Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer on root systems

Zengqiang Lin

Huaqiao University

Aug 8, 2024

Zengqiang Lin Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer

 \bigoplus \rightarrow \rightarrow \exists \rightarrow \rightarrow \exists \rightarrow

§1 Backgrounds

§2 Representation theory on affine type algebras $H = H(C, D, \Omega)$ §2.1 Type $\widetilde{\mathcal{C}}_n$ §2.2 Affine types: the general case §2.3 Inhomogeneous tubes and counterexamples

KED KARD KED KED E YAN

Gabriel's Theorem

If Q is a connected quiver, then there are only finitely many isomorphism classes of indecomposable representations if and only if Q is a Dynkin quiver of type A_n, D_n, E_6, E_7, E_8 . In this case, the assignment $X \mapsto \text{dim}X$ induces a bijection between the isomorphism classes of indecomposable representations of Q and the positive roots of the corresponding simple complex Lie algebra.

オート オート オート

Generalizations of Gabriel's Theorem (simply laced): (1) 1973, Nazarova, Donovan-Freislich: $\widetilde{A}_n, \widetilde{D}_n, \widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8$ (2) 1980, Kac: general quivers

同 ▶ イヨ ▶ イヨ ▶ │

 QQ

э

Generalizations of Gabriel's Theorem (simply laced): (1) 1973, Nazarova, Donovan-Freislich: \widetilde{A}_n , \widetilde{D}_n , \widetilde{E}_6 , \widetilde{E}_7 , \widetilde{E}_8 (2) 1980, Kac: general quivers

Let Q be a quiver. Then there is a bijection between the set of dimension vectors of indecomposable representations of Q and the set of positive roots of the corresponding Kac-Moody Lie algebra.

Generalizations of Gabriel's Theorem (simply laced and non-simply laced):

(1) 1976, Dlab-Ringel: valued quivers.

(2) 2017, Geiss-Leclerc-Schröer: a class of Iwanaga-Gorenstein algebras.

イ何 トイヨ トイヨ トー

 2990

э

Given a symmetrizable generalized Cartan matrix C with a symmetrizer D and an acyclic orientation $Ω$ of C, Geiss-Leclerc-Schröer introduced a quiver $Q = Q(C, \Omega)$ and a finite-dimensional K-algebra $H = H(C, D, \Omega) = KQ/I$, where K is a field and the ideal *I* is generated by some powers of loops and some commutative relations.

 $AB = AB$

Example

Let
$$
C = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}
$$
, $D = diag(2, 1, 2)$, $\Omega = \{(2, 1), (3, 2)\}$.

Then (1) $H = H(C, D, \Omega) = KQ/I$, where

$$
Q:\varepsilon_1\circlearrowleft 1\xrightarrow{\alpha_{21}}2\xrightarrow{\alpha_{32}}3\circlearrowleft\varepsilon_3
$$

and $I = <\varepsilon_1^2, \varepsilon_3^2>$.

Example

Let
$$
C = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}
$$
, $D = diag(2, 1, 2)$, $\Omega = \{(2, 1), (3, 2)\}$.

Then (1) $H = H(C, D, \Omega) = KQ/I$, where

$$
Q:\varepsilon_1\circlearrowleft 1\xrightarrow{\alpha_{21}}2\xrightarrow{\alpha_{32}}3\circlearrowleft\varepsilon_3
$$

and $I = <\varepsilon_1^2, \varepsilon_3^2>$. (2) $H = H(C, 2D, \Omega) = KQ/I$, where $Q: \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_{21}} \varepsilon_2 \circlearrowleft 2 \xrightarrow{\alpha_{32}} 3 \circlearrowleft \varepsilon_3$ and $I=<\varepsilon_1^4,\varepsilon_2^2,\varepsilon_3^4,\alpha_{21}\varepsilon_1^2-\varepsilon_2\alpha_{21},\alpha_{32}\varepsilon_2-\varepsilon_3^2\alpha_{32}>.$

Let e_i be the idempotent in H corresponding to the vertex i in Q and $H_i = e_i H e_i$. In the above example (1),

$$
H_i \cong \left\{ \begin{array}{ll} K[t]/\langle t^2 \rangle, & i = 1,3 \\ K, & i = 2 \end{array} \right.
$$

E

Let e_i be the idempotent in H corresponding to the vertex i in Q and $H_i = e_i H e_i$. In the above example (1),

$$
H_i \cong \left\{ \begin{array}{ll} K[t]/\langle t^2 \rangle, & i = 1,3 \\ K, & i = 2 \end{array} \right.
$$

Definition

(1) A left H-module M is called *locally free* if each $M_i = e_i M$ is a free H_i -module for all i. Denote by r_i the rank of the free H_i -module M_i . Then $\underline{{\rm rank}}(M) = (r_1, \cdots, r_n)$ is called the $rank$ vector of M.

(2) An indecomposable H-module M is called τ -locally free if $\tau^k(M)$ is locally free for all $k\in\mathbb{Z}.$

Geiss-Leclerc-Schröer's Theorem

There are only finitely many isoclasses of τ -locally free H-modules if and only if C is of Dynkin type. In this case, the assignment $M \mapsto \text{rank}(M)$ provides a bijection between the set of isomorphism classes of τ -locally free H-modules and the set of positive roots of the corresponding simple complex Lie algebras.

Remark

When C is of Dynkin type, Geiss-Leclerc-Schröer applied locally-free H-modules to construct (1) the enveloping algebra of the positive part of a semisimple complex Lie algebra.

(2) cluster variables of cluster algebras of finite type.

つくへ

Geiss-Leclerc-Schröer's Conjecture

There is a bijection between the set of positive roots of the Kac-Moody Lie algebra $g(C)$ associated with C and the set of rank vectors of τ -locally free H-modules.

 QQ

Geiss-Leclerc-Schröer's Conjecture

There is a bijection between the set of positive roots of the Kac-Moody Lie algebra $g(C)$ associated with C and the set of rank vectors of τ -locally free H-modules.

Remark

 (1) If C is symmetric and D is the identity matrix, then the conjecture is true by Kac's Theorem.

(2) If C is of Dynkin type and D is arbitrary, then the conjecture is true by Geiss-Leclerc-Schröer's Theorem.

 (3) Geiss-Leclerc-Schröer proved that there is a bijection between the isomorphism classes of rigid τ -locally free H-modules and the set of positive real schur roots of (C, Ω) .

 $\mathcal{L} \cap \mathcal{L} \times \mathcal{A} \rightarrow \mathcal{L} \times \mathcal{L} \rightarrow \mathcal{$

 $2Q$

§2 Representation theory on affine type algebras $H = H(C, D, \Omega)$

§2.1 Type $\widetilde{\mathcal{C}}_n$

Assume that the Cartan matrix C is of type C_n , that is,

Not[e](#page-14-0) that $D = diag(2, 1, 1, \dots, 1, 1, 2)$ is a [sym](#page-14-0)[m](#page-16-0)e[tri](#page-15-0)[z](#page-16-0)[er](#page-0-0) [of](#page-32-0) C [.](#page-32-0)

For any orientation Ω of C, the algebra $H = H(C, D, \Omega)$ is a string algebra. Moreover, H is a gentle algebra. These algebras are called string algebras of type \widetilde{C}_{n} .

For example, assume that Ω is a linear orientation of C, then the algebra $H = KQ/I$, where

$$
Q: \ \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_{21}} 2 \xrightarrow{\alpha_{32}} \cdots \xrightarrow{\alpha_{n+1,n}} n+1 \circlearrowleft \varepsilon_{n+1}
$$

and $I = <\varepsilon_1^2, \varepsilon_{n+1}^2>$.

モー イヨメ イヨメー ヨ

 QQ

Theorem [Bulter-Ringel]

Let A be a string algebra. Then the following hold.

(1) Any indecomposable A-module is either a string or band module.

(2) The number of middle terms in an Auslander-Reiten sequence

is either one or two.

 QQ

Let H be a string algebra of type C_n . Then the Auslander-Reiten quiver Γ_H of H consists of the following:

(1) one component \mathcal{T}_{PI} containing all the indecomposable preprojective modules and all the indecomposable preinjective modules;

 (2) one tube of rank *n*;

(3) homogeneous tubes $\mathcal{H}_{w,S}$, where w runs through a complete set of representatives of bands, S runs through all isoclasses of simple modules over $\mathcal{K}[{\mathcal T},\,T^{-1}];$ (4) infinitely many components of type $\mathbb{Z}A_\infty^\infty$, which do not

contain τ -locally free modules.

Eaxmple

$$
Q: \; \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} n \circlearrowleft \varepsilon_n
$$

The component \mathcal{T}_{PI} is as follows.

Ξ

∍ \mathbf{h} э

 \mathcal{A}

Let H be a string algebra of type \widetilde{C}_n and M be an indecomposable H-module. Then M is τ -locally free if and only if one of the following is satisfied:

- (1) M is preprojective.
- (2) *M* is preinjective.
- (3) M is a regular module occurring in any tube.

Let $H = H(C, D, \Omega)$ be a string algebra of type \widetilde{C}_n .

(1) If M is a τ -locally free H-module, then $rank(M)$ is a positive root of C.

(2) If α is a positive real root of C, there is a unique τ -locally free H-module M with rank $(M) = \alpha$.

(3) If α is a positive imaginary root of C, there are infinitely many τ -locally free H-modules M with rank $(M) = \alpha$.

Let $H = H(C, D, \Omega)$ be a string algebra of type \widetilde{C}_n .

(1) If M is a τ -locally free H-module, then rank(M) is a positive root of C.

(2) If α is a positive real root of C, there is a unique τ -locally free H-module M with rank $(M) = \alpha$.

(3) If α is a positive imaginary root of C, there are infinitely many τ -locally free H-modules M with rank $(M) = \alpha$.

Corollary [Huang-Lin-Su]

Let C be of type $\widetilde{\mathcal{C}}_n$ and $D = \text{diag}(2, 1, 1, \dots, 1, 1, 2)$. Then GLS's Conjecture is true.

- オート オート オート エー・エー

Proposition [Dlab-Ringel]

Let $\mathbf{i} = (i_1, \ldots, i_n)$ be a +-admissible sequence with respect to (C, Ω) . The set of positive roots of type C is the disjoint union of preprojective, preinjective and regular roots as follows.

(1)
$$
\{c_i^{-r}(\beta_{i,k}) \mid r \in \mathbb{Z}_{\geq 0}, 1 \leq k \leq n\}.
$$

$$
(2) \ \{c_i^s(\gamma_{i,k}) \mid s \in \mathbb{Z}_{\geq 0}, 1 \leq k \leq n\}.
$$

(3) $\{x_0 + rg\delta \mid x_0 \text{ is a positive root } \leq g\delta, r \in \mathbb{Z}_{\geq 0}\}\,$, where $1 \leq g \leq 3$ is a constant and x_0 can be deduced from [Table 6, Dlab-Ringel].

イタメ イミメイモメー

Proposition [Lin-Su]

Let M be a τ -locally free regular H-module. Then there exists some positive integer N such that $\,c^N(\underline{\text{rank}}\,M) = \underline{\text{rank}}\,M.$

伊 ▶ ヨ ヨ ▶ ヨ

Proposition [Lin-Su]

Let M be a τ -locally free regular H-module. Then there exists some positive integer N such that $\,c^N(\underline{\text{rank}}\,M) = \underline{\text{rank}}\,M.$

Proposition [Lin-Su]

Let C be a connected component of Γ_H that contains a regular τ -locally free H-module. Then C is either a tube or of the form $\mathbb{Z}\mathbb{A}_{\infty}$. Furthermore, if C contains a τ -periodic module, then C is a tube.

Theorem [Lin-Su]

Let C be a generalized Cartan matrix of affine type and $H = H(C, D, \Omega)$. Then for any positive root α of the Kac-Moody Lie algebra $g(C)$, there exists a τ -locally free left H-module M such that rank $(M) = \alpha$.

 QQ

Theorem [Lin-Su]

Let C be a generalized Cartan matrix of affine type and $H = H(C, D, \Omega)$. Then for any positive root α of the Kac-Moody Lie algebra $g(C)$, there exists a τ -locally free left H-module M such that rank $(M) = \alpha$.

Idea of the proof: (1) It is independent on the orientation $Ω$. (2) It is independent on the symmetriser D. (3) For each inhomogeneous tube $\mathcal C$ in [Section 6, Dlab-Ringell, there is a good tube of τ -locally free H-modules of the same rank such that the rank vectors of the mouth modules are exactly the same as the dimension vectors of the mouth modules of \mathcal{C} .

イ何 ト イヨ ト イヨ トー

 2990

∍

§2.3 Counterexamples

Let
$$
C = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{pmatrix}
$$
, $D = diag(1, 2, 1)$ and

 $\Omega = \{(2, 1), (3, 2)\}\.$ Thus C is a Cartan matrix of affine type \widetilde{B}_2 with a minimal symmetrizer. Then $H = H(C, D, \Omega)$ is given by the quiver

with relation $\varepsilon_2^2=0$.

Consider the following locally free H-module

$$
N = \begin{array}{c} 2 \\ \downarrow \\ 1 \longrightarrow 2 \longrightarrow 3. \end{array}
$$

Proposition

N is a τ -locally free H-module at the bottom of a stable tube of rank 2, and rank (N) is a minimal positive imaginary root δ .

In fact,

$$
\tau N = 1 \longrightarrow 2 \longrightarrow 3.
$$

何 ▶ ヨ ヨ ▶ ヨ ヨ

 QQ

Consider the following locally free H-module

There is a short exact sequence $0 \to E_2 \to M \to N \to 0$.

where E_2 is the generalized simple H-module at vertex 2.

Proposition

M is a τ -locally free H-module at the bottom of a stable tube of rank 2, but rank $(M) = \delta + \alpha_2$ is not a positive root.

Theorem [Lin-Su]

Let C be a Cartan matrix of type \mathbb{B}_n , \mathbb{CD}_n , \mathbb{F}_{41} or \mathbb{G}_{21} and D a minimal symmetriser.

- (1) The AR-quiver Γ_H has an inhomogeneous tube of τ -locally free modules, whose mouth modules are not rigid and have δ as their rank vectors.
- (2) There exist τ -locally free H-modules such that their rank vectors are not roots. Consequently, GLS's Conjecture fails in these four types.

Thank you!

Zengqiang Lin Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer

K ロ ▶ K 部 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익(연)