Deformation of 3-Calabi-Yau categories, moduli spaces and Artin braid groups

Qiu, Yu

Tsinghua 2403.10265

2024.08.08 # ICRA 21st @ Shanghai Jiao Tong U

Strix ← shape-shifting → Fox

Outline

- Deformation of Artin Braid groups
- 2 Deformation of 3-Calabi-Yau categories
- 3 Deformation of moduli spaces
- Deformation of fundamental groups

Contents

- Deformation of Artin Braid groups
- 2 Deformation of 3-Calabi-Yau categories
- Open Deformation of moduli spaces
- Deformation of fundamental groups

Let Υ be a spherical/Euclidean Dynkin diagram.

Definition (Artin briad group associated to Υ)

$$\mathsf{Br}_{\mathfrak{P}} \colon = \left\langle b_i \mid i \in \mathfrak{Y}_0 \right\rangle / \big(\mathsf{Br}^{m_{ij}} \big(b_i, b_j \big) \mid \forall i, j \in \mathfrak{Y}_0 \big)$$

for $i \xrightarrow{m_{ij}} j$ $(m_{ij} = 2 \text{ if } \nexists \text{ and omitting } m_{ij} = 3)$.

Here
$$Br^m(a, b)$$
: $\underbrace{aba\cdots}_{m} = \underbrace{bab\cdots}_{m}$.

$$Co = Br^2$$
: $ab = ba$, $Br = Br^3$: $aba = bab$ and Br^4 : $abab = baba$.

$$W_Q$$
: = Br_Q $/(b_i^2 = 1 \mid \forall i \in \Upsilon_0)$

Let Υ be a spherical/Euclidean Dynkin diagram.

Definition (Artin briad group associated to Y

$$Br_{\Upsilon}: = \langle b_i \mid i \in \Upsilon_0 \rangle / (Br^{m_{ij}}(b_i, b_j) \mid \forall i, j \in \Upsilon_0)$$

for $i \xrightarrow{m_{ij}} j$ $(m_{ij} = 2 \text{ if } \nexists \text{ and omitting } m_{ij} = 3)$.

Here
$$Br^m(a, b)$$
: $\underbrace{aba\cdots}_{m} = \underbrace{bab\cdots}_{m}$.

$$Co = Br^2$$
: $ab = ba$, $Br = Br^3$: $aba = bab$ and Br^4 : $abab = baba$

$$W_Q$$
: = Br_Q $/(b_i^2 = 1 \mid \forall i \in \Upsilon_0)$

Let Υ be a spherical/Euclidean Dynkin diagram.

Definition (Artin briad group associated to Υ)

$$\mathsf{Br}_{\Upsilon} \colon = \langle b_i \mid i \in \Upsilon_0 \rangle / (\mathsf{Br}^{m_{ij}}(b_i, b_j) \mid \forall i, j \in \Upsilon_0)$$

for $i \xrightarrow{m_{ij}} j$ $(m_{ij} = 2 \text{ if } \nexists \text{ and omitting } m_{ij} = 3)$.

Here
$$Br^m(a, b)$$
: $\underbrace{aba\cdots}_{m} = \underbrace{bab\cdots}_{m}$.

$$\mathsf{Co} = \mathsf{Br}^2$$
: $ab = ba$, $\mathsf{Br} = \mathsf{Br}^3$: $aba = bab$ and Br^4 : $abab = baba$.

$$W_Q$$
: = Br_Q $/(b_i^2 = 1 \mid \forall i \in \Upsilon_0)$

Let Υ be a spherical/Euclidean Dynkin diagram.

Definition (Artin briad group associated to Υ)

$$\mathsf{Br}_{\Upsilon} := \left\langle b_i \mid i \in \Upsilon_0 \right\rangle / (\mathsf{Br}^{m_{ij}}(b_i, b_j) \mid \forall i, j \in \Upsilon_0)$$

for $i \xrightarrow{m_{ij}} j$ $(m_{ij} = 2 \text{ if } \nexists \text{ and omitting } m_{ij} = 3)$.

Here
$$Br^m(a, b)$$
: $\underbrace{aba\cdots}_{m} = \underbrace{bab\cdots}_{m}$.

 $Co = Br^2$: ab = ba, $Br = Br^3$: aba = bab and Br^4 : abab = baba.

$$W_Q$$
: = Br_Q $/(b_i^2 = 1 \mid \forall i \in \Upsilon_0)$

Let Υ be a spherical/Euclidean Dynkin diagram.

Definition (Artin briad group associated to Υ)

$$\mathsf{Br}_{\Upsilon} := \langle b_i \mid i \in \Upsilon_0 \rangle / (\mathsf{Br}^{m_{ij}}(b_i, b_j) \mid \forall i, j \in \Upsilon_0)$$

for $i \xrightarrow{m_{ij}} j$ $(m_{ij} = 2 \text{ if } \nexists \text{ and omitting } m_{ij} = 3)$.

Here
$$Br^m(a, b)$$
: $\underbrace{aba\cdots}_{m} = \underbrace{bab\cdots}_{m}$.

 $Co = Br^2$: ab = ba, $Br = Br^3$: aba = bab and Br^4 : abab = baba.

$$W_Q$$
: = Br_Q $/(b_i^2 = 1 \mid \forall i \in \Upsilon_0)$

Let \mathfrak{h}_{Υ} be some complex space (e.g. the Cartan subalgebra of type Υ) with regular part $\mathfrak{h}_{\Upsilon}^{reg}$ (e.g. deleting certain hyperplanes):

$$\mathfrak{h}_{\Upsilon}^{\mathsf{reg}} := \mathfrak{h}_{\Upsilon} \setminus \left(\bigcup_{\alpha} H_{\alpha}\right)$$

It is well-known that the Weyl group W_{Υ} acts on $\mathfrak{h}^{\text{reg}}$ freely with

$$\pi_1(\mathfrak{h}_{\mathfrak{P}}^{\mathsf{reg}}/W_{\mathfrak{P}}) = \mathsf{Br}_{\mathfrak{P}}$$
 .

Moreover, such a quotient space is $K(\pi, 1)$:

Theorem (Deligne, Paolini-Salvetti)

The universal cover of $\mathfrak{h}^{\text{reg}}/W_{\Upsilon}$ is contractible.

Let \mathfrak{h}_{Υ} be some complex space (e.g. the Cartan subalgebra of type Υ) with regular part $\mathfrak{h}_{\Upsilon}^{reg}$ (e.g. deleting certain hyperplanes):

$$\mathfrak{h}_{\Upsilon}^{\mathsf{reg}} := \mathfrak{h}_{\Upsilon} \setminus \left(\bigcup_{\alpha} H_{\alpha}\right).$$

It is well-known that the Weyl group W_{Υ} acts on $\mathfrak{h}^{\text{reg}}$ freely with

$$\pi_1(\mathfrak{h}^{\mathsf{reg}}_{\mathbf{T}}/W_{\mathbf{T}}) = \mathsf{Br}_{\mathbf{T}}$$
 .

Moreover, such a quotient space is $K(\pi, 1)$:

Theorem (Deligne, Paolini-Salvetti)

The universal cover of $\mathfrak{h}^{\mathsf{reg}}/W_{\mathfrak{P}}$ is contractible.

Let \mathfrak{h}_{Υ} be some complex space (e.g. the Cartan subalgebra of type Υ) with regular part $\mathfrak{h}_{\Upsilon}^{reg}$ (e.g. deleting certain hyperplanes):

$$\mathfrak{h}_{\Upsilon}^{\mathsf{reg}} \colon = \mathfrak{h}_{\Upsilon} \setminus \left(\bigcup_{\alpha} H_{\alpha}\right).$$

It is well-known that the Weyl group W_{Υ} acts on $\mathfrak{h}^{\text{reg}}$ freely with

$$\pi_1(\mathfrak{h}_{\Upsilon}^{\mathsf{reg}}/W_{\Upsilon}) = \mathsf{Br}_{\Upsilon}$$
 .

Moreover, such a quotient space is $K(\pi, 1)$

Theorem (Deligne, Paolini-Salvetti

The universal cover of $\mathfrak{h}^{reg}/W_{\mathfrak{P}}$ is contractible.

Let \mathfrak{h}_{Υ} be some complex space (e.g. the Cartan subalgebra of type Υ) with regular part $\mathfrak{h}_{\Upsilon}^{reg}$ (e.g. deleting certain hyperplanes):

$$\mathfrak{h}_{\Upsilon}^{\mathsf{reg}} \colon = \mathfrak{h}_{\Upsilon} \setminus \left(\bigcup_{\alpha} H_{\alpha}\right).$$

It is well-known that the Weyl group W_{Υ} acts on $\mathfrak{h}^{\text{reg}}$ freely with

$$\pi_1(\mathfrak{h}_{\Upsilon}^{\mathsf{reg}}/W_{\Upsilon}) = \mathsf{Br}_{\Upsilon}$$
 .

Moreover, such a quotient space is $K(\pi, 1)$:

Theorem (Deligne, Paolini-Salvetti)

The universal cover of $\mathfrak{h}^{\text{reg}}/W_{\Upsilon}$ is contractible.

Let \mathfrak{h}_{Υ} be some complex space (e.g. the Cartan subalgebra of type Υ) with regular part $\mathfrak{h}_{\Upsilon}^{reg}$ (e.g. deleting certain hyperplanes):

$$\mathfrak{h}_{\Upsilon}^{\mathsf{reg}} \colon = \mathfrak{h}_{\Upsilon} \setminus \left(\bigcup_{\alpha} H_{\alpha}\right).$$

It is well-known that the Weyl group W_{Υ} acts on $\mathfrak{h}^{\text{reg}}$ freely with

$$\pi_1(\mathfrak{h}_{\Upsilon}^{\mathsf{reg}}/W_{\Upsilon}) = \mathsf{Br}_{\Upsilon}$$
 .

Moreover, such a quotient space is $K(\pi, 1)$:

Theorem (Deligne, Paolini-Salvetti)

The universal cover of $\mathfrak{h}^{reg}/W_{\Upsilon}$ is contractible.

Let \mathfrak{h}_{Υ} be some complex space (e.g. the Cartan subalgebra of type Υ) with regular part $\mathfrak{h}_{\Upsilon}^{reg}$ (e.g. deleting certain hyperplanes):

$$\mathfrak{h}_{\Upsilon}^{\mathsf{reg}} \colon = \mathfrak{h}_{\Upsilon} \setminus \left(\bigcup_{\alpha} H_{\alpha}\right).$$

It is well-known that the Weyl group W_{Υ} acts on $\mathfrak{h}^{\text{reg}}$ freely with

$$\pi_1(\mathfrak{h}_{\Upsilon}^{\mathsf{reg}}/W_{\Upsilon}) = \mathsf{Br}_{\Upsilon}$$
 .

Moreover, such a quotient space is $K(\pi, 1)$:

Theorem (Deligne, Paolini-Salvetti)

The universal cover of $\mathfrak{h}^{reg}/W_{\Upsilon}$ is contractible.

Topological generators

Braid twist (=half Dehn twist) along a simple closed arc:

L-twist (=point-pushing diffeo.) along an L-arc:

Topological generators

Braid twist (=half Dehn twist) along a simple closed arc:

L-twist (=point-pushing diffeo.) along an L-arc:

Topological generators

Braid twist (=half Dehn twist) along a simple closed arc:

L-twist (=point-pushing diffeo.) along an L-arc:

Geometric generator: braid twist

Geometric generator: L-twist

Affine type C Strix

Affine type B Mix

Affine type D Fox

Contents

- Deformation of Artin Braid groups
- 2 Deformation of 3-Calabi-Yau categories
- Open Deformation of moduli spaces
- Deformation of fundamental groups

Deformed N-Calabi-Yau completion (Keller)

Let A be a dg algebra.

Let
$$A^e = A \otimes A^{op}$$
, $\theta = \mathsf{RHom}_{A^e}(A, A^e)$.

The N-Calabi-Yau completion of $A \Pi_N(A)$ is

$$T_A(\Theta) = A \oplus \Theta \oplus (\Theta \otimes_A \Theta) \oplus \cdots$$

for
$$\Theta = \theta[N-1]$$
.

Given

$$c \in \mathsf{HH}_{N-1}(A) \cong \mathsf{Hom}_{\mathcal{D}(A^e)}(\Theta, A[1]).$$

The deformed N-Calabi-Yau completion is $\Pi_N(A,c)$ by adding c into the differential of $\Pi(A)$. The perfectly-valued/f.d. derived category $\operatorname{pvd}(\Pi_N(A,c))$ is N-Calabi-Yau

Deformed N-Calabi-Yau completion (Keller)

Let A be a dg algebra.

Let
$$A^e = A \otimes A^{op}$$
, $\theta = \mathsf{RHom}_{A^e}(A, A^e)$.

The N-Calabi-Yau completion of $A \Pi_N(A)$ is

$$T_A(\Theta) = A \oplus \Theta \oplus (\Theta \otimes_A \Theta) \oplus \cdots$$

for
$$\Theta = \theta[N-1]$$
.

Given

$$c \in \mathsf{HH}_{N-1}(A) \cong \mathsf{Hom}_{\mathcal{D}(A^e)}(\Theta, A[1])$$
 .

The <u>deformed N-Calabi-Yau completion</u> is $\Pi_N(A,c)$ by adding c into the differential of $\Pi(A)$. The perfectly-valued/f.d. derived category $\operatorname{pvd}(\Pi_N(A,c))$ is N-Calabi-Yau.

Deformed N-Calabi-Yau completion (Keller)

Let A be a dg algebra.

Let
$$A^e = A \otimes A^{op}$$
, $\theta = \mathsf{RHom}_{A^e}(A, A^e)$.

The N-Calabi-Yau completion of $A \Pi_N(A)$ is

$$T_A(\Theta) = A \oplus \Theta \oplus (\Theta \otimes_A \Theta) \oplus \cdots$$

for
$$\Theta = \theta[N-1]$$
.

Given

$$c \in \mathsf{HH}_{N-1}(A) \cong \mathsf{Hom}_{\mathcal{D}(A^e)}(\Theta, A[1]).$$

The <u>deformed N-Calabi-Yau completion</u> is $\Pi_N(A, c)$ by adding c into the differential of $\Pi(A)$. The perfectly-valued/f.d. derived category $\operatorname{pvd}(\Pi_N(A, c))$ is N-Calabi-Yau.

Deformation of 3-CY categories via QP

Given a quiver with potential (Q, W). Let $A = \mathbf{k}\overline{Q}$ and c = c(W). There is a 3-CY cat. $\mathcal{D}_3(Q, W) = \operatorname{pvd}(\Gamma(Q, W)) \cong \operatorname{pvd}(\Pi_3(A, c))$.

Diff.:
$$\begin{cases} \sum_{i \in Q_0} de_i^* = \sum_{a \in Q_1} [a, a^*], \\ da^* = \partial_a W. \end{cases}$$

e.g.
$$\begin{cases} de_i = a_{j-1}a_{j+1}^* - a_{j+1}^*a_{j-1}, \\ da_i^* = a_{j+1}a_{j-1}. \end{cases}$$

Given a triangulation T of S^{Θ} and a partition $\Theta = \mathbb{C} \cup \mathbb{D}$ of the set of punctures. waning vs. waxing Crescent. Turn waxing Crescent into vortex (YinYang)

The quiver is $Q_{\rm T}^{\mathbb{C},\Theta}$ =(arcs, angles).

The potential is
$$W_{\mathsf{T}}^{\mathfrak{C},\mathfrak{D}} = \sum_{T \in \mathsf{T}} W_T - \sum_{V \in \mathfrak{D}} W_V$$
.

$$\mathcal{D}_{3}(\mathbf{S}^{\mathfrak{C},\mathfrak{D}}) = \mathcal{D}_{3}(Q_{\mathsf{T}}^{\mathfrak{C},\mathfrak{D}}, W_{\mathsf{T}}^{\mathfrak{C},\mathfrak{D}}).$$

Given a triangulation T of S^{Θ} and a partition $\Theta = \mathbb{C} \cup \mathbb{D}$ of the set of punctures. waning vs. waxing Crescent. Turn waxing Crescent into vortex (YinYang)

The <u>quiver</u> is $Q_T^{\mathfrak{C},\mathfrak{d}}$ =(arcs, angles).

The potential is $W_T^{\mathfrak{C},\mathfrak{G}} = \sum_{T \in T} W_T - \sum_{V \in \mathfrak{D}} W_V$.

$$\mathcal{D}_3(\mathbf{S}^{\mathfrak{C},\mathfrak{D}}) = \mathcal{D}_3(Q_{\mathsf{T}}^{\mathfrak{C},\mathfrak{D}}, W_{\mathsf{T}}^{\mathfrak{C},\mathfrak{D}}).$$

Given a triangulation T of S^{Θ} and a partition $\Theta = \mathbb{C} \cup \mathbb{D}$ of the set of punctures. waning vs. waxing Crescent. Turn waxing Crescent into vortex (YinYang)

The <u>quiver</u> is $Q_T^{\mathfrak{C},\mathfrak{d}}$ =(arcs, angles).

The potential is $W_T^{\mathfrak{C},\mathfrak{G}} = \sum_{T \in T} W_T - \sum_{V \in \mathfrak{D}} W_V$.

$$\mathcal{D}_3(\mathbf{S}^{\mathfrak{C},\mathfrak{G}}) = \mathcal{D}_3(Q_{\mathsf{T}}^{\mathfrak{C},\mathfrak{G}}, W_{\mathsf{T}}^{\mathfrak{C},\mathfrak{G}}).$$

Given a triangulation T of S^{Θ} and a partition $\Theta = \mathbb{C} \cup \mathbb{D}$ of the set of punctures. waning vs. waxing Crescent. Turn waxing Crescent into vortex (YinYang)

The <u>quiver</u> is $Q_T^{\mathfrak{C},\mathfrak{d}}$ =(arcs, angles).

The potential is $W_T^{\mathfrak{C},\mathfrak{G}} = \sum_{T \in T} W_T - \sum_{V \in \mathfrak{D}} W_V$.

$$\mathcal{D}_3(\mathbf{S}^{\mathfrak{C},\mathfrak{G}}) = \mathcal{D}_3(Q_{\mathsf{T}}^{\mathfrak{C},\mathfrak{G}}, W_{\mathsf{T}}^{\mathfrak{C},\mathfrak{G}}).$$

Examples: QPs

- $(\mathbb{C}, \mathbb{D}) = (\mathbf{O}, \emptyset)$ and $W_{\mathsf{T}}^{\mathbf{O}} = W_{\mathcal{T}_+} + W_{\mathcal{T}_-}$.
- $(\mathbb{C}, \mathbb{D}) = (P_1, P_2)$ and $W_{\mathsf{T}}^{\mathbb{C}, \mathbf{\partial}} = W_{T_+} + W_{T_-} W_{P_1}$.
- $(\mathbb{C}, \mathbb{D}) = (\emptyset, \mathbf{O})$ and $W_{\mathsf{T}}^{\mathbf{O}} = W_{\mathsf{T}_+} + W_{\mathsf{T}_-} W_{\mathsf{P}_1} W_{\mathsf{P}_2}$.

Contents

- Deformation of Artin Braid groups
- Deformation of 3-Calabi-Yau categories
- 3 Deformation of moduli spaces
- Deformation of fundamental groups

Stability conditions on triangulated categories

A stability condition $\sigma = (Z, P)$ on D =

- a central charge Z &
- ullet a slicing, i.e. a ${\mathbb R}$ -collection of t-structures,

satisfying contain condition.

Theorem (Bridgeland)

Stab \mathcal{D} is a \mathbb{C} -manifold with local coordinate $Z \in \text{Hom}(K(\mathcal{D}), \mathbb{C})$.

Stability conditions on triangulated categories

A stability condition $\sigma = (Z, P)$ on D =

- a central charge Z &
- a slicing, i.e. a ℝ-collection of t-structures,

satisfying contain condition.

Theorem (Bridgeland)

Stab \mathcal{D} is a \mathbb{C} -manifold with local coordinate $Z \in \text{Hom}(K(\mathcal{D}), \mathbb{C})$.

Stab as Quad (CHQ vs. Q vs. BS)

Theorem (Q)

There is an isomorphism between complex orbifolds

$$\frac{\mathsf{FQuad}^{\pm}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\mathfrak{D}})}{\mathsf{MCG}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\mathfrak{D}})} \cong \frac{\mathsf{Stab}^{\circ}(\mathcal{D}_{3}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\mathfrak{D}}))}{\mathsf{Aut}^{\circ}\,\mathcal{D}_{3}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\mathfrak{D}})}$$

which specializes to

- Bridgeland-Smith for $(\mathbb{C}, \mathbb{Q}) = (\emptyset, \mathbb{Q})$.
- Christ-Haiden-Q for $(\mathbb{C}, \mathfrak{D}) = (\mathfrak{O}, \emptyset)$.

Stab as Quad (CHQ vs. Q vs. BS)

Theorem (Q)

There is an isomorphism between complex orbifolds

$$\frac{\mathsf{FQuad}^{\pm}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}})}{\mathsf{MCG}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}})}\cong\frac{\mathsf{Stab}^{\circ}(\mathcal{D}_{3}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}}))}{\mathsf{Aut}^{\circ}\,\mathcal{D}_{3}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}})},$$

which specializes to

- Bridgeland-Smith for $(\mathbb{C}, \mathfrak{D}) = (\emptyset, \mathfrak{O})$.
- Christ-Haiden-Q for $(\mathbb{C}, \mathfrak{P}) = (\mathfrak{O}, \emptyset)$.

Stab as Quad (CHQ vs. Q vs. BS)

Theorem (Q)

There is an isomorphism between complex orbifolds

$$\frac{\mathsf{FQuad}^{\pm}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}})}{\mathsf{MCG}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}})}\cong\frac{\mathsf{Stab}^{\circ}(\mathcal{D}_{3}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}}))}{\mathsf{Aut}^{\circ}\,\mathcal{D}_{3}(\boldsymbol{\mathsf{S}}^{\mathfrak{C},\boldsymbol{\vartheta}})},$$

which specializes to

- Bridgeland-Smith for $(\mathbb{C}, \mathbf{\Theta}) = (\emptyset, \mathbf{\Theta})$.
- Christ-Haiden-Q for $(\mathbb{C}, \mathbf{\partial}) = (\mathbf{O}, \emptyset)$.

Foliation = Slicing Period map = Central charge & Broken geodesic = HN-filtration.

Examples: QPs

$$(\mathbb{C},\mathbb{D})=(\mathbb{O},\varnothing)$$
 and $W_{\mathbb{T}}^{\mathbb{O}}=W_{\mathcal{T}_{+}}+W_{\mathcal{T}_{-}}$:

$$\mathsf{Stab}^{\circ}(\mathcal{D}_3(S_{\Delta}^{\boldsymbol{0}}))/\operatorname{\mathsf{Aut}}\cong\quad \mathsf{Quad}(0;1^4,(-2)^2,-4).$$

$$(\mathfrak{C},\mathfrak{D})=(P_1,P_2) \text{ and } W_{\mathsf{T}}^{\mathfrak{C},\mathfrak{D}}=W_{T_+}+W_{T_-}-W_{P_1};$$

$$\mathsf{Stab}^{\circ}(\mathcal{D}_3(\mathsf{S}^{\mathfrak{C}, \textcircled{\scriptsize{0}}}))/\operatorname{\mathsf{Aut}} \cong \cdots \bigsqcup \mathsf{Quad}(0; 1^3, -1, -2, -4)^{\mathbb{Z}_2}.$$

$$(\mathbb{C},\mathbb{D})=(\varnothing,\mathbf{0}) \text{ and } W_{\mathsf{T}}^{\mathbf{0}}=W_{T_{+}}+W_{T_{-}}-W_{P_{1}}-W_{P_{2}};$$

$$\mathsf{Stab}^{\circ}(\mathcal{D}_{3}(\mathsf{S}^{\textcircled{a}}))/\operatorname{\mathsf{Aut}}\cong\cdots\bigsqcup\mathsf{Quad}(0;1^{2},(-1)^{2},-4)^{\mathbb{Z}_{2}^{2}}.$$

Contents

- ① Deformation of Artin Braid groups
- Deformation of 3-Calabi-Yau categories
- Open Deformation of moduli spaces
- 4 Deformation of fundamental groups

Affine type CBD hyperplane arrangements

Let

$$V_0 = \{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{C}^n \mid x_j \neq \pm x_k, \forall j \neq k \}$$
 (1)

and

$$\begin{cases} V_{\widetilde{C}_{n}} = \{\mathbf{x} \in V_{0} \mid \forall x_{j} \notin \frac{1}{2}\mathbb{Z}\}, \\ V_{\widetilde{B}_{n}} = \{\mathbf{x} \in V_{0} \mid \forall x_{j} \notin \mathbb{Z}\}, \\ V_{\widetilde{D}_{n}} = V_{0}. \end{cases}$$
(2)

Then there are homotopy equivalences

$$V_{\Upsilon}/W_{\Upsilon} \simeq \mathfrak{h}_{\Upsilon}^{\text{reg}}/W_{\Upsilon}$$

for
$$\Upsilon = \widetilde{C_n}$$
, $\widetilde{B_n}$ or $\widetilde{D_n}$.

The explicit map

Consider the following map

$$\iota \colon \mathbb{C} \xrightarrow{e^{2\pi i(?)}} \mathbb{C}^* \xrightarrow{\eta} \mathbb{C}^{0,1},$$

$$x \mapsto y \mapsto \frac{1}{4}(1-y)(1-\frac{1}{y}),$$

where $\mathbb{C}^{0,1} = \mathbb{C} \setminus \{0,1\}$ and η is a branched double cover. It induces a homotopy equivalence

$$V_{\widetilde{C}_n}/W_{\widetilde{C}_n} \simeq \operatorname{conf}_n(\mathbb{C}^{0,1}),$$
 (3)

where \mathfrak{S}_n is permutation group of n elements.

Affine type C Strix

Affine type C Strix

 $\mathsf{FQuad}(\mathbf{S}^{\mathbf{O}})$ consists of differentials of the form (with a $\mathsf{ZZ}\text{-framing})$

$$\phi(z) = \lambda \cdot \frac{\prod_{i=1}^{n} (z - z_i)}{z^2 (z - 1)^2} dz^2, \quad \lambda \in \mathbb{C}^*, z_i \in \mathbb{C}^{0,1}, \quad z_i \neq z_j.$$

Hence, $\mathsf{FQuad}(\mathbf{S}^{\mathbf{O}})$ is homotopy equivalent to $\mathsf{conf}_n(\mathbb{C}^{0,1})$:

$$\mathsf{FQuad}(\mathbf{S}^{\mathbf{O}}) \xrightarrow{\simeq} \mathsf{conf}_n(\mathbb{C}^{0,1}) \simeq \mathfrak{h}^{\mathsf{reg}}_{\widetilde{C_n}} / W_{\widetilde{C_n}}. \tag{4}$$

The contractible space $\mathsf{Stab}^\circ(\mathcal{D}_3(\mathbf{S}^{\odot}_{\Delta}))\cong\mathsf{FQuad}^{\mathbb{T}}(\mathbf{S}^{\odot}_{\Delta})$ is the universal cover of

$$FQuad(S^{\circ}) = FQuad(0; 1^{n}, (-2)^{2}, -n-2),$$

with covering group

$$\pi_1 \operatorname{FQuad}(\mathbf{S}^{\mathfrak{S}}) = \operatorname{Br}(\widetilde{C_n}).$$

Affine type C Strix

 $\mathsf{FQuad}(\mathbf{S}^{\mathbf{O}})$ consists of differentials of the form (with a ZZ -framing)

$$\phi(z) = \lambda \cdot \frac{\prod_{i=1}^{n} (z - z_i)}{z^2 (z - 1)^2} dz^2, \quad \lambda \in \mathbb{C}^*, z_i \in \mathbb{C}^{0,1}, \quad z_i \neq z_j.$$

Hence, FQuad($S^{\mathfrak{O}}$) is homotopy equivalent to conf_n($\mathbb{C}^{0,1}$):

$$\mathsf{FQuad}(\mathbf{S}^{\mathbf{O}}) \xrightarrow{\simeq} \mathsf{conf}_n(\mathbb{C}^{0,1}) \simeq \mathfrak{h}^{\mathsf{reg}}_{\widetilde{C_n}} / W_{\widetilde{C_n}}. \tag{4}$$

The contractible space $\mathsf{Stab}^\circ(\mathcal{D}_3(\mathbf{S}^{\mathfrak{O}}_\Delta)) \cong \mathsf{FQuad}^\mathbb{T}(\mathbf{S}^{\mathfrak{O}}_\Delta)$ is the universal cover of

$$\mathsf{FQuad}(\mathbf{S}^{\mathbf{O}}) = \mathsf{FQuad}(0; 1^n, (-2)^2, -n-2),$$

with covering group

$$\pi_1\operatorname{\mathsf{FQuad}}(\mathbf{S}^{\boldsymbol{\mathfrak{O}}})=\operatorname{\mathsf{Br}}(\widetilde{C_n}).$$

Affine type B Mix

Affine type B Mix

Partial compactification with orbifolding = adding back certain hyperplanes (in the covering).

Hence

$$\mathsf{FQuad}(\mathbf{S}^{\mathbb{C},\mathfrak{D}}) \xrightarrow{\simeq} \overline{\mathsf{conf}_n(\mathbb{C}^{0,1})^1} \simeq \mathfrak{h}_{\widetilde{B}_n}^{\mathsf{reg}} / W_{\widetilde{C}_n}. \tag{5}$$

and then

$$\operatorname{\mathsf{-Quad}}^{\pm}(\mathbf{S}^{\mathfrak{C},\mathfrak{D}}) \simeq \mathfrak{h}^{\operatorname{reg}}_{\widetilde{B_n}}/W_{\widetilde{B_n}}.$$

with

$$\pi_1 \operatorname{\mathsf{FQuad}}^{\pm}(\mathbf{S}^{\mathfrak{C},\mathfrak{S}}) = \operatorname{\mathsf{Br}}(\widetilde{B}_n).$$
 (6)

Affine type B Mix

Partial compactification with orbifolding = adding back certain hyperplanes (in the covering).

Hence:

$$\mathsf{FQuad}(\mathbf{S}^{\mathbb{C},\mathbf{a}}) \xrightarrow{\simeq} \overline{\mathsf{conf}_n(\mathbb{C}^{0,1})}^1 \simeq \mathfrak{h}_{\widetilde{B_n}}^{\mathsf{reg}}/W_{\widetilde{C_n}}.$$
 (5)

and then

$$\mathsf{FQuad}^{\pm}(\mathbf{S}^{\mathfrak{C},\mathbf{3}}) \simeq \mathfrak{h}^{\mathsf{reg}}_{\widetilde{B_n}}/W_{\widetilde{B_n}}.$$

with

$$\pi_1 \operatorname{\mathsf{FQuad}}^{\pm}(\mathbf{S}^{\mathfrak{C},\mathfrak{S}}) = \operatorname{\mathsf{Br}}(\widetilde{B_n}).$$
 (6)

Affine type D Fox

Affine type D Fox

Similarly,

$$\mathsf{FQuad}(\mathbf{S}^{\Theta}) \xrightarrow{\simeq} \overline{\mathsf{conf}_n(\mathbb{C}^{0,1})}^{0,1} \simeq \mathfrak{h}_{\widetilde{D_n}}^{\mathsf{reg}} / W_{\widetilde{C}_n}. \tag{7}$$

and then

$$\mathsf{FQuad}^{\pm}(\mathbf{S}^{\mathbf{o}}) \simeq \mathfrak{h}^{\mathsf{reg}}_{\widetilde{D_n}} / W_{\widetilde{D_n}}.$$

with

$$\pi_1 \operatorname{\mathsf{FQuad}}^{\pm}(\mathbf{S}^{\Theta}) = \operatorname{\mathsf{Br}}(\widetilde{D_n}).$$
 (8)

Summary

 Υ : any non-exceptional spherical/Dynkin diagram; \exists a DMSx $S^{\mathfrak{C},\mathfrak{d}}$ such that:

Theorem (Q)

There is a homotopy equivalence

$$\mathsf{FQuad}^{\pm}(\textbf{S}^{\mathfrak{C}, \textbf{9}}) \simeq \mathfrak{h}^{\mathsf{reg}}_{\Upsilon} / \mathcal{W}_{\Upsilon}$$

whose fundamental group fits into the following commutative diagram:

In the 'lattice' case (i.e. spherical, \widetilde{A}_n or \widetilde{C}_n), a contractible universal cover of $\mathfrak{h}^{\text{reg}}_{\Upsilon}/W_{\Upsilon}$ is given by $\operatorname{Stab}^{\circ}(D_3(\mathbf{S}_{\Delta}^{\mathbb{C},\mathbf{a}}))$.

The Comparison: Strix-Mix-Fox as C-B-D

POV	DMSp S ^Θ _Δ	DMSx S _∆ ^{ℂ,⊘}	DMSv S _Δ
Moduli Space Dynamical System	Natural	Natural~ish	Unnatural
Quiver Algebras Rep. Theory	Natural Gentle/inf.d.	SOSO	Natural Skew-gentle/f.d.
Quiver w/ Potential Cluster theory	Unnatural Degenerate	Unnatural	Natural Non-degenerate
Perverse Schobers Higher cat.	Natural	-	-
DT-invariants Math. Physics	Natural	?	Natural?
Hyperplane Arrangements	Natural	Natural	Natural

Thank you!

shape-shifting →

∃ correspondences:

Alg: Change of twist groups.

Cat: Deformation of 3-Calabi-Yau categories.

Geo: Partial compactification with orbifolding of moduli spaces.

Top: Taking sub-quotient of mapping class groups (as π_1).