n-slice algebras of finite type

Yanping Hu Hunan Normal University

- 1 *n*-slice algebras and *n*-hereditary algebras
- **2** *n*-slice algebras of finite type

- 1 *n*-slice algebras and *n*-hereditary algebras
- 2 n-slice algebras of finite type

background

n-hereditary algebra

- Iyama'2011.
 absolutely n-complete algebra
 (n-representation-finite algebra)
- Iyama-Oppermann'2011.
 n-APR-tilting theory, construct a family
 of n-representation-finite algebras from
 a given one
- Herschend-Iyama-Oppermann'2014.
 n-representation-infinite algebra,
 n-hereditary algebra

n-slice algebra

- Guo'2016.
 (stable)n-translation quiver(algebra)
- Guo-Lu-Hu-Luo'2023. $\mathbb{Z}|_{n-1}Q$

Setting

- k : field
- $\Lambda = \Lambda_0 + \Lambda_1 + \cdots$ is a graded algebra over k with
 - Λ_0 is a direct sum of copies of k,
 - $\Lambda_i \Lambda_j = \Lambda_{i+j}$.

Such algebra is determined by a bound quiver $Q = (Q_0, Q_1, \rho)$ [3].

n-slice algebras

Definition

A quadratic algebra Γ is called an *n*-slice algebra if its (n+1)-preprojective algebra is (q+1,n+1)-Koszul for $q\geq 1$ or $q=\infty$ and its quadratic dual is an *n*-properly-graded algebra.

- We call q + 1 the Coxeter index of Γ .
- An n-slice algebra is of finite type if q is finite.

where ν is a graded automorphism of Λ sending an arrow α to $(-1)^n \alpha$.

n-slice algebras and *n*-hereditary algebras

Theorem

- 1 An acyclic n-slice algebra is an n-hereditary algebra.
- **2** Let Γ be an acyclic n-hereditary algebra. If its (n+1)-preprojective algebra $\Pi(\Gamma)$ is (q+1,n+1)-Koszul, then Γ is an n-slice algebra.

- 1 *n*-slice algebras and *n*-hereditary algebras
- 2 *n*-slice algebras of finite type

Higher slice algebras of finite type appear in pairs

Theorem

Assume that Γ is an acyclic n-slice algebra of finite type with Coxeter index q+1. Then there is a q-slice algebra Γ^c with Coxeter index n+1 such that their repetitive algebras are quadratic dual.

• The q-slice algebra Γ^c is called a companion of Γ .

$$\begin{array}{c} \mathbb{Z}|_{n-1}Q \xrightarrow{\text{complete τ-slice}} & Q \xleftarrow{\text{quadratic dual}} & Q^{\perp} \colon \text{quiver of } \Gamma \\ \uparrow \\ \text{quadratic dual} \\ \downarrow & \downarrow \\ \mathbb{Z}|_{n-1}Q^{\perp} \xrightarrow{\text{complete τ_{\perp}-slice}} & Q^{c} \xleftarrow{\text{quadratic dual}} & Q^{c,\perp} \colon \text{quiver of } \Gamma^{c} \end{array}$$

• $\mathbb{S}(-Q)$: the full subquiver of $\mathbb{Z}|_{n-1}Q$ formed by Q and all the τ_{\perp} -hammocks ending at each vertex of Q.

Theorem

Let Γ be an n-slice algebra of finite type with nicely-graded bound quiver Q^{\perp} and q+1 as its Coxeter index and let $\mathcal Q$ be the Auslander-Reiten quiver of its n-preprojective modules. Then

- **1** There is a q-slice algebra Γ^c of finite type such that Q is the Auslander-Reiten quiver of the q-preprojective modules of Γ^c .
- **3** As a quiver Q is the opposite quiver of a quiver obtained by connecting the quiver Q of Γ and the quiver Q^c of Γ^c by some arrows.

The companion of a path algebra of finite type

Theorem

Let Q be the quiver of Dynkin type A, D, E and let Γ be the path algebra of Q. Then the companion Γ^c is of finite representation type.

Example: the path algebra of type A_5

$$Q: \stackrel{1}{\circ} \longleftarrow \stackrel{2}{\circ} \longleftarrow \stackrel{3}{\circ} \longleftarrow \stackrel{4}{\circ} \longleftarrow \stackrel{5}{\circ}$$

 $\Gamma = kQ$ is a 1-slice algebra.

The AR quiver of kQ (the purple part) in $\mathbb{Z}Q^{op}$

Quiver of the companion Γ^c

write
$$\alpha_{i,t}^{\bullet}:(i+1,t)\to(i,t),\ \beta_{i,t}^{\bullet}:(i-1,t+1)\to(i,t),$$
 the relations on $Q^c:$

$$\begin{array}{ll} \alpha_{i,t}^{\bullet}\beta_{i+1,t}^{\bullet} + \beta_{i,t}^{\bullet}\alpha_{i-1,t+1}^{\bullet} & \text{for } 2 \leq i \leq 3, 0 \leq t \leq 3-i \\ \alpha_{i,t}^{\bullet}\alpha_{i+1,t}^{\bullet} & \text{for } 1 \leq i \leq 2, 0 \leq t \leq 2-i \\ \beta_{i+1,t-1}^{\bullet}\beta_{i,t}^{\bullet}, & \text{for } 3 \leq i \leq 4, 0 \leq t \leq 4-i \end{array}$$

 Γ^c is a 3-slice algebra of finite type.

The AR-quiver of Γ^c

here $P_{i,j}^t$ stands for $\tau^{-t}P_{i,j}$

https://github.com/gjy-hn/caARq

The AR-quiver of 3-preprojective modules of Γ^c in $\mathbb{Z}|_2 Q^{c,op}$

from Q^c , take τ -hammocks

from Q, take τ_{\perp} -hammocks

References

- M.Auslander, I.Reiten and S.Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, vol. 36.
 Cambridge University Press, Cambridge (1995)
- [2] J.Y.Guo, Coverings and truncations of graded self-injective algebras, J.Algebra 355 (2012), 9–34.
- [3] J.Y.Guo, On *n*-translation algebras, J.Algebra 453 (2016) 400–428.
- [4] J.Y.Guo, On trivial extensions and higher preprojective algebras, J.Algebra 547 (2020) 379–397.
- [5] J.Y.Guo, C.Xiao and X.Lu, On n-slice algebras and related algebras, ERA 29(2021), 2687-2718 doi:10.3934/era.2021009
- [6] J.Y.Guo and Y.Hu, On *n*-hereditary algebras and *n*-slice algebras, J.Algebra(2024), https://doi.org/10.1016/j.jalgebra.2024.07.020.
- [7] J.Y.Guo, X.Lu, Y.Hu and D.Luo. $\mathbb{Z}Q$ type constructions in higher representation theory. Communications in Algebra, 52(2), 763–791(2023).

- [8] M.Herschend, O.Iyama and S.Oppermann, n-Representation infinite algebras. Adv. Math. 252, 292–342 (2014)
- [9] O.lyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories. Adv.Math. 210, 22–50 (2007)
- [10] O.lyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011) 1–61.
- [11] O.lyama, S. Oppermann, n-representation-finite algebras and n-APR tilting, Trans. Amer. Math. Soc. 363 (2011) 6575–6614.

Thank you!