A generalization of Dugas' construction on stable auto-equivalences for symmetric algebras

> Yuming Liu (Beijing Normal University)

joint work with Nengqun Li

ICRA21, Shanghai, 2024.08

 $\frac{2}{34}$

2 [Dugas' construction](#page-24-0)

 299 重 イロト メ御 ドメ ミドメ ミト

- \bullet k: a field
- \bullet A: a finite-dimensional self-injective k -algebra
- mod-A: the category of finite-dimensional right A-modules
- \bullet mod-A: the stable category of mod-A by factoring out the morphisms that factor through a projective A-module
- $D^b(\text{mod-}A)$: the bounded derived category of mod-A
- $A^e = A^{op} \otimes_k A$: the **enveloping algebra** of A
	- $\text{lrp}(\pmb{\mathcal{A}})$: the subcategory of $\text{mod-} \pmb{\mathcal{A}}^e$ consisting of left-right projective A^e -modules
	- $lcp(A)$: the stable category of $lrp(A)$ obtained by factoring out the $\overline{\mathsf{m}}$ orphisms that factor through a projective $\mathcal{A}^e\text{-module}$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결

 \bullet Let k be a field and let A, B be two finite dimensional k-algebras. Recall that A and B are said to be **Morita equivalent** if mod-A and mod-B are equivalent as abelian categories.

- \bullet Let k be a field and let A, B be two finite dimensional k-algebras. Recall that A and B are said to be **Morita equivalent** if mod-A and mod-B are equivalent as abelian categories.
- \bullet By classical Morita theory, A and B are Morita equivalent if and only if there exists a projective generator P_A in mod-A such that the endomorphism algebra $End(P_A)$ is isomorphic to B.
- \bullet Let k be a field and let A, B be two finite dimensional k-algebras. Recall that A and B are said to be **Morita equivalent** if mod-A and mod-B are equivalent as abelian categories.
- \bullet By classical Morita theory, A and B are Morita equivalent if and only if there exists a projective generator P_A in mod-A such that the endomorphism algebra $End(P_A)$ is isomorphic to B.
- In this case, the tensor functor $-\otimes_B P_A$: mod-B \rightarrow mod-A is an equivalence of abelian categories.

∢ 何 ▶ -∢ ヨ ▶ -∢ ヨ ▶

 \bullet Two finite dimensional *k*-algebras A and B are said to be **derived equivalent** if $D^b(\text{mod-}A)$ and $D^b(\text{mod-}B)$ are equivalent as triangulated categories.

- \bullet Two finite dimensional *k*-algebras A and B are said to be **derived equivalent** if $D^b(\text{mod-}A)$ and $D^b(\text{mod-}B)$ are equivalent as triangulated categories.
- By Rickard's Morita theory for derived categories, one can construct a derived equivalence by using the (one-sided) tilting complex.
- \bullet Two finite dimensional *k*-algebras A and B are said to be **derived equivalent** if $D^b(\text{mod-}A)$ and $D^b(\text{mod-}B)$ are equivalent as triangulated categories.
- By Rickard's Morita theory for derived categories, one can construct a derived equivalence by using the (one-sided) tilting complex.
- Moreover, if A and B are derived equivalent, then there exists a derived equivalence $D^b(\textsf{mod-}B)\to D^b(\textsf{mod-}A)$ given by the derived tensor functor of some two-sided tilting complex.

 \bullet Two finite dimensional *k*-algebras A and B are said to be stably equivalent if $mod-A$ and $mod-B$ are equivalent as *k*-categories.

- \bullet Two finite dimensional *k*-algebras A and B are said to be stably equivalent if $mod-A$ and $mod-B$ are equivalent as *k*-categories.
- The projective modules are not visible in this category and there is no substitute known in mod-A for projective generators in mod-A or tilting complexes in $D^b(\mathrm{mod}\text{-}A).$
- \bullet Two finite dimensional *k*-algebras A and B are said to be stably equivalent if $mod-A$ and $mod-B$ are equivalent as k-categories.
- The projective modules are not visible in this category and there is no substitute known in mod-A for projective generators in mod-A or tilting complexes in $D^b(\mathrm{mod}\text{-}A).$
- An analogue of Morita theory for stable categories is missing.

By an absence of a Morita theory for stable categories, the following fundamental conjecture is still widely open.

- By an absence of a Morita theory for stable categories, the following fundamental conjecture is still widely open.
- Auslander-Reiten conjecture: If two finite dimensional k -algebras A and B are stably equivalent, then the number of isomorphism classes of non-projective simple modules over A and B are the same.
- By an absence of a Morita theory for stable categories, the following fundamental conjecture is still widely open.
- Auslander-Reiten conjecture: If two finite dimensional k -algebras A and B are stably equivalent, then the number of isomorphism classes of non-projective simple modules over A and B are the same.
- Martinez-Villa: AR-conjecture is reduced to stable equivalences between self-injective algebras.

• Known: The stable category $\text{mod-}A$ is a triangulated category and a natural quotient of the derived category $D^b(\mathrm{mod}\text{-}A).$

- Known: The stable category $\text{mod-}A$ is a triangulated category and a natural quotient of the derived category $D^b(\mathrm{mod}\text{-}A).$
- Therefore, a derived equivalence between self-injective algebras induces a stable equivalence.

- \bullet Known: The stable category $mod-A$ is a triangulated category and a natural quotient of the derived category $D^b(\mathrm{mod}\text{-}A).$
- Therefore, a derived equivalence between self-injective algebras induces a stable equivalence.
	- Very few examples of stable equivalences between self-injective algebras which are not induced by derived equivalences are known (Broué, 1994; Linckelmann, 1996).

- \bullet Known: The stable category $mod-A$ is a triangulated category and a natural quotient of the derived category $D^b(\mathrm{mod}\text{-}A).$
- Therefore, a derived equivalence between self-injective algebras induces a stable equivalence.
	- Very few examples of stable equivalences between self-injective algebras which are not induced by derived equivalences are known (Broué, 1994; Linckelmann, 1996).
	- For self-injective algebras of finite representation type, almost all stable equivalences are induced by derived equivalences (Asashiba, 2003; Dugas, 2013; Chan-Koenig-Liu, 2015; Li-Liu, 2023).

イロト (個) × (目) × (目) ×

However, stable equivalences and derived equivalences do not share the same properties in general:

- However, stable equivalences and derived equivalences do not share the same properties in general:
	- The stable equivalences (even of Morita type) between self-injective algebras do not preserve the centers of algebras (Broué, 1994; Bouc-Zimmermann, 2017).
- However, stable equivalences and derived equivalences do not share the same properties in general:
	- The stable equivalences (even of Morita type) between self-injective algebras do not preserve the centers of algebras (Broué, 1994; Bouc-Zimmermann, 2017).
	- Although the derived equivalences preserve tensor products and trivial extensions, this is not true for stable equivalences (even of Morita type) (Liu-Zhou-Zimmermann, 2017; Bouc-Zimmermann, 2017).
- However, stable equivalences and derived equivalences do not share the same properties in general:
	- The stable equivalences (even of Morita type) between self-injective algebras do not preserve the centers of algebras (Broué, 1994; Bouc-Zimmermann, 2017).
	- Although the derived equivalences preserve tensor products and trivial extensions, this is not true for stable equivalences (even of Morita type) (Liu-Zhou-Zimmermann, 2017; Bouc-Zimmermann, 2017).
- In order to understand the difference between derived equivalences and stable equivalences for self-injective algebras, it is important to construct more examples of stable equivalences between self-injective algebras that are usually not lifted to derived equivalences.

イロト (個) × (目) × (目) ×

 299 - 4 君 8 - 4 君 8 重 **∢ □ ▶ ⊣ 倒 ▶**

Recently in this direction Dugas gave two methods to construct stable auto-equivalences for local symmetric algebras (Dugas, J.Algebra, 2016), which are modeled after

- **•** the spherical twists of Seidel and Thomas (2001) and
- \bullet the P_n -twists of Huybrechts and Thomas (2006),

which yield auto-equivalences of the derived category of coherent sheaves on a variety.

Recently in this direction Dugas gave two methods to construct stable auto-equivalences for local symmetric algebras (Dugas, J.Algebra, 2016), which are modeled after

- the spherical twists of Seidel and Thomas (2001) and
- \bullet the P_n -twists of Huybrechts and Thomas (2006),

which yield auto-equivalences of the derived category of coherent sheaves on a variety.

• It is interesting that such stable auto-equivalences are in general not induced by auto-equivalences of the derived category.

→ 伊 * → 君 * → 君 * …

Theorem 1 (Dugas, 2016)

Let A be a elementary local symmetric k -algebra, which is free as both a left and a right module over a subalgebra $R = k[x] \cong k[t]/(t^m)$ $(m \geq 2)$. Assume that $\underline{End}_A(k \otimes_R A) \cong k[\psi]/(\psi^2)$ with ψ induced by left multiplication by an element $y \in A$. Let K be the kernel of the multiplication map $\mu : A \otimes_R A \to A$, then $-\otimes_A K$ induces an auto-equivalence of mod-A.

Theorem 1 (Dugas, 2016)

Let A be a elementary local symmetric k -algebra, which is free as both a left and a right module over a subalgebra $R = k[x] \cong k[t]/(t^m)$ $(m \geq 2)$. Assume that $\underline{End}_A(k \otimes_R A) \cong k[\psi]/(\psi^2)$ with ψ induced by left multiplication by an element $y \in A$. Let K be the kernel of the multiplication map $\mu : A \otimes_R A \to A$, then $-\otimes_A K$ induces an auto-equivalence of mod-A.

Remark

Note that $Cone(\mu)=\Omega_{A^e}^{-1}(K)$ in $\overline{\mathrm{mod}}$ - A^e , and the stable auto-equivalence $-\otimes_A \Omega^{-1}_{A^e}(K)$: $\underline{\text{mod}}$ - $A \rightarrow \underline{\text{mod}}$ - A is called a spherical stable twist.

Theorem 2 (Dugas, 2016)

Let A be a elementary local symmetric k -algebra, which is free as both a left and a right module over a subalgebra $R = k[x] \cong k[t]/(t^m)$ $(m \geq 2)$. Assume that $\underline{End}_{\cal A}(k\otimes_R A)\cong k[\psi]/(\psi^{n+1})$ for some $n\geq 1$, where ψ is induced by left multiplication by some $y \in A$ such that $xy = yx$. If we set

$$
Q \cong Cone(Cone(A \otimes_R A \xrightarrow{y \otimes 1-1 \otimes y} A \otimes_R A) \xrightarrow{\overline{\mu}} A)
$$

in mod-A, then $-\otimes_A Q$ induces an auto-equivalence of mod-A.

The rough idea of the Proof

Consider the strong spanning $\mathsf{class}\ \mathcal{C} := \{\mathcal{T}\} \cup \mathcal{T}^\perp$ in the stable category $\underline{\bmod}$ -A (that is, $\mathcal{C}^{\perp}=\{0\}$ and $^{\perp}\mathcal{C}=\{0\}),$ where $\mathcal{T} := k \otimes_R A \cong A/(\text{rad}R)A$.

- Consider the strong spanning $\mathsf{class}\ \mathcal{C} := \{\mathcal{T}\} \cup \mathcal{T}^\perp$ in the stable category $\underline{\bmod}$ -A (that is, $\mathcal{C}^{\perp}=\{0\}$ and $^{\perp}\mathcal{C}=\{0\}),$ where $T := k \otimes_R A \cong A/(\text{rad}R)A$.
- (Bridgeland, 1999; Dugas, 2016) Let $_A M_A$ be a left-right projective $\mathcal{A}^e\text{-module. Then } -\otimes_{\mathcal{A}}\mathcal{M}:\underline{\mathrm{mod}}\text{-}\mathcal{A}\to \underline{\mathrm{mod}}\text{-}\mathcal{A}$ is an equivalence if and only if $-\otimes_A M$ induces bijections

 $\underline{\mathrm{Hom}}_{\mathcal{A}}(X,\Omega^{-i}(Y))\rightarrow \underline{\mathrm{Hom}}_{\mathcal{A}}(X\otimes_{\mathcal{A}} M,\Omega^{-i}(Y)\otimes_{\mathcal{A}} M)$

for all $X, Y \in \mathcal{C}$ and for all $i = 0, 1$ (enough injections for $i = 1$).

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결

- Consider the strong spanning $\mathsf{class}\ \mathcal{C} := \{\mathcal{T}\} \cup \mathcal{T}^\perp$ in the stable category $\underline{\bmod}$ -A (that is, $\mathcal{C}^{\perp}=\{0\}$ and $^{\perp}\mathcal{C}=\{0\}),$ where $T := k \otimes_R A \cong A/(\text{rad}R)A$.
- (Bridgeland, 1999; Dugas, 2016) Let $_A M_A$ be a left-right projective $\mathcal{A}^e\text{-module. Then } -\otimes_{\mathcal{A}}M: \underline{\mathrm{mod}}\text{-}\mathcal{A} \to \underline{\mathrm{mod}}\text{-}\mathcal{A}$ is an equivalence if and only if $-\otimes_A M$ induces bijections

$$
\underline{\mathrm{Hom}}_{\mathcal{A}}(X,\Omega^{-i}(Y))\rightarrow \underline{\mathrm{Hom}}_{\mathcal{A}}(X\otimes_{\mathcal{A}} M,\Omega^{-i}(Y)\otimes_{\mathcal{A}} M)
$$

for all X, $Y \in \mathcal{C}$ and for all $i = 0, 1$ (enough injections for $i = 1$).

• Restricted to add($T \oplus T[-1]$), the stable auto-equivalence is isomorphic to the identity functor on mod-A (up to the auto-equivalence [1] or [2]).

メロメメ 御 メメ きょく ヨメ 一番

 299 - 4 君 8 - 4 君 8 重 4日 ト - ← 冊 →

We wish to generalize Dugas' construction in the following respects.

- \bullet local \rightarrow non-local
- a pair $(A, R) \rightarrow$ a triple (A, R, B)
- cone, double cone construction \rightarrow multiple cone construction

Assumption 1: Let k be a field, A be a symmetric k -algebra, R be a non-semisimple symmetric k-subalgebra of A such that A_R is projective. Let B be another *k*-subalgebra of A , such that the following conditions hold:

(a)
$$
br = rb
$$
 for each $b \in B$ and $r \in R$;

 (b) $B\otimes_k(R/r$ ad $R) \stackrel{\phi}{\to} (R/r$ ad $R) \otimes_R A$, $b\otimes \overline{1} \mapsto \overline{1}\otimes b$ is an isomorphism in mod-R;

 (c) B has a periodic free B^e-resolution (of period q), that is, there exists an exact sequence

 $0 \to B \stackrel{\delta_q}\longrightarrow (B\otimes_k B)^{m_{q-1}} \stackrel{\delta_{q-1}}\longrightarrow \cdots \to (B\otimes_k B)^{m_1} \stackrel{\delta_1}\longrightarrow (B\otimes_k B)^{m_0} \stackrel{\delta_0}\longrightarrow B \to 0$ of B^e -modules.

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Under Assumption 1, there exists a complex

$$
(A\otimes_R A)^{m_{q-1}}\xrightarrow{d_{q-1}}\cdots\to (A\otimes_R A)^{m_1}\xrightarrow{d_1} (A\otimes_R A)^{m_0}\xrightarrow{d_0} A\to 0
$$

in $lrp(A)$ such that the diagram

$$
(B \otimes_k B)^{m_{q-1}} \xrightarrow{\delta_{q-1}} \cdots \longrightarrow (B \otimes_k B)^{m_1} \xrightarrow{\delta_1} (B \otimes_k B)^{m_0} \xrightarrow{\delta_0} B \longrightarrow 0
$$

\n
$$
(A \otimes_R A)^{m_{q-1}} \xrightarrow{d_{q-1}} \cdots \longrightarrow (A \otimes_R A)^{m_1} \xrightarrow{d_1} (A \otimes_R A)^{m_0} \xrightarrow{d_0} A \longrightarrow 0
$$

is commutative, where the vertical morphisms are the obvious morphisms.

Construction

We can factor out the complex

$$
(A\otimes_R A)^{m_{q-1}}\xrightarrow{d_{q-1}}\cdots\to (A\otimes_R A)^{m_1}\xrightarrow{d_1} (A\otimes_R A)^{m_0}\xrightarrow{d_0} A
$$

into triangles

$$
M_1 \xrightarrow{\dot{h}} (A \otimes_R A)^{m_0} \xrightarrow{d_0} A \rightarrow,
$$

\n
$$
M_2 \xrightarrow{\dot{h}_2} (A \otimes_R A)^{m_1} \xrightarrow{f_1} M_1 \rightarrow,
$$

\n... ,
\n
$$
M_q \xrightarrow{\dot{h}_q} (A \otimes_R A)^{m_{q-1}} \xrightarrow{f_{q-1}} M_{q-1} \rightarrow
$$

in the triangulated category $\text{lrp}(A)$ such that $i_p f_p = d_p$ in $\text{lrp}(A)$ for $1 < p < q - 1$.

メロメメ 御 メメ きょく ヨメ 一番

Let (A, R, B) be a triple which satisfies Assumption 1. If M_a is the A-A-bimodule defined as above, then $-\otimes_A M_{\mathfrak{a}} : \text{mod-}A \rightarrow \text{mod-}A$ is a stable auto-equivalence of A.

Let (A, R, B) be a triple which satisfies Assumption 1. If M_a is the A-A-bimodule defined as above, then $-\otimes_A M_{\sigma}$: mod-A \rightarrow mod-A is a stable auto-equivalence of A.

• In Dugas's construction, $T_A = A/(\text{rad}R)A$ has Ω_A -period 2, but in our construction, T_A may not be Ω_A -periodic. So our construction is more flexible.

Let (A, R, B) be a triple which satisfies Assumption 1. If M_a is the A-A-bimodule defined as above, then $-\otimes_A M_{\sigma}$: mod-A \rightarrow mod-A is a stable auto-equivalence of A.

- In Dugas's construction, $T_A = A/(\text{rad}R)A$ has Ω_A -period 2, but in our construction, T_A may not be Ω_A -periodic. So our construction is more flexible.
- \bullet The subalgebra B can be seen as a generalization of the algebra $\text{End}_{\mathcal{A}}(A/(\text{rad}R)A)$ in Dugas' construction. In fact, when R is elementary and local, B is Morita equivalent to $\text{End}_{\mathcal{A}}(A/(\text{rad}R)A)$.

∢ 御 ▶ 《 君 ▶ 《 君 ▶ 》

Let (A, R, B) be a triple which satisfies Assumption 1. If M_a is the A-A-bimodule defined as above, then $-\otimes_A M_{\sigma}$: mod-A \rightarrow mod-A is a stable auto-equivalence of A.

- In Dugas's construction, $T_A = A/(\text{rad}R)A$ has Ω_A -period 2, but in our construction, T_A may not be Ω_A -periodic. So our construction is more flexible.
- \bullet The subalgebra B can be seen as a generalization of the algebra $\text{End}_{\mathcal{A}}(A/(\text{rad}R)A)$ in Dugas' construction. In fact, when R is elementary and local, B is Morita equivalent to $\text{End}_{\Lambda}(A/(\text{rad}R)A)$.
- Restricted to add($T \oplus T[-1]$), $-\otimes_A M_\sigma$ is isomorphic to the identity functor on mod-A.

K ロ > K 個 > K 경 > K 경 > X 경

Let k be a field of positive characteristic p, P be a **finite** p-group and kP be its group algebra.

- A kP-module M is called **endo-trivial** if $\text{End}_{k}(M) \cong k \oplus P$ for some projective module P.
- \bullet Two endo-trivial modules M, N are said to be equivalent if $M \oplus Q_1 \cong N \oplus Q_2$ for some projective kP-modules Q_1 , Q_2 .
- The group $T(P)$ has elements consisting of equivalence classes $[M]$ of endo-trivial modules M . The operation is given by $[M] + [N] = [M \otimes_k N].$

→ (御) > → 君) → → 君() → 君

Example 1: Recover the endo-trivial modules over a group algebra of a finite p-group

Let $A = kP$ and $R = kS$, $B = kL$ for some subgroups S, L of P. Suppose that the triple (A, R, B) satisfies Assumption 1, and let $\rho_{S,L} := -\otimes_A M_g : \text{mod-}A \to \text{mod-}A$ be the stable auto-equivalence of A in Theorem 3.

Example 1: Recover the endo-trivial modules over a group algebra of a finite p-group

Proposition (Li-Liu, 2023)

- Let P be a finite p-group which is not generalized quaternion. Then there exist finitely many pairs $(\mathcal{S}_i,\mathit{L}_i)$ of subgroups of P such that the following conditions hold:
- (1) Each pair $(S_i,\,L_i)$ gives a triple (kP, kS_i, kL_i) which satisfies Assumption 1;
- (2) $T(P)$ is generated by $[\Omega_{kP}(k)]$ and elements of the form $[\rho_{\mathcal{S}_i,L_i}(k)].$

Let A be the symmetric k-algebra given by the quiver

$$
\alpha \bigcap \frac{\gamma}{\delta} \mathbf{2} \bigcap \beta
$$

with relations $(\alpha \delta \beta \gamma)^n = (\delta \beta \gamma \alpha)^n$, $(\beta \gamma \alpha \delta)^n = (\gamma \alpha \delta \beta)^n$, $\alpha^2=\delta\gamma=\beta^2=\gamma\delta=0.$ Let $R=k[\alpha]\times k[\beta],$ $B=k[x]$ be two subalgebras of A , where $x=(\delta\beta\gamma\alpha)^{n-1}\delta\beta\gamma+(\gamma\alpha\delta\beta)^{n-1}\gamma\alpha\delta$. The triple (A, R, B) satisfies Assumption 1.

Let A be the symmetric k -algebra given by the quiver

$$
\alpha \bigcap \frac{\gamma}{\delta} \mathbf{2} \bigcap \beta
$$

with relations
$$
(\alpha \delta \beta \gamma)^n = (\delta \beta \gamma \alpha)^n
$$
, $(\beta \gamma \alpha \delta)^n = (\gamma \alpha \delta \beta)^n$,
\n $\alpha^2 = \delta \gamma = \beta^2 = \gamma \delta = 0$. Let $R = k[\alpha] \times k[\beta]$, $B = k[x]$ be two
\nsubalgebras of A, where $x = (\delta \beta \gamma \alpha)^{n-1} \delta \beta \gamma + (\gamma \alpha \delta \beta)^{n-1} \gamma \alpha \delta$. The triple
\n(A, R, B) satisfies Assumption 1.

Remark

A is an example of a Brauer graph algebra (that is, a symmetric special biserial algebra).

When $n = 2$, the indecomposable projective A-modules have the following forms:

造

メロトメ 倒 トメ きょ メ きょう

(2.1) If $char(k) = 2$, then B has a periodic free B^e -resolution $0 \to B \to B \otimes_k B \stackrel{\mu}{\to} B \to 0$ of period 1, where μ is the map given by multiplication. The functor $-\otimes_A K$ induces a stable auto-equivalence of A, where K is the kernel of the A^e -homomorphism $A\otimes_R A\to A$ given by multiplication.

(2.1) If $char(k) = 2$, then B has a periodic free B^e -resolution $0 \to B \to B \otimes_k B \stackrel{\mu}{\to} B \to 0$ of period 1, where μ is the map given by multiplication. The functor $-\otimes_A K$ induces a stable auto-equivalence of A, where K is the kernel of the A^e -homomorphism $A\otimes_R A\to A$ given by multiplication.

Remark

When $n = 2$, it can be shown that the above auto-equivalence $-\otimes_A K$ cannot be lifted to a derived auto-equivalence, based on constructions of stable equivalences of Morita type (Liu-Xi, 2007) and constructions of derived equivalences (Hu-Xi, 2010).

(2.2) If $char(k) \neq 2$, then B has a periodic free B^e -resolution $0 \to B \to B \otimes_k B \stackrel{f}{\to} B \otimes_k B \stackrel{\mu}{\to} B \to 0$ of period 2, where $f(1 \otimes 1) = 1 \otimes x - x \otimes 1$ and μ is the map given by multiplication. The functor $-\otimes_A K'$ induces a stable auto-equivalence of A , where K' is given by the short exact sequences $0\to K'\to (A\otimes_R A)\oplus P\xrightarrow{(h_1,h_2)} K\to 0$ and $0 \to K \to A \otimes_R A \stackrel{m}{\to} A \to 0$ of A^e -modules. Here m is given by multiplication, $h_1(1 \otimes 1) = 1 \otimes x - x \otimes 1$, and $h_2 : P \rightarrow K$ is the projective cover of K as an A^e -module.

Remark

If k is a splitting field for A, then all the stable auto-equivalences of A constructed above are indeed stable auto-equivalences of Morita type.

 299 メロトメ 倒 トメ ミトメ ミト 重

- [1] H.ASASHIBA, On a lift of an individual stable equivalence to a standard derived equivalence for representation-finite self-injective algebras. Algebr. Represent. Theor. 6 (4) (2003), 427–447.
- [2] S. BOUC AND A. ZIMMERMANN, On a question of Rickard on tensor product of stably equivalent algebras. Experimental Mathematics 26 (2017), 31–44 .
- [3] T. BRIDGELAND, Equivalences of triangulated categories and Fourier–Mukai transforms, Bull. Lond. Math. Soc. 31 (1999) 25–34.
- $[4]$ M. Broué, Equivalences of blocks of group algebras. In: Finite dimensional algebras and related topics. V.Dlab and L.L.Scott (eds.), Kluwer, 1994, 1–26.
- [5] J.CARLSON AND J.THÉVENAZ, The classification of endo-trivial modules. Invent. Math. 158 (2004), 389–411.

メロトメ 倒 トメ ヨ トメ ヨ トー

[6] A.Dugas, Stable auto-equivalences for local symmetric algebras. J. Algebra 449 (2016), 22–49.

- $[7]$ W. Hu AND C.C.XI, Derived equivalences and stable equivalences of Morita type, I. Nagoya Math.J. 200 (2010), 107–152.
- [8] N.Q.Li and Y.M.Liu, A generalization of Dugas' construction on stable auto-equivalences for symmetric algebras. arXiv:2310.13934.
- [9] $N.Q.LI$ AND $Y.M.LIU$, The liftability question for stable equivalences between representation-finite self-injective algebras. Algebr. Represent. Theor. 26 (2023), 1519–1547.
- [10] M.LINCKELMANN, Stable equivalences of Morita type for self-injective algebras and p-groups. Math. Zeit. 223 (1996), 87–100.
- $[11]$ Y.M.LIU AND C.C.XI, Constructions of stable equivalences of Morita type for finite dimensional algebras III. J. London Math. Soc. 76(3) (2007), 567–585.
- [12] Y.M.Liu, G.D.Zhou and A.Zimmermann, Two questions on stable equivalences of Morita type. Proc. Amer. Math. Soc. 145(5) (2017), 1881–1890.
- [13] J.RICKARD, Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436–456.
- [14] J.RICKARD, Derived categories and stable equivalence. J. Pure Appl. Algebra 61(3) (1989), 303–317.

母 ▶ イヨ ▶ イヨ ▶ ○

Thank you!

 299 34 / 34

重

メロトメ 倒 トメ ヨ トメ ヨ ト