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Hereditary Algebra

For algebra B over field k, we call it a hereditary algebra if
gl.dim(B) <=1
@ Path algebra £Q of a quiver () is a hereditary algebra.
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Hall Algebra

Let IF, be a finite field of order q. Let B be a finite-dimensional
hereditary algebra over IF,.

@ A be the set of isomorphism classes of finite-dimensional
B-modules.

@ For any a € A, we fix a B-module M, such that M, € «.

The Ringle-Hall algebra H,(modB) is a Q-algebra with a basis
{upg, |oo € A}
For algebra B, a, 5 € A, there is Euler form as follows.

<Oé, B> = EZEN(_l)Zdlm Ext i(Mam M,B)

we note (a, B) == (a, B) + (5, a).
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Multiplication on Hall Algebra

vy € Qy is a fixed square root of q.

Multiplication:
U, * UM = EA,GADSIO‘@gzéﬁuM7
where
L IBxth(Ma Mo | |Aut(M)

9o = THomp (Mg, Mg)| [Autp(Ma)|[Auts(Mp)]

is the filtration number. Ext]lg(l\/Ia,Mg)l\/[W consists of extension
where the middle term is isomorphic to M,.
ae = |Aut(My)].
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Comultiplication on Hall Algebra

Green defined a comultiplication on H4(modB) by

5(UM7) = Zaﬁe/\’l}gmw h,?ﬁuMa &® UM

af _ |Exth(Ma, Mgy, |
where 1" = WM&MM
Ringle-Hall algebra.

. It gives a bialgebra structure on
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Green's Formula

Green's Formula

Green proved a non-trivial homological formula about filtration
numbers which is called Green's formula: for any o, 3,0/, 3" € A,
we have

U0 08 Aoy g/ Z e
YEA
|EXt iQ(MOél ) M52)|

_ ey o B’
B a1,(12§ﬁ2€A |H0ka(Ma17 Mﬂz)' ga1a2 gglﬂ? galﬁl ga?ﬂ? R G’B?)

v

If we define the multiply o on H,(mod(B)) ® H4(mod(B)) as
follows

(O‘/’B)(

(unm, ® ungg) o (unm,, @ uny, ) = vg UM, * ung) ® (U, * unry, )

Then we will have that od = §*, which is the same as Green's
formula.
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@ Ringel-Hall algebra is isomorphic to the positive part of the
quantized enveloping algebra of a generalized Kac-Moody Lie
algebra (in the sense of Borcherds).

@ In particular, the generic form of the composition subalgebra
(generated by wu; corresponding to simple representations
Si, i € 1) of Hy(Q) is isomorphic to U, (g), where g is the
Kac-Moody Lie algebra defined by the generalized Cartan
matrix induced by the quiver Q.
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From Quivers to Hereditary Algebras

For field C, we could obtain all of the finite dimensional hereditary
algebras from path algebras of quivers.

But when the field ¥y, we need to consider a quiver with
automorphism and Frobenius map with this automorphism. From
now on we denoted k:=TF,

Definition

(1) A finite quiver (I, H, s, t) consists of two finite sets I, H and two
maps s,t: H— I, where [ is the set of vertices, H is the the set of
arrows, and for any h € H, the images s(h) and t(h) € I are its
source and target respectively. A loop of the quiver is an arrow

h € H satisfying s(h) = t(h).

(2) Let (I, H, s, t) be a finite quiver without loops, an admissible
automorphism a of the quiver consists of two permutations

a:I— Iand a: H— H satisfying

(a) a(s(h)) = s(a(h)), a(t(h)) = t(a(h)) for any h € H,
(b) s(h), t(h) € I belong to different a-orbits for any h € H.
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Frobenius Maps

@ Let V be a k-vector space, a Frobenius map on V'is a
IF4-linear isomorphism F'y : V — V satisfying
(a) for any X\ € kand v € V, we have Fy(\v) = AFy(v);
(b) for any v € V, there exists n > 1 such that F7(v) = v.
If there exists such a Frobenius map, then the fixed point set
VEV is a F-subspace such that V= k®p, V'V, and we say V
has a [F-structure.

@ Let A be an algebra over k, a Frobenius morphism on A is a
Frobenius map Fy : A — A on the underlying k-vector space
preserving the unit and the multiplication. If there exists such
a Frobenius morphism, then the fixed point set A4 is a
[F -subalgebra such that A = k®p, AF4 and we say A has a
[F -structure.
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Frobenius Maps

@ Let A be an algebra over k with the Frobenius morphism
Fp:A— Aand M€ modiA, a Frobenius morphism on M is
a Frobenius map Fj;: M — M on the underlying k-vector
space satisfying Fy(ma) = Fy(m)F 4(a) for any m € M and
a € A. If there exists such a Frobenius morphism, then the
fixed point set M € modg,(A"4) such that
M= k®r, MFM and we say M is Fy-stable.

@ Let A be a k-algebra with the Frobenius morphism
Fy: A— A, we define mod fAA to be the category of
F 4-stable modules. More precisely, its objects are of the form
(M, Fyr), where M € mod ;A is Fy-stable and Fpr: M — M
is the Frobenius morphism; and its morphisms
(M, Fyy) — (M, Fyp) are morphisms f: M — M of
A-modules satisfying fEFy = Fr f.
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Quivers to Algebras

Theorem 3.2 [Deng, Du]

There is an equivalence of categories
Fa g = F
mod ; * A — modp, (A"4)

defined by (M, Fyy) — MM

Theorem 6.5 [Deng, Du]

Let B be a finite-dimensional hereditary basic algebra over [y, then
there exists a finite quiver () without loops and an admissible
automorphism a such that B 2 (kQ), where F'= ao Fyg

Thus we have that there are equivalences of categories

mod ,;F(kQ) ~ mod Fq((k@)ﬁ) ~ modp, B.
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If we want to give a description of Hall algebras in sheaves
complexes categories, we need to consider Hall algebras as algebras
via functions.
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The Moduli Space of Quiver Q

For quiver @ = (I, H) and v € NI, V is a [—graded k—vector space
dim(V) = v.

o Ey=F,= @heHHomk(Vs(h)y Vim))

o Gy = Gy=1]];c;Gl,
For a Cartan matrix A = (ay)ij=1,... n, there is quiver @ = (1,Q),
where vertex set I has n elements, and (S;, Sj) = aj;.
It is easy to see that if we change the orientation of the quiver, the
corresponding Cartan matrix would not change.
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Hall Algebras Via Functions

° 7-lG5(EUF) is the set of GI-stable functions on E" where

ve N and ﬁF(Q) = @WGNQO”;':[GF(Ef) with multiplicaiton
and comultiplication as follows

Multilplication

Q e
X A
ey :
13

E} EF&(E')&/B (BNE, s 2> B

mh o : Hgr (Ba) x H gz (B) (B x Bf) = Agp (Ehys)

aF P F
ﬁ G><G

defined as

=3 Qo) Bih) —Zic Quibi| ~F Fi— *
m g(g) 1= vg OO THEQT G GE T (ps)1(p2)1(p1)* (9)

where if f: X — Y for g € 7—~£G§(X) he HGP;(Y) then
f(9)(2) = Zyep1(29(y) and f*(h)(z) = ho fz)

Yumeng Wu collaborated with Jiepeng Fang, Yixin Lan The parity of Lusztig's restriction functor and Green's formula



Hall Algebras Via Functions

Comultiplication

i Pk P L P
Bo x Ey Fop = Bayp
consider the linear map

ong: fzciw(Eﬁw) — ﬁGZXGE(EQ x Eg) 2 H i (BY) x H 1 (E5)

=t

which maps r € H . (E¥ to
p G§+5( +/B)

«

q
and comultiplication ¢ is defined as following.

For r e 7-[F(Ef;)

7 —3 > iBi
655( ) — v hEQlas(h)Bt(ll)+ i€Qp ™ B H!L*('f)

5(r) = Satp=y04 5(7)
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Hall Algebras Via Functions

For any isomorphism class [M] of objects in mod B of dimension
vector v, we denote by Oy the corresponding GZ-orbits in EZ and
1op,, the corresponding characteristic function. The C-linear
isomorphism

o : HE(Q) — Hy(modB)

defined by 1p,, — quief”g upyy preserves the multiplication and
the comultiplication.

Now if we could get the Green's formula in sheaves complexes
form, then by trace map Green's formula in H(Q) is obtained.
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Lusztig Induction and Restriction Functors

Consider the map
Ea % EB P1 E P2 Ew P3 E’,Y
o B' ={(z, Wz e E,, (W) C W, dim(W) = §}.
° F:= {(]J, Waplap2)|(x7 W) € Ewa p1: V’}'/VVg Va, P2
W= Vg are both ZI graded linear homorphism}.

o pi(z, W, p1,p2) = ((p1)s1l Vy/ W (p2)«lw),
p2(z, W, p1, p2) = (2, W) and p3(z, W) = z for py is smooth
of connect fiber and p» is a principal bundle.
There exists functor Indgﬁ : De(Eq) X De(Eg) — De(Ey) from
constructible complexes to constructible complexes:

Ind}, 5(AX B) := (p3)i(p2)s(p1)" (AR B)[d1 — d2](d1 g dz)

where d; is the dimension of the fibre of p;, and ds is the

dimension of the fibre of po, di — dy =
Shendim ((Va) g(py)dim ((Vs) yn)) + Xierdim ((Ve)g)dim ((Vs)s).
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Lusztig Induction and Restriction Functors

Now choose a fixed subspace W of V., s.t. dim W= 3 and there
are two ZI graded linear maps p1 : V,/ W=V, and py : W= Vp.
For the diagram
Ey x Eg<"—Fo 53— Eqip
° Fog={r€ Eqypla(W) C W}, and F, g is a closed
subvariety of E,.

o r is defined as k(z) = ((p1)+2l v, w, (p2)=2lw), and ¢ is
embedding «(z) = x.

The restriction functor is defined as follows

Res;, 5(€) = m” (O~ (e, H))(=+—5—)
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o Lusztig proved that Ind}, i Qv,MQy , — Qy, and
Res) v : Qv, = Qv,, X Qv , by proving

Indl’j/ﬂ/u(L,,/ X LV//) = LV’V”7 (]_)
Resy’ 1/” V) = @ LT X Lw [M(Ta w)](T’)a (2)

where the direct sum is taken over all flag types 7, w
satisfying v =7 +w and Y7l =0/, S wl ="
@ By Lusztig's results (1), (2), it is easy to check that

Res], 5 Ind) 5(Ly 8 L) = @ (Ind, 5 xInd? 5 )(ry):

((Rest, oy L YR, L)) [z, )}~ 2227,

where the direct sum is taken over all

A= (a1, az,f1,82) €N.
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Mixed Sheaves

For Fy-variety X, and the Frobenius map Fr: X — X, we note that
X" is the point fixed by Fr, first we denote that D%(X, ;) the
category of bounded constructible complexes. And for we have
that Fr could induce a functor

Fr: D)X, Q) — DX, Q)

o A Weil complex is a pair (G,j) s.t. G € DX, Q;) and
j: Fr(G) — G is an isomorphism.

@ The Weil sheaf G is called pure of weight w if the
isomorphism j restrict to a closed point z that

Jo: Fr(G)y — Gy
s.t. the absolute number of eigenweight of (j,)" is (¢")2 for
any z € X" and n e 2°0.
e For any Weil complex (F,j), (F,j) is called mixed, if H"(F) are
pure for any i. Let D (X) is the triangulated category of
DY(X) of mixed complexes.
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From Sheaves to Hall Algebra

Let K,,,(Ey) be the Grothendieck group of
Dgiﬁm(Ea)(Ga-equivariant semisimple subcategory of D% (E,)),
and K, := @aeniKm(FEy), then the induction functor could induce

the multiplication on K,,.

There is a surjective algebraic morphism x : K,;, = H,(modB)
which satisfy that y o Res = o .

Actually for mixed complex F'= (F,j) € Dgzsm(Ea) X(F) is a
function defined on EL™, for x € EET

X(F)(2) = Biez(=1)"  tr(js, H(F)z)
where j; is the morphism induced by j,

ji+ H(Fr(F)) — H(F)
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Sheafication of Green Formula

={A= (1,02, 51,52) € ND*a =1 + g, B=
B1+ P2, & =ai1+ p1, B =as+ P2}
o Fix [—graded subspace W¥' C V,, W®2 C V,, W’ C Vj,
with dimension vector 3/, s, fBs.
o pl/ V., Wh Va,pz': WP 2 Vg, pg‘ Vo) Wo2 22V, |
WQQNVQQ,/)I Vﬁ/WﬁQEVBI, : WBQNV

Ea1 X E‘a2 X Eg, x Eg, 2 Eo, X Eg, X Eq, X Eg,

(‘Tal’ Loz s LBy xﬂz) — (Ial y Lag s LBy 5 ‘Tﬁz)

Theorem [Fang, Lan, Xiao]

For any A € Db > m(Ea), B € Dg;sm(Eg) we have that

Res], ;Ind] ,(AX B) = S5 (Ind 5, x Ind? PRIC!
A=(a1,a2,81,82)EN
B (042751)
(Resg, o, AX Res, 5, B)[—(aq, 61)](—7)
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The Left Side

P2a,5” P3a,5”

Py, 3”7
B, x B3 <" E, ) Bl ) —=F )" E,

JL}\ \J\L}\ \J\Z L’;lﬁ/j

p ad L p
Q)\ 27 F)\C A A 3 Fa’,ﬁ’,y
\Lf)\ Ra/ﬂ/'yl
’ 5/
E‘Zélvﬁla X EVOICZaBQ D3 Bor X Eg

The left side of the main theorem is isomorphism to

D e BEE) (], ) AR B

A=(ai,02,61,82)
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The Left Side

e Fin the above graph is defined as F':= E’a”B’V X, sz,ﬁﬂ it is
a fiber product of pgaﬁ and [;,75,.
@ Then we could define the map fy. For each
A = (o, ag, f1, B2), we define a locally closed subset of F
Fy = {(z, W) | dim (Wn W) = B}. The map
A By — E’O’qﬁl"/ X EZ%BQE is defined as

(2, W) > (0 )3, o (W WO W), (08 Vet e, 0 (WO W),

o Now we denote that Q) := F, g Xgy 5" F, which is the
fiber product of p;a’ﬁ B, 5" — B, 5" and I : F\ — E 5.

«

© M=73 hensn)Bun + Liesifi — (o, ).
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The Right Side

Pl g
E, x Ej : B, 5
o
L) Q)\ pH2 FA
A
(53N ﬂ
= i ¥ PA 5
thaQ % Fgl’ﬁQ P1x Oy < A P, 2 Py
KA
Ea1 X Ea2 X Egl X Egz KX A I
(P

Eo, X Eg, X Eq, x kg, <pix— EA _ E")\ —pax—> L
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The Right Side

o O ={(z, W,p1,p2) | 2(Vg) C Vg, WC V,,dim W=

ﬂ,dim(Wﬂ Vg/) ,32,,01 V. /VVN Va,p2: W= V/B}
o P\ =F) xy F\, the fiber product of fy and pay. OA is the
pullback of ky o7y and pyx. L:i=E' . x E/

at,B1 g, 52

@ There is a smooth morphism 1), with connected fibers of
dim = Ly — > e plaismy@ain) + BusnyBayny), such that
},\ = %,\w)\. And the morphism ¢, : Py — @) such that the
diagram above commutes.

o Ny = —(ar,a2) — (B1,82) + D pepln h)/Blt (h) +
Qog h)/BQt h)) + Zze](alz/@h + a?lﬁQl) A =Ny — (a27 /61)

The right side of the theorem is isomorphism to

D Gl ()" )" ) (40 B (1)

A=(a1,a2,p1,62)
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General Case

What if the finite dimensional hereditary algebra B over k= is
not k@, but the aF'r fixed points algebra of (@, a) ?

Yumeng Wu collaborated with Jiepeng Fang, Yixin Lan The parity of Lusztig's restriction functor and Green's formula



Category with Periodic Functor

For category D, if there is a n-cyclic group G = (a) (a" = id)

acting on D, then we could induce a new category D.

@ object: (B, ¢) where B € D and ¢ : aB — B such that the
n—1 n—2
composition of a"B ua”_lBa 2o “0 aB ? B
is d.
e morphism f: (B, ¢) — (B, ¢’) such that fis morphism in D
and ¢/ o af = fo ¢.

We consider the category D as Dlgffn(X), and the new category

obtained above is denoted as DZS;(X)
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The Grothendieck Group

The Grothendieck group of DbGan(X) consists of [(F, ¢)] where

[(F, )] is the isoclass of (F,¢) € DZYS;(X) and the relation is as
follows.

o if
0= (F,¢') = (H,¢) = (G,¢") =0
then [(H, ¢)] = [(F, ¢)] + [G, ¢"] and

[(F, ko)] = K[(F, ¢)]

[(Fln], ¢)] = v™"[(F, ¢)]
e if (M, ¢) has the propertity that
M=B®a*B® (a*)’B® ...... @ (a*)*B and ¢ just maps
a*((a*)"1)B to (a*)'B, as a permutation. Then [(M, ¢)] = 0.
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General Case

P

We now denote that K,, = ©vKm(Ey), where K/_ZEU) is the

Grothendieck group of full subcategory of Db * (Ey) consists of

object ((F,4), ¢) that (F, a(j) o ¢) is mixed sheaf complex under
Frobenius map F:=ao Fr

Theorem [Fang, Lan, Wu]

b,ss

For any (4,0) € D¢, (Ea), (B,¥) € DG,

(Eg) we have that

€D
Res), gInd, 5((4,¢) K (B,)) = @ @

A=(a1,a2,81,82)

(rI(ResS, o, (4, 6) B Resf, 5, (B,v))[—(az, B))(~

X Indazﬂz)

a1,B1

(a2, B1)
— )

up to traceless objects.
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Traceless Objects

@ For N an a—orbit in NV, and satisfies that |N| > 2 We set

(037 Cbs) = pgs!.ﬂlb?s*J*pébI;T((A’ 90) X (B7 Qﬂ))[]‘ﬂ(*)a

where Cs = p3fot¥1* po, i (AR B [M|(H), ¢5 : a*(Cs) — Cs
is induced by the isomorphisms ¢ : a*(A) — A, : a*(B) — B
together with a*ps3,, = pgs,a* a*fo = foa*, CL*L;*
UEak, at* =" a, apay, = paya®, afpl = pia”.

@ The traceless objects above have the form as the direct sum
of (Cs, ¢s).
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The trace map x : K, — 7-lF(Q)
Y(((F,3),8)) () = Sica(—1)" % tr{(Fr*(6) o )5, H(F)) for wis
aFr(F)—fixed, which is algebraic surjective morphism and satisfies
that y o Res= o x.

This map maps the formula in sheaves form to Green's formula.
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Thank you!
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