Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer on root systems

Zengqiang Lin

Huaqiao University

Aug 8, 2024

Zengqiang Lin Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer

э

$\S1$ Backgrounds

§2 Representation theory on affine type algebras $H = H(C, D, \Omega)$ §2.1 Type \tilde{C}_n §2.2 Affine types: the general case §2.3 Inhomogeneous tubes and counterexamples

Gabriel's Theorem

If Q is a connected quiver, then there are only finitely many isomorphism classes of indecomposable representations if and only if Q is a Dynkin quiver of type A_n, D_n, E_6, E_7, E_8 . In this case, the assignment $X \mapsto \underline{\dim} X$ induces a bijection between the isomorphism classes of indecomposable representations of Q and the positive roots of the corresponding simple complex Lie algebra.

(日) (日) (日)

Generalizations of Gabriel's Theorem (simply laced): (1) 1973, Nazarova, Donovan-Freislich: $\tilde{A}_n, \tilde{D}_n, \tilde{E}_6, \tilde{E}_7, \tilde{E}_8$ (2) 1980, Kac: general quivers

伺 ト イヨ ト イヨ ト

э

Generalizations of Gabriel's Theorem (simply laced): (1) 1973, Nazarova, Donovan-Freislich: $\widetilde{A}_n, \widetilde{D}_n, \widetilde{E}_6, \widetilde{E}_7, \widetilde{E}_8$ (2) 1980, Kac: general quivers

Let Q be a quiver. Then there is a bijection between the set of dimension vectors of indecomposable representations of Q and the set of positive roots of the corresponding Kac-Moody Lie algebra.

Generalizations of Gabriel's Theorem (simply laced and non-simply laced):

(1) 1976, Dlab-Ringel: valued quivers.

(2) 2017, Geiss-Leclerc-Schröer: a class of Iwanaga-Gorenstein algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Given a symmetrizable generalized Cartan matrix C with a symmetrizer D and an acyclic orientation Ω of C, Geiss-Leclerc-Schröer introduced a quiver $Q = Q(C, \Omega)$ and a finite-dimensional K-algebra $H = H(C, D, \Omega) = KQ/I$, where K is a field and the ideal I is generated by some powers of loops and some commutative relations.

伺 ト イ ヨ ト イ ヨ ト

Example

Let
$$C = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}$$
, $D = diag(2, 1, 2), \Omega = \{(2, 1), (3, 2)\}.$

Then (1) $H = H(C, D, \Omega) = KQ/I$, where

$$Q: \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_{21}} 2 \xrightarrow{\alpha_{32}} 3 \circlearrowleft \varepsilon_3$$

and $I = <\varepsilon_1^2, \varepsilon_3^2 >$.

Example

Let
$$C = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}$$
, $D = diag(2, 1, 2), \Omega = \{(2, 1), (3, 2)\}.$

Then (1) $H = H(C, D, \Omega) = KQ/I$, where

$$Q: \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_{21}} 2 \xrightarrow{\alpha_{32}} 3 \circlearrowleft \varepsilon_3$$

and $I = \langle \varepsilon_1^2, \varepsilon_3^2 \rangle$. (2) $H = H(C, 2D, \Omega) = KQ/I$, where $Q : \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_{21}} \varepsilon_2 ថ 2 \xrightarrow{\alpha_{32}} 3 \circlearrowleft \varepsilon_3$

and $I = <\varepsilon_1^4, \varepsilon_2^2, \varepsilon_3^4, \alpha_{21}\varepsilon_1^2 - \varepsilon_2\alpha_{21}, \alpha_{32}\varepsilon_2 - \varepsilon_3^2\alpha_{32} >.$

Let e_i be the idempotent in H corresponding to the vertex i in Q and $H_i = e_i H e_i$. In the above example (1),

$$H_i \cong \left\{ egin{array}{ll} \mathcal{K}[t]/\langle t^2
angle, & i=1,3 \ \mathcal{K}, & i=2 \end{array}
ight.$$

御 と く ヨ と く ヨ と

э

Let e_i be the idempotent in H corresponding to the vertex i in Q and $H_i = e_i H e_i$. In the above example (1),

$$egin{aligned} \mathcal{H}_i &\cong \left\{ egin{aligned} \mathcal{K}[t]/\langle t^2
angle, & i=1,3\ \mathcal{K}, & i=2 \end{aligned}
ight. \end{aligned}$$

Definition

(1) A left *H*-module *M* is called *locally free* if each *M_i* = *e_iM* is a free *H_i*-module for all *i*. Denote by *r_i* the rank of the free *H_i*-module *M_i*. Then <u>rank(*M*)</u> = (*r*₁, ..., *r_n*) is called the *rank vector* of *M*.
(2) An indecomposable *H*-module *M* is called *τ*-*locally free* if

 $\tau^k(M)$ is locally free for all $k \in \mathbb{Z}$.

Geiss-Leclerc-Schröer's Theorem

There are only finitely many isoclasses of τ -locally free *H*-modules if and only if *C* is of Dynkin type. In this case, the assignment $M \mapsto \underline{\operatorname{rank}}(M)$ provides a bijection between the set of isomorphism classes of τ -locally free *H*-modules and the set of positive roots of the corresponding simple complex Lie algebras.

Remark

When C is of Dynkin type, Geiss-Leclerc-Schröer applied locally-free H-modules to construct (1) the enveloping algebra of the positive part of a semisimple complex Lie algebra.

(2) cluster variables of cluster algebras of finite type.

Geiss-Leclerc-Schröer's Conjecture

There is a bijection between the set of positive roots of the Kac-Moody Lie algebra g(C) associated with C and the set of rank vectors of τ -locally free H-modules.

Geiss-Leclerc-Schröer's Conjecture

There is a bijection between the set of positive roots of the Kac-Moody Lie algebra g(C) associated with C and the set of rank vectors of τ -locally free H-modules.

Remark

(1) If C is symmetric and D is the identity matrix, then the

conjecture is true by Kac's Theorem.

(2) If C is of Dynkin type and D is arbitrary, then the conjecture is true by Geiss-Leclerc-Schröer's Theorem.

(3) Geiss-Leclerc-Schröer proved that there is a bijection between the isomorphism classes of rigid τ -locally free H-modules and the set of positive real schur roots of (C, Ω) .

・ロト ・同ト ・ヨト ・ヨト

§2 Representation theory on affine type algebras $H = H(C, D, \Omega)$

§2.1 Type \widetilde{C}_n

Assume that the Cartan matrix C is of type C_n , that is,

Note that $D = \text{diag}(2, 1, 1, \dots, 1, 1, 2)$ is a symmetrizer of C.

For any orientation Ω of C, the algebra $H = H(C, D, \Omega)$ is a string algebra. Moreover, H is a gentle algebra. These algebras are called *string algebras of type* \widetilde{C}_n .

For example, assume that Ω is a linear orientation of C, then the algebra H = KQ/I, where

$$Q: \varepsilon_1 \circlearrowleft 1 \xrightarrow{\alpha_{21}} 2 \xrightarrow{\alpha_{32}} \cdots \xrightarrow{\alpha_{n+1,n}} n+1 \circlearrowright \varepsilon_{n+1}$$

and $I = <\varepsilon_1^2, \varepsilon_{n+1}^2 >$.

Theorem [Bulter-Ringel]

Let A be a string algebra. Then the following hold.

(1) Any indecomposable *A*-module is either a string or band module.

(2) The number of middle terms in an Auslander-Reiten sequence

is either one or two.

• • = • • = •

Let *H* be a string algebra of type \widetilde{C}_n . Then the Auslander-Reiten quiver Γ_H of *H* consists of the following:

(1) one component T_{Pl} containing all the indecomposable preprojective modules and all the indecomposable preinjective modules;

(2) one tube of rank n;

(3) homogeneous tubes $\mathcal{H}_{w,S}$, where w runs through a complete set of representatives of bands, S runs through all isoclasses of simple modules over $\mathcal{K}[\mathcal{T}, \mathcal{T}^{-1}]$;

(4) infinitely many components of type $\mathbb{Z}A_{\infty}^{\infty}$, which do not contain τ -locally free modules.

Eaxmple

$$Q: \varepsilon_1 \oslash 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} n \oslash \varepsilon_n$$

The component \mathcal{T}_{PI} is as follows.

э

Let *H* be a string algebra of type \widetilde{C}_n and *M* be an indecomposable *H*-module. Then *M* is τ -locally free if and only if one of the following is satisfied:

- (1) M is preprojective.
- (2) M is preinjective.
- (3) M is a regular module occurring in any tube.

Let $H = H(C, D, \Omega)$ be a string algebra of type \widetilde{C}_n .

(1) If M is a τ -locally free H-module, then $\underline{\operatorname{rank}}(M)$ is a positive root of C.

(2) If α is a positive real root of *C*, there is a unique τ -locally free *H*-module *M* with $\underline{rank}(M) = \alpha$.

(3) If α is a positive imaginary root of *C*, there are infinitely many τ -locally free *H*-modules *M* with $\underline{\operatorname{rank}}(M) = \alpha$.

Let $H = H(C, D, \Omega)$ be a string algebra of type \widetilde{C}_n .

(1) If M is a τ -locally free H-module, then $\underline{\operatorname{rank}}(M)$ is a positive root of C.

(2) If α is a positive real root of *C*, there is a unique τ -locally free *H*-module *M* with $\underline{rank}(M) = \alpha$.

(3) If α is a positive imaginary root of C, there are infinitely many

 τ -locally free *H*-modules *M* with $\underline{\operatorname{rank}}(M) = \alpha$.

Corollary [Huang-Lin-Su]

Let C be of type \tilde{C}_n and $D = \text{diag}(2, 1, 1, \dots, 1, 1, 2)$. Then GLS's Conjecture is true.

A (1) A (2) A (2) A

Proposition [Dlab-Ringel]

Let $\mathbf{i} = (i_1, \dots, i_n)$ be a +-admissible sequence with respect to (C, Ω) . The set of positive roots of type *C* is the disjoint union of preprojective, preinjective and regular roots as follows.

(1)
$$\{c_{\mathbf{i}}^{-r}(\beta_{\mathbf{i},k}) \mid r \in \mathbb{Z}_{\geq 0}, 1 \leq k \leq n\}.$$

(2)
$$\{c_{\mathbf{i}}^{s}(\gamma_{\mathbf{i},k}) \mid s \in \mathbb{Z}_{\geq 0}, 1 \leq k \leq n\}.$$

(3) $\{x_0 + rg\delta \mid x_0 \text{ is a positive root } \leq g\delta, r \in \mathbb{Z}_{\geq 0}\}$, where $1 \leq g \leq 3$ is a constant and x_0 can be deduced from [Table 6, Dlab-Ringel].

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proposition [Lin-Su]

Let *M* be a τ -locally free regular *H*-module. Then there exists some positive integer *N* such that $c^N(\underline{\operatorname{rank}} M) = \underline{\operatorname{rank}} M$.

伺 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Proposition [Lin-Su]

Let *M* be a τ -locally free regular *H*-module. Then there exists some positive integer *N* such that $c^N(\operatorname{rank} M) = \operatorname{rank} M$.

Proposition [Lin-Su]

Let C be a connected component of Γ_H that contains a regular τ -locally free H-module. Then C is either a tube or of the form $\mathbb{Z}\mathbb{A}_{\infty}$. Furthermore, if C contains a τ -periodic module, then C is a tube.

Theorem [Lin-Su]

Let *C* be a generalized Cartan matrix of affine type and $H = H(C, D, \Omega)$. Then for any positive root α of the Kac-Moody Lie algebra g(C), there exists a τ -locally free left *H*-module *M* such that $\underline{\operatorname{rank}}(M) = \alpha$.

伺 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Theorem [Lin-Su]

Let *C* be a generalized Cartan matrix of affine type and $H = H(C, D, \Omega)$. Then for any positive root α of the Kac-Moody Lie algebra g(C), there exists a τ -locally free left *H*-module *M* such that $\underline{\operatorname{rank}}(M) = \alpha$.

Idea of the proof: (1) It is independent on the orientation Ω . (2) It is independent on the symmetriser *D*. (3) For each inhomogeneous tube *C* in [Section 6, Dlab-Ringel], there is a good tube of τ -locally free H-modules of the same rank such that the rank vectors of the mouth modules are exactly the same as the dimension vectors of the mouth modules of *C*.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

§2.3 Counterexamples

Let
$$C = \begin{pmatrix} 2 & -2 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{pmatrix}$$
, $D = diag(1, 2, 1)$ and

 $\Omega = \{(2,1), (3,2)\}$. Thus *C* is a Cartan matrix of affine type \widetilde{B}_2 with a minimal symmetrizer. Then $H = H(C, D, \Omega)$ is given by the quiver

with relation $\varepsilon_2^2 = 0$.

伺 とう きょう とう とうしょう

Consider the following locally free H-module

$$N = 1 \longrightarrow 2 \longrightarrow 3.$$

Proposition

N is a τ -locally free *H*-module at the bottom of a stable tube of rank 2, and rank(*N*) is a minimal positive imaginary root δ .

In fact,

$$\tau N = \qquad 1 \longrightarrow 2 \longrightarrow 3.$$

伺 🕨 🖌 🖻 🕨 🖌 🗐 🕨

Consider the following locally free H-module

There is a short exact sequence $0 \rightarrow E_2 \rightarrow M \rightarrow N \rightarrow 0$, where E_2 is the generalized simple *H*-module at vertex 2.

Proposition

M is a τ -locally free *H*-module at the bottom of a stable tube of rank 2, but $\underline{\operatorname{rank}}(M) = \delta + \alpha_2$ is not a positive root.

Theorem [Lin-Su]

Let *C* be a Cartan matrix of type $\widetilde{\mathbb{B}}_n$, $\widetilde{\mathbb{CD}}_n$, $\widetilde{\mathbb{F}}_{41}$ or $\widetilde{\mathbb{G}}_{21}$ and *D* a minimal symmetriser.

- (1) The AR-quiver Γ_H has an inhomogeneous tube of τ -locally free modules, whose mouth modules are not rigid and have δ as their rank vectors.
- (2) There exist *τ*-locally free *H*-modules such that their rank vectors are not roots. Consequently, GLS's Conjecture fails in these four types.

Thank you!

Zengqiang Lin Inhomogeneous tubes and a conjecture by Geiss-Leclerc-Schröer

▲□▶▲□▶▲目▶▲目▶ 目 のへで