall algebra

DHm(A ) to the twisted semi-derived Ringel-Hall algebra.

This is essentially the algebra embedding recently provided by Lin-Peng

[LP]. We remark that the extended semi-derived Ringel-Hall algebra in

[LP] is the untwisted version.

Compared with [LP], our homomorphism is defined on the basis elements

of DHm(A ), rather than just on generating elements.

[LP] J. Lin, L. Peng, Semi-derived Ringel-Hall algebras and Hall alge-

bras of odd-periodic relative derived categories, Scinence China Math-

ematics, online.
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of DHm(A ), rather than just on generating elements.

[LP] J. Lin, L. Peng, Semi-derived Ringel-Hall algebras and Hall alge-

bras of odd-periodic relative derived categories, Scinence China Math-

ematics, online.
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Thanks

Thank you!
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