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§1 Backgrounds

Gabriel’s Theorem

If Q is a connected quiver, then there are only finitely many

isomorphism classes of indecomposable representations if and only

if Q is a Dynkin quiver of type An,Dn,E6,E7,E8. In this case, the

assignment X 7→ dimX induces a bijection between the

isomorphism classes of indecomposable representations of Q and

the positive roots of the corresponding simple complex Lie algebra.
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Generalizations of Gabriel’s Theorem (simply laced):

(1) 1973, Nazarova, Donovan-Freislich: Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8

(2) 1980, Kac: general quivers

Let Q be a quiver. Then there is a bijection between the set of

dimension vectors of indecomposable representations of Q and the

set of positive roots of the corresponding Kac-Moody Lie algebra.
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Generalizations of Gabriel’s Theorem (simply laced and

non-simply laced):

(1) 1976, Dlab-Ringel: valued quivers.

(2) 2017, Geiss-Leclerc-Schröer: a class of Iwanaga-Gorenstein

algebras.
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Given a symmetrizable generalized Cartan matrix C with a

symmetrizer D and an acyclic orientation Ω of C ,

Geiss-Leclerc-Schröer introduced a quiver Q = Q(C ,Ω) and a

finite-dimensional K -algebra H = H(C ,D,Ω) = KQ/I , where K is

a field and the ideal I is generated by some powers of loops and

some commutative relations.
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Example

LetC =


2 −1 0

−2 2 −2

0 −1 2

 ,D = diag(2, 1, 2),Ω = {(2, 1), (3, 2)}.

Then (1) H = H(C ,D,Ω) = KQ/I , where

Q : ε1 	 1
α21−−→ 2

α32−−→ 3 	 ε3

and I =< ε21, ε
2
3 >.

(2) H = H(C , 2D,Ω) = KQ/I , where

Q : ε1 	 1
α21−−→ ε2 	 2

α32−−→ 3 	 ε3

and I =< ε41, ε
2
2, ε

4
3, α21ε

2
1 − ε2α21, α32ε2 − ε23α32 >.
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Let ei be the idempotent in H corresponding to the vertex i in

Q and Hi = eiHei . In the above example (1),

Hi
∼=

{
K [t]/〈t2〉, i = 1, 3

K , i = 2

Definition

(1) A left H-module M is called locally free if each Mi = eiM is a

free Hi -module for all i . Denote by ri the rank of the free

Hi -module Mi . Then rank(M) = (r1, · · · , rn) is called the rank

vector of M.

(2) An indecomposable H-module M is called τ -locally free if

τk(M) is locally free for all k ∈ Z.
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Geiss-Leclerc-Schröer’s Theorem

There are only finitely many isoclasses of τ -locally free H-modules

if and only if C is of Dynkin type. In this case, the assignment

M 7→ rank(M) provides a bijection between the set of isomorphism

classes of τ -locally free H-modules and the set of positive roots of

the corresponding simple complex Lie algebras.
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Remark

When C is of Dynkin type, Geiss-Leclerc-Schröer applied

locally-free H-modules to construct

(1) the enveloping algebra of the positive part of a semisimple

complex Lie algebra.

(2) cluster variables of cluster algebras of finite type.
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Geiss-Leclerc-Schröer’s Conjecture

There is a bijection between the set of positive roots of the

Kac-Moody Lie algebra g(C ) associated with C and the set of

rank vectors of τ -locally free H-modules.

Remark

(1) If C is symmetric and D is the identity matrix, then the

conjecture is true by Kac’s Theorem.

(2) If C is of Dynkin type and D is arbitrary, then the conjecture is

true by Geiss-Leclerc-Schröer’s Theorem.

(3) Geiss-Leclerc-Schröer proved that there is a bijection between

the isomorphism classes of rigid τ -locally free H-modules and the

set of positive real schur roots of (C ,Ω).
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§2 Representation theory on affine type algebras

H = H(C ,D,Ω)

§2.1 Type C̃n

Assume that the Cartan matrix C is of type C̃n, that is,

C =



2 −1

−2 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −2

−1 2


(n+1)×(n+1)

.

Note that D = diag(2, 1, 1, · · · , 1, 1, 2) is a symmetrizer of C .
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For any orientation Ω of C , the algebra H = H(C ,D,Ω) is a

string algebra. Moreover, H is a gentle algebra. These algebras are

called string algebras of type C̃n.

For example, assume that Ω is a linear orientation of C , then

the algebra H = KQ/I , where

Q : ε1 	 1
α21 // 2

α32 // · · ·
αn+1,n// n + 1 	 εn+1

and I =< ε21, ε
2
n+1 >.
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Theorem [Bulter-Ringel]

Let A be a string algebra. Then the following hold.

(1) Any indecomposable A-module is either a string or band

module.

(2) The number of middle terms in an Auslander-Reiten sequence

is either one or two.
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Theorem [Huang-Lin-Su]

Let H be a string algebra of type C̃n. Then the Auslander-Reiten

quiver ΓH of H consists of the following:

(1) one component TPI containing all the indecomposable

preprojective modules and all the indecomposable preinjective

modules;

(2) one tube of rank n;

(3) homogeneous tubes Hw ,S , where w runs through a complete

set of representatives of bands, S runs through all isoclasses of

simple modules over K [T ,T−1];

(4) infinitely many components of type ZA∞∞, which do not

contain τ -locally free modules.
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Eaxmple

Q : ε1 	 1
α1 // 2

α2 // · · · αn // n 	 εn

The component TPI is as follows.

Zengqiang Lin Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer on root systems



Theorem [Huang-Lin-Su]

Let H be a string algebra of type C̃n and M be an indecomposable

H-module. Then M is τ -locally free if and only if one of the

following is satisfied:

(1) M is preprojective.

(2) M is preinjective.

(3) M is a regular module occurring in any tube.
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Theorem [Huang-Lin-Su]

Let H = H(C ,D,Ω) be a string algebra of type C̃n.

(1) If M is a τ -locally free H-module, then rank(M) is a positive

root of C .

(2) If α is a positive real root of C , there is a unique τ -locally free

H-module M with rank(M) = α.

(3) If α is a positive imaginary root of C , there are infinitely many

τ -locally free H-modules M with rank(M) = α.

Corollary [Huang-Lin-Su]

Let C be of type C̃n and D = diag(2, 1, 1, · · · , 1, 1, 2). Then GLS’s

Conjecture is true.
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§2.2 Affine types: the general case

Proposition [Dlab-Ringel]

Let i = (i1, . . . , in) be a +-admissible sequence with respect to

(C ,Ω). The set of positive roots of type C is the disjoint union of

preprojective, preinjective and regular roots as follows.

(1) {c−ri (βi,k) | r ∈ Z≥0, 1 ≤ k ≤ n}.

(2) {cs
i (γi,k) | s ∈ Z≥0, 1 ≤ k ≤ n}.

(3) {x0 + rgδ | x0 is a positive root ≤ gδ, r ∈ Z≥0}, where

1 ≤ g ≤ 3 is a constant and x0 can be deduced from [Table 6,

Dlab-Ringel].
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Proposition [Lin-Su]

Let M be a τ -locally free regular H-module. Then there exists

some positive integer N such that cN(rank M) = rank M.

Proposition [Lin-Su]

Let C be a connected component of ΓH that contains a regular

τ -locally free H-module. Then C is either a tube or of the form

ZA∞. Furthermore, if C contains a τ -periodic module, then C is a

tube.
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Theorem [Lin-Su]

Let C be a generalized Cartan matrix of affine type and

H = H(C ,D,Ω). Then for any positive root α of the Kac-Moody

Lie algebra g(C ), there exists a τ -locally free left H-module M

such that rank(M) = α.

Idea of the proof: (1) It is independent on the orientation Ω.

(2) It is independent on the symmetriser D.

(3) For each inhomogeneous tube C in [Section 6, Dlab-

Ringel], there is a good tube of τ -locally free H-modules of the

same rank such that the rank vectors of the mouth modules are

exactly the same as the dimension vectors of the mouth modules of

C.
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§2.3 Counterexamples

Let C =


2 −2 0

−1 2 −1

0 −2 2

, D = diag(1, 2, 1) and

Ω = {(2, 1), (3, 2)}. Thus C is a Cartan matrix of affine type B̃2

with a minimal symmetrizer. Then H = H(C ,D,Ω) is given by the

quiver

1 2 3α21 α32

ε2

with relation ε22 = 0.
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Consider the following locally free H-module

2

��
N = 1 // 2 // 3.

Proposition

N is a τ -locally free H-module at the bottom of a stable tube of

rank 2, and rank(N) is a minimal positive imaginary root δ.

In fact,

τN = 1 // 2 //

��

3.

2
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Consider the following locally free H-module

2

��
M = 1 //

!!

2 // 3.

2

��
2

There is a short exact sequence 0→ E2 → M → N → 0,

where E2 is the generalized simple H-module at vertex 2.

Proposition

M is a τ -locally free H-module at the bottom of a stable tube of

rank 2, but rank(M) = δ + α2 is not a positive root.
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Theorem [Lin-Su]

Let C be a Cartan matrix of type B̃n, C̃Dn, F̃41 or G̃21 and D a

minimal symmetriser.

(1) The AR-quiver ΓH has an inhomogeneous tube of τ -locally

free modules, whose mouth modules are not rigid and have δ

as their rank vectors.

(2) There exist τ -locally free H-modules such that their rank

vectors are not roots. Consequently, GLS’s Conjecture fails in

these four types.
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Thank you!
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