Mutation of Brauer configuration algebras

Yingying Zhang (joint with Toshitaka Aoki)

Huzhou University

August 6, ICRA 21, Shanghai 2024

Aim o	Tilting theory o	BC and BCA	Main result
Ŭ	ŏ	000	000
Aim			
Mutation of BC	CA		
Tilting theory Tilting complex Tilting mutatio			
BC and BCA BC Definition Example			
BCA Definition Example			
Main result Flip of BC Definition Example Mutation of BC End	CA		

- 1. T. Aihara and O. Iyama. Silting mutation in triangulated categories. J. Lond. Math. Soc. (2), 85(3):633-668, 2012.
- T. Aihara. Mutating Brauer trees. Math. J. Okayama Univ., 56:1–16, 2014.
- 3. T. Aihara. Derived equivalences between symmetric special biserial algebras. J. Pure Appl. Algebra, 219(5):1800–1825, 2015.

Mutation:

Brauer tree algebras(BTA): $\sqrt{\text{see 2. finite-representation type}}$ Brauer graph algebras(BGA): $\sqrt{\text{see 3. tame-representation type}}$ Aim of this talk: Mutation of Brauer configuration algebras(BCA). BCA are mostly wild-representation type

Aim o	Tilting theory O O	BC and BCA oo ooo	Main result 000 00
			00
Aim Mutation of BCA Tilting theory	X.		
Main result Flip of BC Definition Example Mutation of BCA End	1		

Let A be a finite dimensional algebra over algebraically closed field K. Definition

- Let $T = (T^i, d^i)$ be a bounded complex of $K^{b}(\text{proj } A)$.
 - 1. We say that T is presilting (resp., pretilting) if Hom(T, T[i]) = 0 for all integer i > 0 (resp., $i \neq 0$).
 - We say that T is silting (resp., tilting) if it is presilting (resp., pretilting) and thick T = K^b(proj A), where thick T is the smallest triangulated full subcategory of K^b(proj A) which is closed under taking direct summands.
 - 3. We say that T is *two-term* if $T^i = 0$ for all $i \neq 0, -1$.

Aim	Tilting theory	BC and BCA	Main result
0		00 000	
Tilting mutation			

Definition-Proposition (Aihara and Iyama)

Let $T = X \oplus Q$ be a basic silting complex in $K^{b}(\text{proj } A)$ with an indecomposable direct summand X. We take a triangle

$$X \stackrel{f}{\longrightarrow} Q' \longrightarrow Y \longrightarrow X[1],$$

where f is a left minimal (add Q)-approximation of X. Then, Y is indecomposable. In this case, $\mu_X^-(T) := Y \oplus Q$ is again a basic silting complex and called left mutation of T with respect to X. The right mutation $\mu_X^+(T)$ is defined dually.

Example

 \forall indec proj A-module P, the left mutation $\mu_P^-(A)$ is silting. If it is tilting, then its endomorphism algebra $\operatorname{End}(\mu_P^-(A))$ is known as tilting mutation of the algebra A. Notice that it is derived equivalent to A.

Aim	Tilting theory	BC and BCA	Main result
0		00 000	
Tilting mutation			

Definition-Proposition (Aihara and Iyama)

Let $T = X \oplus Q$ be a basic silting complex in $K^{b}(\text{proj } A)$ with an indecomposable direct summand X. We take a triangle

$$X \stackrel{f}{\longrightarrow} Q' \longrightarrow Y \longrightarrow X[1],$$

where f is a left minimal (add Q)-approximation of X. Then, Y is indecomposable. In this case, $\mu_X^-(T) := Y \oplus Q$ is again a basic silting complex and called left mutation of T with respect to X. The right mutation $\mu_X^+(T)$ is defined dually.

Example

 \forall indec proj A-module P, the left mutation $\mu_P^-(A)$ is silting. If it is tilting, then its endomorphism algebra $\operatorname{End}(\mu_P^-(A))$ is known as *tilting mutation* of the algebra A. Notice that it is derived equivalent to A.

Aim O	Tilting theory o o	BC and BCA	Main result 000 00
Aim Mutation of BCA	ι.		
BC and BCA BC Definition			
Mutation of BCA End	1		

BC

Definition (Green and Schroll)

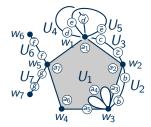
Let $\Gamma := (H, \sigma, \psi, s, \mathfrak{m})$ be a tuple, where H is a non-empty finite set, σ is a permutation on H, and ψ is an equivalent relation on H each of whose equivalence classes has at least two elements.

- (1) Each element of H is called an *angle* of Γ .
- (2) Each equivalence class in H/ψ is called a *polygon* of Γ .
- (3) Let $s: H \to H/\langle \sigma \rangle$ be a canonical surjection. Each element of $H/\langle \sigma \rangle$ is called a *vertex* of Γ .
- (4) For each vertex u of Γ , the σ -orbit $(h, \sigma(h), \ldots, \sigma^{\operatorname{val}(u)-1}(h))$ incident to u is called the *cyclic ordering* around u.
- (5) $\mathfrak{m}: H/\langle \sigma \rangle \to \mathbb{Z}_{>0}$ is a function which we call the *multiplicity function*.

Aim O	Tilting theory o o	BC and BCA ○● ○○○	Main result 000 00 0
BC			

Example

Angels $H := \{a_1, a_2, a_3, a_4, a_5, a_6, a_7, b, \overline{b}, c, \overline{c}, d, \overline{d}, e, \overline{e}, f, \overline{f}, g, \overline{g}\}$. Polygons $H/\psi := \{U_1 \dots, U_7\}$. Such as, $U_1 := \{a_1, \dots, a_7\}$ is a 7-gon. Vertices $H/\sigma := \{w_1 \dots, w_7\}$. cyclic orderings are counterclockwise. Such as, $w_1 = (a_1, c, \overline{e}, \overline{d}, e, d)$. multiplicity function $\mathfrak{m}(w_4) = 2$ and $\mathfrak{m}(w_i) = 1$ for all $i \neq 4$.



Aim O	Tilting theory o o	BC and BCA ○○ ●○○	Main result 000 00 0
BCA			

Definition

Quiver

Let $\Gamma := (H, \sigma, \psi, s, \mathfrak{m})$ be a Brauer configuration. Let Q_{Γ} be a finite quiver defined as follows:

- The set of vertices is the set H/ψ of polygons of Γ .
- The set of arrows is in bijection with the set H of angles of Γ, where we draw an arrow [h] → [σ(h)] for every h ∈ H. We write this arrow by the same symbol h or σ⁰(h) if there is no confusion.

For given $h, f \in H$ such that $f = \sigma^m(h)$ for some $1 \le m \le val(s(h))$, let $C_{h,f}$ be a path

 $[h] \xrightarrow{\sigma^{0}(h)} [\sigma(h)] \xrightarrow{\sigma(h)} [\sigma^{2}(h)] \longrightarrow \cdots \longrightarrow [\sigma^{m-1}(h)] \xrightarrow{\sigma^{m-1}(h)} [f]$ of length *m* in the quiver Q_{Γ} . We have a cycle $C_h := C_{h,h}$ of length $\operatorname{val}(s(h))$.

Let I_{Γ} be an ideal in the path algebra KQ_{Γ} generated by all the relations in (BC1) and (BC2):

(BC1) For any polygon V and any $h, f \in V$,

$$C_h^{\mathfrak{m}(s(h))} - C_f^{\mathfrak{m}(s(f))}.$$

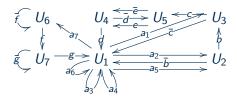
(BC2) All paths in Q_{Γ} of length two which are not sub-paths of $C_h^{\mathfrak{m}(s(h))}$ for any $h \in H$.

We define $A_{\Gamma} := KQ_{\Gamma}/I_{\Gamma}$ and call it *Brauer configuration algebra* of Γ .

BCA

Example

Let Γ be a BC given in above. We obtain a BCA $A_{\Gamma} = kQ_{\Gamma}/I_{\Gamma}$, where Q_{Γ} is the quiver given by



and I_{Γ} is the ideal generated by the following relations:

- ► $a_1 c \bar{e} d \bar{d} e d = a_2 b \bar{c} = a_3 a_4 a_5 \bar{b} = a_4 a_5 \bar{b} a_3 = a_5 \bar{b} a_3 a_4 = a_6^2 = a_7 fg$, $b \bar{c} a_2 = \bar{b} a_3 a_4 a_5$, $c \bar{e} d \bar{e} d a_1 = \bar{c} a_2 b$, $da_1 c \bar{e} d \bar{e} = \bar{d} e d a_1 c \bar{e}$, $e da_1 c \bar{e} d = \bar{e} d e d a_1 c$, $fga_7 = \bar{f}$ and $ga_7 f = \bar{g}$.
- All paths of length 2 which are not sub-paths of the above monomials.

Aim o	Tilting theory 0	BC and BCA oo	Main result
	0	000	00 0
Aim			
Example			
Main result			

End

Flip of BC

BGA

Tilting mutation of Brauer graph algebras is compatible with flip of Brauer graphs (Aihara).

The class of Brauer graph algebras is closed under derived equivalence (Antipov and Zvonareva).

BCA

Tilting mutation $\operatorname{End}(\mu_{P_V}^-(A_{\Gamma}))$ is not a Brauer configuration algebra in general. Hence, the class of Brauer configuration algebras is not closed under derived equivalence (Aoki and Zhang).

Flip of BC

BGA

Tilting mutation of Brauer graph algebras is compatible with flip of Brauer graphs (Aihara).

The class of Brauer graph algebras is closed under derived equivalence (Antipov and Zvonareva).

BCA

Tilting mutation $\operatorname{End}(\mu_{P_V}^-(A_{\Gamma}))$ is not a Brauer configuration algebra in general. Hence, the class of Brauer configuration algebras is not closed under derived equivalence (Aoki and Zhang).

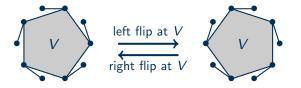
Flip of BC

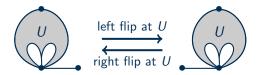
Definition (Aoki and Zhang)

We say that a polygon V of Γ satisfies the condition (E) if every predecessor of V in the cyclic ordering around each vertex is either an edge or V itself. In this case, we define a new Brauer configuration $\mu_V^-(\Gamma)$, which we call a (left) *flip* of Γ at V. Dually, one can define a right flip. For more details, see the following

► T. Aoki and Y. Zhang. Mutation of Brauer configuration algebras, arXiv:2403.14134.

Aim O	Tilting theory O O	BC and BCA oo ooo	Main result ○○ ○
Flip of BC			





Mutation of BCA

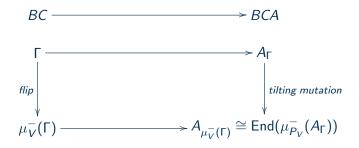
Theorem (Aoki and Zhang)

Let Γ be a Brauer configuration and A_{Γ} the Brauer configuration algebra of Γ over an algebraically closed field K. If a polygon V of Γ satisfies the condition (E), then there is an isomorphism of K-algebras

$$\mathsf{End}(\mu_{\mathsf{P}_V}^-(\mathsf{A}_{\mathsf{\Gamma}}))\cong\mathsf{A}_{\mu_V^-(\mathsf{\Gamma})}.$$

In particular, it is again a Brauer configuration algebra.

Under the condition $(\rm E),$ flip of Brauer configurations is compatible with tilting mutation of the corresponding Brauer configuration algebras.



Aim O	Tilting theory O O	BC and BCA oo ooo	Main result ○○○ ●
End			

Thank You