Geometric models of graded skew-gentle algebras

Yu Zhou

Based on joint work arXiv:2212.10369v2 with Yu Qiu and Chao Zhang

Tsinghua University

ICRA21, Shanghai August 5, 2024

ICRA21, 2024

- [Haiden-Katzarkov-Kontsevich 2017] Identify the spaces of stability conditions on derived categories of **graded gentle algebras** with the moduli spaces of quadratic differentials on flat surfaces.
- [Amiot-Opper-Plamondon-Schroll 2018] Complete derived invariants of gentle algebras, using a geometric model.

- [Haiden-Katzarkov-Kontsevich 2017] Identify the spaces of stability conditions on derived categories of **graded gentle algebras** with the moduli spaces of quadratic differentials on flat surfaces.
- [Amiot-Opper-Plamondon-Schroll 2018] Complete **derived** invariants of **gentle algebras**, using a geometric model.

- [Haiden-Katzarkov-Kontsevich 2017] Identify the spaces of stability conditions on derived categories of **graded gentle algebras** with the moduli spaces of quadratic differentials on flat surfaces.
- [Amiot-Opper-Plamondon-Schroll 2018] Complete **derived** invariants of **gentle algebras**, using a geometric model.

Types
$$A, \widetilde{A}$$
 Types $A, \widetilde{A}, D, \widetilde{D}$
 \cap \cap
Gentle \subset Skew-gentle

- [Bekkert–Marcos–Merklen 2003] Classification of indecomposable objects in the bounded derived categories of skew-gentle algebras.
- [Labardini-Fragoso-Schroll-Valdivieso 2022] and [Amiot 2022] Interpret the classification of indecomposable objects via geometric terms.
- [Amiot—Brüstle, 2022] **Derived equivalence** relation between skew-gentle algebras in geometric terms.

- [Bekkert-Marcos-Merklen 2003] Classification of indecomposable objects in the bounded derived categories of skew-gentle algebras.
- [Labardini-Fragoso–Schroll–Valdivieso 2022] and [Amiot 2022] Interpret the classification of indecomposable objects via **geometric terms**.
- [Amiot—Brüstle, 2022] **Derived equivalence** relation between skew-gentle algebras in geometric terms.

- [Bekkert-Marcos-Merklen 2003] Classification of indecomposable objects in the bounded derived categories of skew-gentle algebras.
- [Labardini-Fragoso-Schroll-Valdivieso 2022] and [Amiot 2022] Interpret the classification of indecomposable objects via **geometric terms**.
- [Amiot-Brüstle, 2022] **Derived equivalence** relation between skew-gentle algebras in geometric terms.

- [Bekkert-Marcos-Merklen 2003] Classification of indecomposable objects in the bounded derived categories of skew-gentle algebras.
- [Labardini-Fragoso-Schroll-Valdivieso 2022] and [Amiot 2022] Interpret the classification of indecomposable objects via **geometric terms**.
- [Amiot-Brüstle, 2022] **Derived equivalence** relation between skew-gentle algebras in geometric terms.

Features of our work:

- Consider the perfect derived category of **graded** skew-gentle algebras, which will be useful for the study of silting theory.
- Provide a **basis** for **morphism spaces** (of certain objects) in the perfect derived category using a geometric model, which has not been constructed before, either algebraically or combinatorially.

Indecomposable objects and graded curves with local system

Graded skew-gentle algebras and graded marked surfaces

Indecomposable objects and graded curves with local system

- A graded quiver is $Q = (Q_0, Q_1, s, t, |\cdot|)$,
 - Q₀: vertices;
 - Q_1 : arrows;
 - $s, t: Q_1 \rightarrow Q_0, s(\alpha) \xrightarrow{\alpha} t(\alpha);$
 - $|\cdot|: Q_1 \to \mathbb{Z}$ a *grading* map

k: a field.

The path algebra $\mathbf{k}Q$ is a (\mathbb{Z} -)graded \mathbf{k} -algebra.

- A graded quiver is $Q = (Q_0, Q_1, s, t, |\cdot|)$,
 - Q₀: vertices;
 - Q_1 : arrows;
 - $s, t: Q_1 \to Q_0, s(\alpha) \xrightarrow{\alpha} t(\alpha);$
 - $|\cdot|: Q_1
 ightarrow \mathbb{Z}$ a *grading* map

k: a field.

The path algebra $\mathbf{k}Q$ is a (\mathbb{Z} -)graded \mathbf{k} -algebra.

A finite-dimensional graded algebra $kQ/\langle R \rangle$ is called *gentle* [Assem-Skowroński 1987], if locally,

 $\alpha_1\beta_1,\alpha_2\beta_2\in R$

 $\alpha_1\beta_2,\alpha_2\beta_1\notin R$

where some of the arrows might not exist.

Example

Hereditary gentle algebras are path algebras of types A and A.

A finite-dimensional graded algebra $kQ/\langle R \rangle$ is called *gentle* [Assem-Skowroński 1987], if locally,

 $\alpha_1\beta_1, \alpha_2\beta_2 \in R$

 $\alpha_1\beta_2, \alpha_2\beta_1 \notin R$

where some of the arrows might not exist.

Example

Hereditary gentle algebras are path algebras of types A and A.

A **finite-dimensional graded** algebra is called *skew-gentle* [Geiß–de la Pēna 1999] if isomorphic to

$\mathbf{k}Q/\langle R\setminus\{\varepsilon^2\mid\varepsilon\in\mathsf{Sp}\}\cup\{\varepsilon^2-\varepsilon\mid\varepsilon\in\mathsf{Sp}\}\rangle$

for some **gentle** algebra $\mathbf{k}Q/\langle R \rangle$ and a subset Sp of loops ε with $\varepsilon^2 \in R$ and $|\varepsilon| = 0$.

Example

Hereditary skew-gentle algebras are path algebras of types A, A, D and D (with certain orientations).

A **finite-dimensional graded** algebra is called *skew-gentle* [Geiß-de la Pēna 1999] if isomorphic to

$$\mathbf{k}Q/\langle R\setminus\{\varepsilon^2\mid\varepsilon\in\mathsf{Sp}\}\cup\{\varepsilon^2-\varepsilon\mid\varepsilon\in\mathsf{Sp}\}\rangle$$

for some **gentle** algebra $\mathbf{k}Q/\langle R \rangle$ and a subset Sp of loops ε with $\varepsilon^2 \in R$ and $|\varepsilon| = 0$.

Example

Hereditary skew-gentle algebras are path algebras of types A, A, D and \hat{D} (with certain orientations).

A **finite-dimensional graded** algebra is called *skew-gentle* [Geiß-de la Pēna 1999] if isomorphic to

$$\mathbf{k}Q/\langle R\setminus\{\varepsilon^2\mid\varepsilon\in\mathsf{Sp}\}\cup\{\varepsilon^2-\varepsilon\mid\varepsilon\in\mathsf{Sp}\}\rangle$$

for some **gentle** algebra $\mathbf{k}Q/\langle R \rangle$ and a subset Sp of loops ε with $\varepsilon^2 \in R$ and $|\varepsilon| = 0$.

Example

Hereditary skew-gentle algebras are path algebras of types A, A, D and D (with certain orientations).

As introduced in [Burban-Drozd, arXiv:1706.08358], (graded) skew-gentle algebras can be realized as gluings of (graded) path algebras of type A.

Example

$(1,1) \xrightarrow{\alpha_1} (1,2) \xrightarrow{\alpha_2} (1,3) \xrightarrow{\alpha_3} (1,4) \xrightarrow{\alpha_4} (1,5) \xrightarrow{\alpha_5} (1,6) \xrightarrow{\alpha_6} (1,7)$ $(2,1) \xrightarrow{\beta} (2,2)$

(3, 1)

with a (symmetric) relation

 $(1,4) \simeq (1,4), \ (1,5) \simeq (3,1), \ (1,7) \simeq (2,1).$

Yu Zhou (Tsinghua University)

As introduced in [Burban-Drozd, arXiv:1706.08358], (graded) skew-gentle algebras can be realized as gluings of (graded) path algebras of type A.

Example

$$(1,1) \xrightarrow{\alpha_1} (1,2) \xrightarrow{\alpha_2} (1,3) \xrightarrow{\alpha_3} (1,4) \xrightarrow{\alpha_4} (1,5) \xrightarrow{\alpha_5} (1,6) \xrightarrow{\alpha_6} (1,7)$$

$$(2,1) \xrightarrow{\beta} (2,2)$$

(3, 1)

with a (symmetric) relation

 $(1,4)\simeq (1,4), \ (1,5)\simeq (3,1), \ (1,7)\simeq (2,1).$

Yu Zhou (Tsinghua University)

As introduced in [Burban-Drozd, arXiv:1706.08358], (graded) skew-gentle algebras can be realized as gluings of (graded) path algebras of type A.

Example

$$(1,1) \xrightarrow{\alpha_1} (1,2) \xrightarrow{\alpha_2} (1,3) \xrightarrow{\alpha_3} (1,4) \xrightarrow{\alpha_4} (1,5) \xrightarrow{\alpha_5} (1,6) \xrightarrow{\alpha_6} (1,7)$$

$$(2,1) \xrightarrow{\beta} (2,2)$$

with a (symmetric) relation

$$(1,1) \simeq (2,2), \ (1,2) \simeq (1,6), \ (1,3) \simeq (1,3),$$

 $(1,4) \simeq (1,4), \ (1,5) \simeq (3,1), \ (1,7) \simeq (2,1).$

Example: gluing graded quivers of type A

Example

Example: gluing graded quivers of type A

Example

Example: gluing graded quivers of type A

Example

- To each quiver of type A_n , associate an (n + 1)-gon whose edges (except one) are labeled by the vertices of the quiver anticlockwise.
- Glue the edges of these polygons following the given relation.
- For the edge paired with itself, replace it with a once-punctured monogon.
- Thus, we get a punctured marked surface with a full formal arc system.

- To each quiver of type A_n, associate an (n + 1)-gon whose edges (except one) are labeled by the vertices of the quiver anticlockwise.
- I Glue the edges of these polygons following the given relation.
- For the edge paired with itself, replace it with a once-punctured monogon.

- To each quiver of type A_n, associate an (n + 1)-gon whose edges (except one) are labeled by the vertices of the quiver anticlockwise.
- Q Glue the edges of these polygons following the given relation.
- For the edge paired with itself, replace it with a once-punctured monogon.

- To each quiver of type A_n, associate an (n + 1)-gon whose edges (except one) are labeled by the vertices of the quiver anticlockwise.
- Olue the edges of these polygons following the given relation.
- For the edge paired with itself, replace it with a once-punctured monogon.

- To each quiver of type A_n, associate an (n + 1)-gon whose edges (except one) are labeled by the vertices of the quiver anticlockwise.
- Olue the edges of these polygons following the given relation.
- For the edge paired with itself, replace it with a once-punctured monogon.

A geometric description of graded skew-gentle algebras

Example

Yu Zhou (Tsinghua University)

Geometric models of graded skew-gentle algebras

ICRA21, 2024 1

Graded punctured marked surfaces

- **S**: a connected oriented surface with $\partial \mathbf{S} \neq \emptyset$;
- M ⊂ ∂S, Y ⊂ S: finite sets of *open* marked points and *closed* marked points, such that each component of ∂S contains marked points in both M and Y alternatively;
- $\mathbf{P} \subset \mathbf{S} \setminus \partial \mathbf{S}$: a finite set of punctures;
- λ : S° → ℙT(S°) a section of the projectivized tangent bundle of S° = S \ (∂S ∪ P ∪ Y), satisfying a certain condition (that the winding number around each puncture is one).

Graded punctured marked surfaces

- **S**: a connected oriented surface with $\partial \mathbf{S} \neq \emptyset$;
- M ⊂ ∂S, Y ⊂ S: finite sets of *open* marked points and *closed* marked points, such that each component of ∂S contains marked points in both M and Y alternatively;
- $\mathbf{P} \subset \mathbf{S} \setminus \partial \mathbf{S}$: a finite set of punctures;
- λ : S° → ℙT(S°) a section of the projectivized tangent bundle of S° = S \ (∂S ∪ P ∪ Y), satisfying a certain condition (that the winding number around each puncture is one).

- **S**: a connected oriented surface with $\partial \mathbf{S} \neq \emptyset$;
- M ⊂ ∂S, Y ⊂ S: finite sets of *open* marked points and *closed* marked points, such that each component of ∂S contains marked points in both M and Y alternatively;
- $\mathbf{P} \subset \mathbf{S} \setminus \partial \mathbf{S}$: a finite set of punctures;
- λ: S° → ℙT(S°) a section of the projectivized tangent bundle of S° = S \ (∂S ∪ P ∪ Y), satisfying a certain condition (that the winding number around each puncture is one).

- **S**: a connected oriented surface with $\partial \mathbf{S} \neq \emptyset$;
- M ⊂ ∂S, Y ⊂ S: finite sets of *open* marked points and *closed* marked points, such that each component of ∂S contains marked points in both M and Y alternatively;
- $\mathbf{P} \subset \mathbf{S} \setminus \partial \mathbf{S}$: a finite set of punctures;
- λ : S° → ℙT(S°) a section of the projectivized tangent bundle of S° = S \ (∂S ∪ P ∪ Y), satisfying a certain condition (that the winding number around each puncture is one).
A graded punctured marked surface is $S^{\lambda} = (S, M, Y, P, \lambda)$, where

- **S**: a connected oriented surface with $\partial \mathbf{S} \neq \emptyset$;
- M ⊂ ∂S, Y ⊂ S: finite sets of *open* marked points and *closed* marked points, such that each component of ∂S contains marked points in both M and Y alternatively;
- $\mathbf{P} \subset \mathbf{S} \setminus \partial \mathbf{S}$: a finite set of punctures;
- $\lambda : \mathbf{S}^{\circ} \to \mathbb{P}T(\mathbf{S}^{\circ})$ a section of the projectivized tangent bundle of $\mathbf{S}^{\circ} = \mathbf{S} \setminus (\partial \mathbf{S} \cup \mathbf{P} \cup \mathbf{Y})$, satisfying a certain condition (that the winding number around each puncture is one).

A *curve* on **S** is an immersion $c : I \rightarrow S$ where I = [0, 1] or S^1 .

Definition

A grading \tilde{c} of a curve $c: I \to \mathbf{S}$ is a homotopy class of paths $\tilde{c}(t)$ in $\mathbb{P}\mathcal{T}_{c(t)}(\mathbf{S}^{\circ})$ from $\lambda(c(t))$ to $\dot{c}(t)$, varying continuously with $t \in I$.

There are $\mathbb Z$ choices of gradings of an underlying curve.

A *curve* on **S** is an immersion $c : I \rightarrow S$ where I = [0, 1] or S^1 .

Definition

A grading \tilde{c} of a curve $c: I \to \mathbf{S}$ is a homotopy class of paths $\tilde{c}(t)$ in $\mathbb{P}\mathcal{T}_{c(t)}(\mathbf{S}^{\circ})$ from $\lambda(c(t))$ to $\dot{c}(t)$, varying continuously with $t \in I$.

There are $\mathbb Z$ choices of gradings of an underlying curve.

A *curve* on **S** is an immersion $c : I \rightarrow S$ where I = [0, 1] or S^1 .

Definition

A grading \tilde{c} of a curve $c: I \to \mathbf{S}$ is a homotopy class of paths $\tilde{c}(t)$ in $\mathbb{P}\mathcal{T}_{c(t)}(\mathbf{S}^{\circ})$ from $\lambda(c(t))$ to $\dot{c}(t)$, varying continuously with $t \in I$.

There are $\mathbb Z$ choices of gradings of an underlying curve.

A *curve* on **S** is an immersion $c : I \rightarrow S$ where I = [0, 1] or S^1 .

Definition

A grading \tilde{c} of a curve $c: I \to \mathbf{S}$ is a homotopy class of paths $\tilde{c}(t)$ in $\mathbb{P}\mathcal{T}_{c(t)}(\mathbf{S}^{\circ})$ from $\lambda(c(t))$ to $\dot{c}(t)$, varying continuously with $t \in I$.

There are \mathbb{Z} choices of gradings of an underlying curve.

 $\widetilde{c}_1, \widetilde{c}_2 :$ graded curves.

Definition

The intersection index from \tilde{c}_1 to \tilde{c}_2 at intersection $q = c(t_1) = c(t_2)$ is

$$\dot{c}_q(\widetilde{c}_1,\widetilde{c}_2)=\widetilde{c}_1(t_1)\cdot\kappa\cdot\widetilde{c}_2^{-1}(t_2)\ \in\pi_1(\mathbb{P}({\mathcal T}_q{f S}^\circ))\cong\mathbb{Z}_q$$

where κ is the path in $\mathbb{P}T_q(\mathbf{S}^\circ)$ from $\dot{c_1}(t_1)$ to $\dot{c_2}(t_2)$ given by clockwise rotation by an angle smaller than π .

$$i_q(\widetilde{c}_1,\widetilde{c}_2) = \widetilde{c}_1 \cdot \kappa \cdot \widetilde{c}_2^{-1} = 1$$

 $\widetilde{c}_1, \widetilde{c}_2 :$ graded curves.

Definition

The intersection index from \tilde{c}_1 to \tilde{c}_2 at intersection $q = c(t_1) = c(t_2)$ is

$$\dot{c}_q(\widetilde{c}_1,\widetilde{c}_2)=\widetilde{c}_1(t_1)\cdot\kappa\cdot\widetilde{c}_2^{-1}(t_2)\ \in\pi_1(\mathbb{P}({\mathcal T}_q{f S}^\circ))\cong\mathbb{Z}_q$$

where κ is the path in $\mathbb{P}T_q(\mathbf{S}^\circ)$ from $\dot{c_1}(t_1)$ to $\dot{c_2}(t_2)$ given by clockwise rotation by an angle smaller than π .

$$i_q(\widetilde{c}_1,\widetilde{c}_2) = \widetilde{c}_1 \cdot \kappa \cdot \widetilde{c}_2^{-1} = 1$$

Full formal closed arc systems

An *arc* is a curve $c : [0,1] \rightarrow \mathbf{S}$.

A *full formal* **closed** *arc system* of S^{λ} is a collection A^* of graded arcs s.t.

• $\eta(\{0,1\}) \subset \mathbf{Y}$ for any $\widetilde{\eta} \in \mathbf{A}^*$;

• $\eta_1 \cap \eta_2 \cap S^\circ = \emptyset$, for any $\widetilde{\eta}_1, \widetilde{\eta}_2 \in A^*$;

• A* cuts out S into (A*-)polygons of the following forms:

Full formal closed arc systems

An *arc* is a curve $c : [0,1] \rightarrow \mathbf{S}$.

A full formal closed arc system of S^{λ} is a collection A^* of graded arcs s.t.

- $\eta(\{0,1\}) \subset \mathbf{Y}$ for any $\widetilde{\eta} \in \mathbf{A}^*$;
- $\eta_1 \cap \eta_2 \cap \mathbf{S}^\circ = \emptyset$, for any $\widetilde{\eta}_1, \widetilde{\eta}_2 \in \mathbf{A}^*$;
- A* cuts out S into (A*-)polygons of the following forms:

A full formal open arc system of **S** is a collection **A** of graded arcs s.t.

- $\gamma(\{0,1\}) \subset \mathsf{M}$ for any $\widetilde{\gamma} \in \mathsf{A}$;
- $\gamma_1 \cap \gamma_2 \cap \mathbf{S}^\circ = \emptyset$, for any $\widetilde{\gamma}_1, \widetilde{\gamma}_2 \in \mathbf{A}$;
- A cuts out S into (A-)polygons of the following forms:

$$\mathbf{A} = \{\widetilde{\gamma}_1, \cdots, \widetilde{\gamma}_n\} \stackrel{\text{dual}}{\longleftrightarrow} \mathbf{A}^* = \{\mathbf{A}^* = \widetilde{\eta}_1, \cdots, \widetilde{\eta}_n\},\$$

provided that the following hold.

()
$$\widetilde{\gamma}_j$$
 does not cross $\widetilde{\eta}_i$ for any $j \neq i$.

- **②** $\tilde{\gamma}_i$ crosses $\tilde{\eta}_i$ once and the intersection index is 0, if $\tilde{\gamma}_i$ does not enclose a puncture.

Example: Dual full formal arc systems

Example

Example: Dual full formal arc systems

Example

Yu Zhou (Tsinghua University)

Geometric models of graded skew-gentle algebras ICRA21, 2024

A: a full formal open arc system.

There is an associated triple (Q_A, R_A, Sp_A) as follows:

- $(Q_A)_0 = \{1, 2, \dots, n\}$ indexed by the open arcs $\widetilde{\gamma}_1, \dots, \widetilde{\gamma}_n$ in **A**.
- There is an arrow α : i → j in (Q₁)_A whenever there is an interior angle of an A-polygon having γ̃_i and γ̃_j as edges, with γ̃_j following γ̃_i in the clockwise order. We take |α| = i_p(γ̃_j, γ̃_i), where p is the vertex of the polygon where γ̃_i and γ̃_j meet.

A: a full formal open arc system.

There is an associated triple (Q_A, R_A, Sp_A) as follows:

• $(Q_{\mathbf{A}})_0 = \{1, 2, \cdots, n\}$ indexed by the open arcs $\widetilde{\gamma}_1, \cdots, \widetilde{\gamma}_n$ in \mathbf{A} .

• There is an arrow $\alpha : i \to j$ in $(Q_1)_A$ whenever there is an interior angle of an **A**-polygon having $\tilde{\gamma}_i$ and $\tilde{\gamma}_j$ as edges, with $\tilde{\gamma}_j$ following $\tilde{\gamma}_i$ in the clockwise order. We take $|\alpha| = i_p(\tilde{\gamma}_j, \tilde{\gamma}_i)$, where p is the vertex of the polygon where $\tilde{\gamma}_i$ and $\tilde{\gamma}_j$ meet.

A: a full formal open arc system.

There is an associated triple (Q_A, R_A, Sp_A) as follows:

- $(Q_{\mathbf{A}})_0 = \{1, 2, \cdots, n\}$ indexed by the open arcs $\widetilde{\gamma}_1, \cdots, \widetilde{\gamma}_n$ in \mathbf{A} .
- There is an arrow $\alpha : i \to j$ in $(Q_1)_A$ whenever there is an interior angle of an **A**-polygon having $\widetilde{\gamma}_i$ and $\widetilde{\gamma}_j$ as edges, with $\widetilde{\gamma}_j$ following $\widetilde{\gamma}_i$ in the clockwise order. We take $|\alpha| = i_p(\widetilde{\gamma}_j, \widetilde{\gamma}_i)$, where p is the vertex of the polygon where $\widetilde{\gamma}_i$ and $\widetilde{\gamma}_j$ meet.

- $(Q_A)_0 = \{1, 2, \cdots, n\}$ indexed by the open arcs $\tilde{\gamma}_1, \cdots, \tilde{\gamma}_n$ in **A**.
- There is an arrow α : i → j in (Q₁)_A whenever there is an interior angle of an A-polygon having γ̃_i and γ̃_j as edges, with γ̃_j following γ̃_i in the clockwise order. We take |α| = i_p(γ̃_j, γ̃_i), where p is the vertex of the polygon where γ̃_i and γ̃_j meet.
- *R*_A consists of α₁α₂ for α₁ : *i* → *j*, α₂ : *j* → *l* arising from consecutive angles of an A-polygon in the clockwise order.

- $(Q_A)_0 = \{1, 2, \cdots, n\}$ indexed by the open arcs $\tilde{\gamma}_1, \cdots, \tilde{\gamma}_n$ in **A**.
- There is an arrow $\alpha : i \to j$ in $(Q_1)_{\mathbf{A}}$ whenever there is an interior angle of an **A**-polygon having $\widetilde{\gamma}_i$ and $\widetilde{\gamma}_j$ as edges, with $\widetilde{\gamma}_j$ following $\widetilde{\gamma}_i$ in the clockwise order. We take $|\alpha| = i_p(\widetilde{\gamma}_j, \widetilde{\gamma}_i)$, where p is the vertex of the polygon where $\widetilde{\gamma}_i$ and $\widetilde{\gamma}_j$ meet.
- *R*_A consists of α₁α₂ for α₁ : *i* → *j*, α₂ : *j* → *l* arising from consecutive angles of an A-polygon in the clockwise order.
- Sp_A consists of loops from punctured A-polygons.

Yu Zhou (Tsinghua University)

A: a full formal open arc system.

There is an associated triple (Q_A, R_A, Sp_A) as follows:

- $(Q_A)_0 = \{1, 2, \cdots, n\}$ indexed by the open arcs $\tilde{\gamma}_1, \cdots, \tilde{\gamma}_n$ in **A**.
- There is an arrow $\alpha : i \to j$ in $(Q_1)_A$ whenever there is an interior angle of an **A**-polygon having $\widetilde{\gamma}_i$ and $\widetilde{\gamma}_j$ as edges, with $\widetilde{\gamma}_j$ following $\widetilde{\gamma}_i$ in the clockwise order. We take $|\alpha| = i_p(\widetilde{\gamma}_j, \widetilde{\gamma}_i)$, where p is the vertex of the polygon where $\widetilde{\gamma}_i$ and $\widetilde{\gamma}_j$ meet.
- *R*_A consists of α₁α₂ for α₁ : *i* → *j*, α₂ : *j* → *l* arising from consecutive angles of an A-polygon in the clockwise order.
- Sp_A consists of loops from punctured A-polygons.

$$\Lambda_{\mathbf{A}} := \mathbf{k} Q_{\mathbf{A}} / \langle R_{\mathbf{A}} \setminus \{ \varepsilon^2 \mid \varepsilon \in \mathsf{Sp}_{\mathbf{A}} \} \cup \{ \varepsilon^2 - \varepsilon \mid \varepsilon \in \mathsf{Sp}_{\mathbf{A}} \} \rangle.$$

Example: Graded algebras from f.f.a.s.

Example

Theorem (Qiu–Zhang–Z arXiv:2212.10369v2)

The graded algebras $\Lambda_{\mathbf{A}}$ arising from full formal arc systems \mathbf{A} of graded punctured marked surfaces are exactly the graded skew-gentle algebras.

- The graded gentle case (i.e. Sp = Ø = P) is due to [Lekili−Polishchuk 2018] and [Opper−Plamondon−Schroll 2018].
- For the ungraded (i.e. | · | ≡ 0) skew-gentle case, there is another geometric model, using orbifolds [Amiot, Amiot–Brüstle 2022] and [Labardini-Fragoso–Schroll–Valdivieso 2022].

Theorem (Qiu–Zhang–Z arXiv:2212.10369v2)

The graded algebras $\Lambda_{\mathbf{A}}$ arising from full formal arc systems \mathbf{A} of graded punctured marked surfaces are exactly the graded skew-gentle algebras.

- The graded gentle case (i.e. Sp = Ø = P) is due to [Lekili−Polishchuk 2018] and [Opper−Plamondon−Schroll 2018].
- For the ungraded (i.e. | · | ≡ 0) skew-gentle case, there is another geometric model, using orbifolds [Amiot, Amiot–Brüstle 2022] and [Labardini-Fragoso–Schroll–Valdivieso 2022].

Theorem (Qiu–Zhang–Z arXiv:2212.10369v2)

The graded algebras $\Lambda_{\mathbf{A}}$ arising from full formal arc systems \mathbf{A} of graded punctured marked surfaces are exactly the graded skew-gentle algebras.

- The graded gentle case (i.e. Sp = Ø = P) is due to [Lekili−Polishchuk 2018] and [Opper−Plamondon−Schroll 2018].
- For the ungraded (i.e. $|\cdot| \equiv 0$) skew-gentle case, there is another geometric model, using orbifolds [Amiot, Amiot–Brüstle 2022] and [Labardini-Fragoso–Schroll–Valdivieso 2022].

Graded skew-gentle algebras and graded marked surfaces

Indecomposable objects and graded curves with local system

Morphisms and oriented intersections

Perfect categories

We regard a graded skew-gentle algebra Λ as a differential graded algebra (=DGA) with zero differential. Denote by

- $\mathcal{D}(\Lambda)$: the derived category of Λ .
- per Λ : the smallest thick subcategory of $\mathcal{D}(\Lambda)$ containing Λ .

Definition

A dg Λ -module $M = (|M|, d_M)$ is called *minimal strictly perfect*, if

- there is a decomposition $|M| = \bigoplus_{i=1}^{t} R_i$ for some natural number t, where R_i is a shift of direct summand of Λ , and
- $d_M = (f_{i,j})_{1 \le i,j \le t}$ is a strictly upper triangular matrix, with each entry $f_{i,j} : R_j \to R_i$ in the radical.

per^s Λ : full subcategory of per Λ of minimal strictly perfect dg Λ -modules.

Remark (Plamondon 2011, König-Yang 2014)

When the grading of Λ is non-positive, per^s Λ = per Λ .

Yu Zhou (Tsinghua University)

Geometric models of graded skew-gentle algebras

Perfect categories

We regard a graded skew-gentle algebra Λ as a differential graded algebra (=DGA) with zero differential. Denote by

- $\mathcal{D}(\Lambda)$: the derived category of Λ .
- per Λ : the smallest thick subcategory of $\mathcal{D}(\Lambda)$ containing Λ .

Definition

A dg Λ -module $M = (|M|, d_M)$ is called *minimal strictly perfect*, if

- there is a decomposition $|M| = \bigoplus_{i=1}^{t} R_i$ for some natural number t, where R_i is a shift of direct summand of Λ , and
- $d_M = (f_{i,j})_{1 \le i,j \le t}$ is a strictly upper triangular matrix, with each entry $f_{i,j} : R_j \to R_i$ in the radical.

per^s Λ : full subcategory of per Λ of minimal strictly perfect dg Λ -modules.

Remark (Plamondon 2011, König–Yang 2014)

When the grading of Λ is non-positive, per^s Λ = per Λ .

Yu Zhou (Tsinghua University)

Geometric models of graded skew-gentle algebras

Perfect categories

We regard a graded skew-gentle algebra Λ as a differential graded algebra (=DGA) with zero differential. Denote by

- $\mathcal{D}(\Lambda)$: the derived category of Λ .
- per Λ : the smallest thick subcategory of $\mathcal{D}(\Lambda)$ containing Λ .

Definition

A dg Λ -module $M = (|M|, d_M)$ is called *minimal strictly perfect*, if

- there is a decomposition $|M| = \bigoplus_{i=1}^{t} R_i$ for some natural number t, where R_i is a shift of direct summand of Λ , and
- $d_M = (f_{i,j})_{1 \le i,j \le t}$ is a strictly upper triangular matrix, with each entry $f_{i,j} : R_j \to R_i$ in the radical.

per^s Λ : full subcategory of per Λ of minimal strictly perfect dg Λ -modules.

Remark (Plamondon 2011, König-Yang 2014)

When the grading of Λ is non-positive, per^s $\Lambda = per \Lambda$.

Yu Zhou (Tsinghua University)

Definition

A curve $\gamma: I \rightarrow \mathbf{S}$ is called *admissible* provided the following hold.

Q Either I = [0, 1] with $\gamma(0), \gamma(1) \in \mathbf{M}$, or $I = S^1$.

 $\bigcirc \ \gamma \text{ does not cut out a once-punctured monogon by a self-intersection. }$

Non-admissible cases

Admissible curves

Definition

A curve $\gamma: I \rightarrow \mathbf{S}$ is called *admissible* provided the following hold.

Q Either
$$I = [0, 1]$$
 with $\gamma(0), \gamma(1) \in M$, or $I = S^1$.

 ${f Q}~\gamma$ does not cut out a once-punctured monogon by a self-intersection.

 if *I* = [0,1] and γ({0,1}) ⊂ **P**, then the completion *¬* is not a proper power (in the quotient group of the fundamental group of **S** by the squares of the loops enclosing a puncture) of another curve γ': S¹ → **S**

Completion of a curve

Admissible curves

Definition

A curve $\gamma: I \rightarrow \mathbf{S}$ is called *admissible* provided the following hold.

• Either
$$I = [0, 1]$$
 with $\gamma(0), \gamma(1) \in \mathbf{M}$, or $I = S^1$.

 $\textbf{ 0 } \gamma \text{ does not cut out a once-punctured monogon by a self-intersection. }$

If I = [0,1] and γ({0,1}) ⊂ P, then the completion ȳ is not a proper power (in the quotient group of the fundamental group of S by the squares of the loops enclosing a puncture) of another curve γ' : S¹ → S.

Definition

A curve $\gamma : I \rightarrow \mathbf{S}$ is called *admissible* provided the following hold.

- **Q** Either I = [0, 1] with $\gamma(0), \gamma(1) \in \mathbf{M}$, or $I = S^1$.
- $\textbf{0} \ \gamma \text{ does not cut out a once-punctured monogon by a self-intersection.}$
- If I = [0,1] and γ({0,1}) ⊂ P, then the completion γ̄ is not a proper power (in the quotient group of the fundamental group of S by the squares of the loops enclosing a puncture) of another curve γ' : S¹ → S.
- If I = S¹, then γ is neither a proper power (in the quotient group of the fundamental group of S by the squares of the loops enclosing a puncture) of another curve γ' : S¹ → S, nor the completion of a curve γ'' : [0, 1] → S with γ''({0, 1}) ⊂ P.

Definition

A graded admissible curve with local system is a pair ($\tilde{\gamma}, N$), where

- $\widetilde{\gamma}$ is a graded admissible curve, and
- N is (the isoclass of) an indecomposable A_{γ} -module, where

$$A_{\gamma} = \begin{cases} \mathbf{k} \\ \mathbf{k}[x]/(x^2 - x) \\ \mathbf{k}\langle x, y \rangle/(x^2 - x, y^2 - y) \\ \mathbf{k}[x, x^{-1}] \end{cases}$$

if both endpoints of γ in **M**, if exactly one endpoint of γ in **P**, if both endpoints of γ in **P**, if $\gamma : S^1 \rightarrow \mathbf{S}$.

Classification of indecomposable objects

 $OC_{I.s.}(\mathbf{S}^{\lambda})$: the set of graded admissible curves with local system.

ind per^s Λ : the set of isoclasses of indecomposable objects in per^s Λ .

Theorem (Qiu-Zhang-Z arXiv:2212.10369v2)

There is a bijection

 $X: U \to \operatorname{ind} \operatorname{per}^{s} \Lambda$,

with U a subset of $\widetilde{OC}_{I.s.}(\mathbf{S}^{\lambda})$. Moreover, if Λ is **non-positive**, then $U = \widetilde{OC}_{I.s.}(\mathbf{S}^{\lambda})$ and per^s Λ = per Λ . Thus, there is a bijection

 $X: \widetilde{\operatorname{OC}}_{l.s.}(\mathbf{S}^{\lambda}) \to \operatorname{ind} \operatorname{per} \Lambda.$

- The graded gentle case (i.e. P = Ø = Sp) is due to [Haiden−Katzarkov−Kontsevich 2017].
- The ungraded skew-gentle case is due to [Labardini-Fragoso-Schroll-Valdivieso 2022] and [Amiot 2022]

Classification of indecomposable objects

 $OC_{I.s.}(\mathbf{S}^{\lambda})$: the set of graded admissible curves with local system.

ind per^s Λ : the set of isoclasses of indecomposable objects in per^s Λ .

Theorem (Qiu-Zhang-Z arXiv:2212.10369v2)

There is a bijection

 $X: U \to \operatorname{ind} \operatorname{per}^{\mathfrak{s}} \Lambda$,

with U a subset of $\widetilde{OC}_{I.s.}(\mathbf{S}^{\lambda})$. Moreover, if Λ is **non-positive**, then $U = \widetilde{OC}_{I.s.}(\mathbf{S}^{\lambda})$ and per^s Λ = per Λ . Thus, there is a bijection

 $X: \widetilde{\operatorname{OC}}_{l.s.}(\mathbf{S}^{\lambda}) \to \operatorname{ind} \operatorname{per} \Lambda.$

- The graded gentle case (i.e. $\mathbf{P} = \emptyset = Sp$) is due to [Haiden-Katzarkov-Kontsevich 2017].
- The ungraded skew-gentle case is due to [Labardini-Fragoso-Schroll-Valdivieso 2022] and [Amiot 2022].

Generalize [Burban-Drozd] to the graded case to obtain a full (but not faithful in general) functor:

 $E : \operatorname{per}^{s} \Lambda \to \operatorname{rep}(S),$

which indecomposable-preserving and isomorphism-preserving, where rep(S) is the category of representations of a bush/clan S.

Use the classification in [Crawley-Boevey, Deng, Bondarenko] for representations of a bush/clan.

Generalize [Burban-Drozd] to the graded case to obtain a full (but not faithful in general) functor:

$$E : \operatorname{per}^{s} \Lambda \to \operatorname{rep}(S),$$

which indecomposable-preserving and isomorphism-preserving, where rep(S) is the category of representations of a bush/clan S.

Use the classification in [Crawley-Boevey, Deng, Bondarenko] for representations of a bush/clan.
Remark

In general, $U \neq \widetilde{OC}_{l.s.}(\mathbf{S}^{\lambda})$, and we do not have a topological criterion for a graded admissible curve with local system to be in U (and hence, do not give a name for them).

 $\widetilde{A1}(\mathbf{S}^{\lambda})$: the set of admissible graded arcs with local system $(\widetilde{\gamma}, N)$ with dim N = 1.

Lemma-Definition

We have $\widetilde{A1}(S^{\lambda}) \subset U$. The indecomposable object $X(\widetilde{\gamma}, N)$ corresponding to $(\widetilde{\gamma}, N) \in \widetilde{A1}(S^{\lambda})$ is called an *arc* object.

per^{$@} \Lambda$: the set of arc objects.</sup>

Remark

In general, $U \neq \widetilde{OC}_{l.s.}(\mathbf{S}^{\lambda})$, and we do not have a topological criterion for a graded admissible curve with local system to be in U (and hence, do not give a name for them).

 $\widetilde{A1}(\mathbf{S}^{\lambda})$: the set of admissible graded arcs with local system ($\widetilde{\gamma}, N$) with dim N = 1.

Lemma-Definition.

We have $\widetilde{A1}(\mathbf{S}^{\lambda}) \subset U$. The indecomposable object $X(\widetilde{\gamma}, N)$ corresponding to $(\widetilde{\gamma}, N) \in \widetilde{A1}(\mathbf{S}^{\lambda})$ is called an *arc* object.

per[®] Λ : the set of arc objects.

Remark

In general, $U \neq \widetilde{OC}_{l.s.}(\mathbf{S}^{\lambda})$, and we do not have a topological criterion for a graded admissible curve with local system to be in U (and hence, do not give a name for them).

 $\widetilde{A1}(\mathbf{S}^{\lambda})$: the set of admissible graded arcs with local system $(\widetilde{\gamma}, N)$ with dim N = 1.

Lemma-Definition.

We have $\widetilde{A1}(\mathbf{S}^{\lambda}) \subset U$. The indecomposable object $X(\widetilde{\gamma}, N)$ corresponding to $(\widetilde{\gamma}, N) \in \widetilde{A1}(\mathbf{S}^{\lambda})$ is called an *arc* object.

per[@] Λ : the set of arc objects.

Tagged arcs

Definition

A graded *tagged* arc is a pair $(\widetilde{\gamma}, \kappa)$ where

•
$$\widetilde{\gamma}$$
 is a graded admissible arc, and

• $\kappa: \{t \in \{0,1\} \mid \gamma(t) \in \mathbf{P}\} \rightarrow \{+,-\}$ is a map.

$\widetilde{\mathsf{TA}}(\mathbf{S}^{\lambda})$: the set of graded tagged arcs on \mathbf{S}^{λ} .

There is a natural bijection

$$\widetilde{\mathsf{TA}}(\mathsf{S}^{\lambda}) \to \widetilde{\mathsf{A1}}(\mathsf{S}^{\lambda}).$$

Thus, X induces a bijection

$$\widetilde{\mathsf{TA}}(\mathbf{S}^{\lambda}) \xrightarrow{X} \mathsf{per}^{\mathbb{Q}} \Lambda.$$

Tagged arcs

Definition

A graded *tagged* arc is a pair $(\widetilde{\gamma}, \kappa)$ where

•
$$\widetilde{\gamma}$$
 is a graded admissible arc, and

•
$$\kappa: \{t \in \{0,1\} \mid \gamma(t) \in \mathbf{P}\} \rightarrow \{+,-\}$$
 is a map.

 $\widetilde{\mathsf{TA}}(\mathbf{S}^{\lambda})$: the set of graded tagged arcs on \mathbf{S}^{λ} .

There is a natural bijection

$$\widetilde{\mathsf{TA}}(\mathbf{S}^{\lambda}) \to \widetilde{\mathsf{A1}}(\mathbf{S}^{\lambda}).$$

Thus, X induces a bijection

$$\widetilde{\mathsf{TA}}(\mathbf{S}^{\lambda}) \xrightarrow{X} \mathsf{per}^{\mathbb{Q}} \Lambda.$$

Indecomposable objects and graded curves with local system

Graded marked surfaces with binary

Another geometric model of graded skew-gentle algebras:

- S^λ → S^λ_𝔅: replace each puncture P ∈ P by a boundary component
 𝔅_𝒫, called a *binary*, with one open marked point m_P and one closed marked point y_P on it.
- $\mathbf{A}^* \rightsquigarrow \mathbf{A}^*_{\mathbf{x}}$: decompose any edge (i, j) of a once-punctured monogon in \mathbf{A}^* into two graded arcs $(i, j^+), (i, j^-)$ (which inherit the grading from (i, j)).

\mathbb{Z}_2 -symmetry

 $D^2_{\textcircled{R}}$: the subgroup of the usual mapping class group of **S** generated by the squares of Dehn twists $D_{\textcircled{O}}$ along any binary $\textcircled{O} \in \textcircled{R}$.

Definition

The $D^2_{\mathscr{X}}$ -orbit $D^2_{\mathscr{X}} \cdot \widetilde{\sigma}$ of a graded **admissible** arc $\widetilde{\sigma}$ consists of the graded admissible arcs which are obtained from $\widetilde{\sigma}$ by actions of $D^2_{\mathscr{X}}$ on the ends (which are in binaries) separately.

Lemma-Definition.

Each $D^2_{\&}$ -orbit of graded admissible arcs contains **exactly one** arc $\tilde{\sigma}$ satisfying the following equivalent conditions, which is called *unknotted*.

- $(\widetilde{\sigma} \cap \widetilde{\eta} | \le | \widetilde{\sigma}' \cap \widetilde{\eta} | \text{ for any } \widetilde{\sigma}' \in \mathrm{D}^2_{\boldsymbol{\&}} \cdot \widetilde{\sigma} \text{ and any } \widetilde{\eta} \in \boldsymbol{\mathsf{A}}^*_{\boldsymbol{\&}};$
- $\textcircled{O} \ \widetilde{\sigma} \ \text{does not have a segment as follows}$

Dg modules associated to unknotted arcs

 $\widetilde{\sigma}:$ a graded unknotted arc.

Dg A-module: $\mathcal{X}^{\bullet}_{\widetilde{\sigma}} = (|\mathcal{X}^{\bullet}_{\widetilde{\sigma}}|, d_{\widetilde{\sigma}})$, where

- the underlying graded module $|\mathcal{X}^{\bullet}_{\widetilde{\sigma}}| = \bigoplus_{1 < l < p} \Lambda_{l}[\varsigma_{l}]$, with $\Lambda_{l} = \widetilde{\eta}_{i_{l}} \Lambda$,
- each unbinaried segment $\tilde{\sigma}_l$ contributes a component of $d_{\tilde{\sigma}}$ between direct summands $\mathcal{X}_{\tilde{\sigma}}^l$ and $\mathcal{X}_{\tilde{\sigma}}^{l+1}$ of $|\mathcal{X}_{\tilde{\sigma}}^{\bullet}|$, where

$$\mathcal{X}_{\widetilde{\sigma}}^{I} = egin{cases} \Lambda_{l-1} \oplus \Lambda_{l} & ext{if } \widetilde{\sigma}_{l-1} ext{ is binaried,} \ \Lambda_{l} & ext{otherwise.} \end{cases}$$

Classifications of arc objects in the second model

 $\widetilde{\mathsf{UC}}(\mathbf{S}^{\lambda}_{\mathfrak{B}})$: the set of graded unknotted arcs on $\mathbf{S}^{\lambda}_{\mathfrak{B}}$.

per[@] Λ : the set of arc objects in per Λ .

Theorem (Qiu-Zhang-Z arXiv:2212.10369v2)

There is a bijection

 $\mathcal{X}^{\bullet} \colon \widetilde{\mathsf{UC}}(\mathbf{S}_{\textcircled{B}}^{\lambda}) \to \mathsf{per}^{@} \Lambda.$

 $\mathsf{TA}(\mathbf{S}^{\lambda})$: the set of graded tagged arcs on \mathbf{S}^{λ} .

Classifications of arc objects in the second model

 $\widetilde{\mathsf{UC}}(\mathbf{S}^{\lambda}_{\mathscr{D}})$: the set of graded unknotted arcs on $\mathbf{S}^{\lambda}_{\mathscr{D}}$.

per[@] Λ : the set of arc objects in per Λ .

Theorem (Qiu-Zhang-Z arXiv:2212.10369v2)

There is a bijection

 $\mathcal{X}^{\bullet} \colon \widetilde{\mathsf{UC}}(\mathbf{S}_{\textcircled{B}}^{\lambda}) \to \mathsf{per}^{@} \Lambda.$

 $\widetilde{\mathsf{TA}}(\mathbf{S}^{\lambda})$: the set of graded tagged arcs on \mathbf{S}^{λ} .

In the left picture, the pair of clockwise angles counts one and in the right picture, the clockwise angle counts one.

 $\overrightarrow{\cap}^{\rho}(\widetilde{\sigma},\widetilde{\tau})$: the set of the clockwise angles at intersections from $\widetilde{\sigma}$ to $\widetilde{\tau}$ with index ρ .

Oriented intersection numbers of unknotted arcs

Definition

Let $\tilde{\sigma}$ and $\tilde{\tau}$ be two graded unknotted arcs. We define the **intersection** number from $\tilde{\sigma}$ to $\tilde{\tau}$ of index ρ to be

$$\overrightarrow{\mathsf{Int}}^{\rho}(\widetilde{\sigma},\widetilde{\tau}):=\mathsf{min}\{|\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}',\widetilde{\tau}')| \mid \widetilde{\sigma}'\in \mathrm{D}^2_{\circledast}\cdot\widetilde{\sigma}, \,\, \widetilde{\tau}'\in \mathrm{D}^2_{\circledast}\cdot\widetilde{\tau}\}.$$

Oriented intersection numbers of unknotted arcs

Definition

Let $\tilde{\sigma}$ and $\tilde{\tau}$ be two graded unknotted arcs. We define the **intersection** number from $\tilde{\sigma}$ to $\tilde{\tau}$ of index ρ to be

$$\overrightarrow{\mathsf{Int}}^{\rho}(\widetilde{\sigma},\widetilde{\tau}):=\mathsf{min}\{|\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}',\widetilde{\tau}')| \mid \widetilde{\sigma}'\in \mathrm{D}^2_{\circledast}\cdot\widetilde{\sigma}, \,\, \widetilde{\tau}'\in \mathrm{D}^2_{\circledast}\cdot\widetilde{\tau}\}.$$

Oriented intersection numbers of unknotted arcs

Definition

Let $\tilde{\sigma}$ and $\tilde{\tau}$ be two graded unknotted arcs. We define the **intersection** number from $\tilde{\sigma}$ to $\tilde{\tau}$ of index ρ to be

$$\overrightarrow{\mathsf{Int}}^{\rho}(\widetilde{\sigma},\widetilde{\tau}):=\mathsf{min}\{|\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}',\widetilde{\tau}')| \mid \widetilde{\sigma}'\in \mathrm{D}^2_{\circledast}\cdot\widetilde{\sigma}, \ \widetilde{\tau}'\in \mathrm{D}^2_{\circledast}\cdot\widetilde{\tau}\}.$$

 $\widetilde{\sigma},\widetilde{\tau}:$ graded unknotted arcs.

Theorem (Qiu-Zhang-Z arXiv:2212.10369v2)

Let $\widetilde{\sigma}' \in D^2_{\mathscr{D}} \cdot \widetilde{\sigma}$ and $\widetilde{\tau}' \in D^2_{\mathscr{D}} \cdot \widetilde{\tau}$ such that $|\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}', \widetilde{\tau}')| = \overrightarrow{\operatorname{Int}}^{\rho}(\widetilde{\sigma}, \widetilde{\tau})$. Then there is an explicitly constructed basis f_q 's of $\operatorname{Hom}_{\operatorname{per}\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}}, \mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho])$, $q \in \overrightarrow{\cap}^{\rho}(\widetilde{\sigma}', \widetilde{\tau}')$. In particular,

$$\overrightarrow{\mathsf{Int}}^{\rho}(\widetilde{\sigma},\widetilde{\tau}) = \mathsf{dim}\,\mathsf{Hom}_{\mathsf{per}\,\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}},\mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho]).$$

 The ungraded gentle case (i.e. Sp = Ø = P and | · | = 0) is due to [Opper-Plamondon-Schroll, 2018] (restricting to arc objects). $\widetilde{\sigma},\widetilde{\tau}:$ graded unknotted arcs.

Theorem (Qiu-Zhang-Z arXiv:2212.10369v2)

Let $\widetilde{\sigma}' \in D^2_{\mathscr{D}} \cdot \widetilde{\sigma}$ and $\widetilde{\tau}' \in D^2_{\mathscr{D}} \cdot \widetilde{\tau}$ such that $|\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}', \widetilde{\tau}')| = \overrightarrow{\operatorname{Int}}^{\rho}(\widetilde{\sigma}, \widetilde{\tau})$. Then there is an explicitly constructed basis f_q 's of $\operatorname{Hom}_{\operatorname{per}\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}}, \mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho])$, $q \in \overrightarrow{\cap}^{\rho}(\widetilde{\sigma}', \widetilde{\tau}')$. In particular,

$$\overrightarrow{\mathsf{Int}}^{\rho}(\widetilde{\sigma},\widetilde{\tau}) = \mathsf{dim}\,\mathsf{Hom}_{\mathsf{per}\,\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}},\mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho]).$$

• The ungraded gentle case (i.e. $Sp = \emptyset = \mathbf{P}$ and $|\cdot| = 0$) is due to [Opper-Plamondon-Schroll, 2018] (restricting to arc objects).

 $\widetilde{c}[1]$: the same underlying arc as \widetilde{c} and the grading is the composition of $\widetilde{c}(t) : \lambda(c(t)) \rightarrow \dot{c}(t)$ and the path from $\dot{c}(t)$ to itself given by clockwise rotation by π .

Remark

Since $\mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho] \cong \mathcal{X}^{\bullet}_{\widetilde{\tau}[\rho]}$, to show the int-dim formula is equivalent to showing

$\overrightarrow{\mathsf{Int}}^{\mathsf{0}}(\widetilde{\sigma},\widetilde{\tau}) = \mathsf{dim}\,\mathsf{Hom}_{\mathsf{per}\,\mathsf{\Lambda}}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}},\mathcal{X}^{\bullet}_{\widetilde{\tau}}).$

Yu Zhou (Tsinghua University)

Geometric models of graded skew-gentle algebras

CRA21, 2024 49

 $\widetilde{c}[1]$: the same underlying arc as \widetilde{c} and the grading is the composition of $\widetilde{c}(t) : \lambda(c(t)) \to \dot{c}(t)$ and the path from $\dot{c}(t)$ to itself given by clockwise rotation by π .

Remark

Since $\mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho] \cong \mathcal{X}^{\bullet}_{\widetilde{\tau}[\rho]}$, to show the int-dim formula is equivalent to showing

$$\overrightarrow{\mathsf{Int}}^0(\widetilde{\sigma},\widetilde{\tau}) = \mathsf{dim}\,\mathsf{Hom}_{\mathsf{per}\,\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}},\mathcal{X}^{\bullet}_{\widetilde{\tau}}).$$

Yu Zhou (Tsinghua University)

 $\widetilde{c}[1]$: the same underlying arc as \widetilde{c} and the grading is the composition of $\widetilde{c}(t) : \lambda(c(t)) \to \dot{c}(t)$ and the path from $\dot{c}(t)$ to itself given by clockwise rotation by π .

Remark

Since $\mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho] \cong \mathcal{X}^{\bullet}_{\widetilde{\tau}[\rho]}$, to show the int-dim formula is equivalent to showing

$$\overrightarrow{\mathsf{Int}}^0(\widetilde{\sigma},\widetilde{\tau}) = \mathsf{dim}\,\mathsf{Hom}_{\mathsf{per}\,\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}},\mathcal{X}^{\bullet}_{\widetilde{\tau}}).$$

Yu Zhou (Tsinghua University)

 $\widetilde{c}[1]$: the same underlying arc as \widetilde{c} and the grading is the composition of $\widetilde{c}(t) : \lambda(c(t)) \rightarrow \dot{c}(t)$ and the path from $\dot{c}(t)$ to itself given by clockwise rotation by π .

Remark

Since $\mathcal{X}^{\bullet}_{\widetilde{\tau}}[\rho] \cong \mathcal{X}^{\bullet}_{\widetilde{\tau}[\rho]}$, to show the int-dim formula is equivalent to showing

$$\overrightarrow{\mathsf{Int}}^{0}(\widetilde{\sigma},\widetilde{\tau}) = \mathsf{dim}\,\mathsf{Hom}_{\mathsf{per}\,\Lambda}(\mathcal{X}^{\bullet}_{\widetilde{\sigma}},\mathcal{X}^{\bullet}_{\widetilde{\tau}}).$$

Yu Zhou (Tsinghua University)

Recall there is a full functor

$$E : \operatorname{per}^{s} \Lambda \to \operatorname{rep}(S).$$

Remark

There is a subset I_1 of $\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}', \widetilde{\tau}')$ such that the images of f_q 's, $q \in I_1$, under the functor E are the basis of the morphism space in rep(S), given in [Geiß 1999].

Recall there is a full functor

$$E: \operatorname{per}^{s} \Lambda \to \operatorname{rep}(S).$$

Remark

There is a subset I_1 of $\overrightarrow{\cap}^{\rho}(\widetilde{\sigma}', \widetilde{\tau}')$ such that the images of f_q 's, $q \in I_1$, under the functor E are the basis of the morphism space in rep(S), given in [Geiß 1999].

$$\mathsf{Cone}(f_q) \cong \mathcal{X}^{\bullet}_{\widetilde{\tau} \wedge_{\theta_1} \widetilde{\sigma}} \oplus \mathcal{X}^{\bullet}_{\widetilde{\tau} \wedge_{\theta_2} \widetilde{\sigma}}.$$

There are two choices for f_M : f'_M and f''_M .

$$\operatorname{Cone}(f'_{\mathcal{M}}) \cong \mathcal{X}^{ullet}_{\widetilde{lpha}_1} \oplus \mathcal{X}^{ullet}_{\widetilde{eta}_1}, \ \operatorname{Cone}(f''_{\mathcal{M}}) \cong \mathcal{X}^{ullet}_{\widetilde{lpha}_2} \oplus \mathcal{X}^{ullet}_{\widetilde{eta}_2}.$$

$$f'_M + f''_M = f_q.$$

There are two choices for f_M : f'_M and f''_M .

$$\mathsf{Cone}(f'_{\mathcal{M}})\cong\mathcal{X}^{ullet}_{\widetilde{lpha}_1}\oplus\mathcal{X}^{ullet}_{\widetilde{eta}_1},\ \mathsf{Cone}(f''_{\mathcal{M}})\cong\mathcal{X}^{ullet}_{\widetilde{lpha}_2}\oplus\mathcal{X}^{ullet}_{\widetilde{eta}_2}.$$

$$f'_M + f''_M = f_q.$$

$$\mathsf{Cone}(\lambda' f'_{\mathcal{M}} + \lambda'' f''_{\mathcal{M}}) \cong \mathcal{X}^{\bullet}_{\widetilde{\eta}}, \ \lambda' \neq 0, \lambda'' \neq 0, \lambda' \neq \lambda''.$$

Here, $\tilde{\eta}$ is the "admissible version" of the (non-admissible) $\tilde{\eta}' = \tilde{\tau}^{\times} \wedge_{\theta} \tilde{\sigma}^{\times}$.

Thank you for your attention!

Remarks: Tagged intersections

Recall that there is a bijection between tagged arcs and unknotted arcs. One can compute the intersection number of the corresponding tagged arcs in the following way

