Model structures and Q-shaped derived category

Yajun Ma

Lanzhou Jiaotong University

The 21st International Conference on Representations of Algebras August, 2024

- Model structures were introduced by Quillen in 1967, and are mostly motivated by their utility in solving a localization problem for categories.
- Abelian model structures were introduced by Hovey in 2002. It's related to relative homological algebra and triangulated categories.

- Model structures
- **2** Abelian model structures on Ch(R)
- **③** Abelian model structures on $Q_{\mathcal{R}}$ Mod
- **()** Flat model structures on $_{\Omega,R}$ Mod

- Model structures
- 2 Abelian model structures on Ch(R)
- Abelian model structures on Q,R Mod
- Flat model structures on $Q_{,R}$ Mod

Setup

R: associative ring — E: bicomplete category — A: bicomplete abelian category

• Given morphisms $f : A \to B$, $g : C \to D$ morphisms in E, we say that the pair (f,g) is orthogonal, denoted by $f \perp g$, if for any commutative diagram

 $\exists t : B \rightarrow C$ such that both the triangles commute.

• Given morphisms $f : A \to B$, $g : C \to D$ morphisms in E, we say that the pair (f,g) is orthogonal, denoted by $f \perp g$, if for any commutative diagram

 $\exists t : B \to C$ such that both the triangles commute. Thus we say f has the left lifting property for g and g has the right lifting property for f.

(Abelian) Model structures

 An object A ∈ E is a retract of an object C ∈ E if there are morphisms A —ⁱ→ C —^p→ A s.t. pi = id_A.

(Abelian) Model structures

- An object A ∈ E is a retract of an object C ∈ E if there are morphisms A —ⁱ→ C —^p→ A s.t. pi = id_A.
- A morphism f : A → B in E is said to be a retract of a morphism g : C → D in E if f is a retract of g as objects of the category of morphisms in E.

(Abelian) Model structures

- An object A ∈ E is a retract of an object C ∈ E if there are morphisms A —ⁱ→ C —^p→ A s.t. pi = id_A.
- A morphism f : A → B in E is said to be a retract of a morphism g : C → D in E if f is a retract of g as objects of the category of morphisms in E. I.e., ∃ i, i', p, p' with pi = id_A and p'i' = id_B s.t. the following diagram commutes:

Let $({\mathfrak C},{\mathfrak F})$ in E be a pair of classes of morphisms in E. We say $({\mathfrak C},{\mathfrak F})$ is a weak factorization system if

Let $({\mathfrak C},{\mathfrak F})$ in E be a pair of classes of morphisms in E. We say $({\mathfrak C},{\mathfrak F})$ is a weak factorization system if

 $\bullet~{\mathfrak C}$ and ${\mathfrak F}$ are closed under retracts.

Let $({\mathfrak C},{\mathfrak F})$ in E be a pair of classes of morphisms in E. We say $({\mathfrak C},{\mathfrak F})$ is a weak factorization system if

- $\bullet~{\mathfrak C}$ and ${\mathfrak F}$ are closed under retracts.
- The pair (f,g) is orthogonal for all $f \in \mathbb{C}$ and $g \in \mathfrak{F}$.

Let $({\mathcal C},{\mathcal F})$ in E be a pair of classes of morphisms in E. We say $({\mathcal C},{\mathcal F})$ is a weak factorization system if

- $\bullet~{\mathfrak C}$ and ${\mathfrak F}$ are closed under retracts.
- The pair (f,g) is orthogonal for all $f \in \mathcal{C}$ and $g \in \mathcal{F}$.
- For any morphism $h: X \to Y$ in E, \exists a factorization

with $f \in \mathfrak{C}$ and $g \in \mathfrak{F}$.

• A pair (C, F) of subcategories of A is called a cotorsion pair if $C^{\perp} = F$ and $^{\perp}F = C$.

• A pair (C, F) of subcategories of A is called a cotorsion pair if $C^{\perp} = F$ and $^{\perp}F = C$. Here

$$C^{\perp} = \{ N \in A \mid \operatorname{Ext}_{A}^{1}(C, N) = 0 \text{ for all } C \in C \},$$

$$^{\perp}F = \{ M \in A \mid \operatorname{Ext}_{A}^{1}(M, F) = 0 \text{ for all } F \in F \}.$$

• A pair (C, F) of subcategories of A is called a cotorsion pair if $C^{\perp} = F$ and $^{\perp}F = C$. Here

$$C^{\perp} = \{ N \in A \mid \operatorname{Ext}_{A}^{1}(C, N) = 0 \text{ for all } C \in C \},$$
$$^{\perp} F = \{ M \in A \mid \operatorname{Ext}_{A}^{1}(M, F) = 0 \text{ for all } F \in F \}.$$

• A cotorsion pair (C, F) in A is called complete if for each object M in A, there are two following exact sequence:

$$\label{eq:constraint} \begin{split} 0 \to M \to F \to C \to 0 \ \text{and} \ 0 \to F' \to C' \to M \to 0 \\ \text{with} \ C, C' \in \mathsf{C} \ \text{and} \ F, F' \in \mathsf{F}. \end{split}$$

In fact, weak factorization systems and cotorsion pairs are related.

THEOREM (HOVEY, 2002)

Let (C, F) be a pair of classes of objects in A.

In fact, weak factorization systems and cotorsion pairs are related.

THEOREM (HOVEY, 2002)

Let (C, F) be a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms (Mon(C), Epi(F)) is a weak factorization system in A.

In fact, weak factorization systems and cotorsion pairs are related.

THEOREM (HOVEY, 2002)

Let (C, F) be a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms (Mon(C), Epi(F)) is a weak factorization system in A.

$$Mon(\mathsf{C}) = \left\{ \alpha \mid \alpha \text{ is a monomorphism with } \mathsf{Coker} \, \alpha \in \mathsf{C} \right\},\$$

$$\operatorname{Epi}(\mathsf{F}) = \{ \alpha \mid \alpha \text{ is an epimorphism with } \mathsf{Ker} \, \alpha \in \mathsf{F} \}$$

A model structure on a category E is a triple of classes of morphisms $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfying the following conditions:

• $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.

- $(\mathfrak{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathfrak{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the two-out-of-three property for compositions:

- $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the two-out-of-three property for compositions: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g, and gf belong to W, then so is the third.

- $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the two-out-of-three property for compositions: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g, and gf belong to W, then so is the third.
- Morphisms in the classes \mathcal{C} , \mathcal{W} and \mathcal{F} are called cofibrations, weak equivalences and fibrations, respectively.

- $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the two-out-of-three property for compositions: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g, and gf belong to W, then so is the third.
- Morphisms in the classes C, W and \mathcal{F} are called cofibrations, weak equivalences and fibrations, respectively.
- A model category is a bicomplete category with a model structure (C, W, F).

• An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration.

An object C in A is said to be cofibrant if the morphism
 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration.

An object C in A is said to be cofibrant if the morphism
0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration. An object W in A is said to be trivial if the morphism 0 → W is a weak equivalence (or the morphism W → 0 is a weak equivalence).

- An object C in A is said to be cofibrant if the morphism
 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration. An object W in A is said to be trivial if the morphism 0 → W is a weak equivalence (or the morphism W → 0 is a weak equivalence).
- A model structure (C, W, F) on A is called abelian if C is the class of all monomorphisms with cofibrant cokernels and F is the class of all epimorphisms with fibrant kernels.

- An object C in A is said to be cofibrant if the morphism 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration. An object W in A is said to be trivial if the morphism 0 → W is a weak equivalence (or the morphism W → 0 is a weak equivalence).
- A model structure (C, W, F) on A is called abelian if C is the class of all monomorphisms with cofibrant cokernels and F is the class of all epimorphisms with fibrant kernels.
 That is, an abelian model structure is a model structure compatible with abelian category.

Hovey described abelian model structures with complete cotorsion pairs.

Hovey described abelian model structures with complete cotorsion pairs.

THEOREM (HOVEY, 2002)

There is a bijective correspondence between abelian model structures $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{A} and the triples (C, W, F) of classes satisfy the following conditions:

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the two-out-of-three property for extensions.

Hovey described abelian model structures with complete cotorsion pairs.

Theorem (Hovey, 2002)

There is a bijective correspondence between abelian model structures $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ on \mathcal{A} and the triples (C, W, F) of classes satisfy the following conditions:

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the two-out-of-three property for extensions.

Such a triple is called a Hovey triple.

• Given an abelian model structure ($\mathfrak{C}, \mathfrak{W}, \mathfrak{F}$), \exists a Hovey triple (C, W, F):

Given an abelian model structure (C, W, F), ∃ a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.

- Given an abelian model structure (C, W, F), ∃ a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.
- Given a Hovey triple (C, W, F), \exists an abelian model structure (Mon(C), W, Epi(F)),
- Given an abelian model structure (C, W, F), ∃ a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.
- Given a Hovey triple (C, W, F), ∃ an abelian model structure (Mon(C), W, Epi(F)), where
 W = {w | w = fc with c ∈ Mon(C ∩ W), f ∈ Epi(W ∩ F)}.

So the problem of constructing model structures is transformed into that of how to construct Hovey triples.

ABELIAN MODEL STRUCTURES ON Ch(R)

There are many important model structures on a complex category.

There are many important model structures on a complex category.

THEOREM (HOVEY, 2002)

For any ring R, \exists two hereditary abelian model structures on Ch(R) as follows: The proj. model structure (dgP, \mathscr{E} , Ch), and the inj. model structure (Ch, \mathscr{E} , dgI); their homotopy categories are derived category D(R).

There are many important model structures on a complex category.

THEOREM (HOVEY, 2002)

For any ring R, \exists two hereditary abelian model structures on Ch(R) as follows: The proj. model structure (dgP, \mathscr{E} , Ch), and the inj. model structure (Ch, \mathscr{E} , dgI); their homotopy categories are derived category D(R).

THEOREM (GILLESPIE, 2004)

For any ring R, \exists a hereditary abelian model structures on Ch(R): The flat model structure (dgF, \mathscr{E} , dgC = dwC).

Setup

 $k is a commutative ring, R is a k-algebra and Q is a small k-linear category. Set _{Q,R} Mod = \{k-linear functors Q \rightarrow _R Mod\} and _{Q} Mod = \{k-linear functors Q \rightarrow _k Mod\}$

Setup

 $\begin{array}{l} \mathbb{k} \text{ is a commutative ring, } R \text{ is a } \mathbb{k}\text{-algebra and } \mathbb{Q} \text{ is a small } \mathbb{k}\text{-linear category. Set } \mathbb{Q}, \mathbb{R} \operatorname{Mod} = \{\mathbb{k}\text{-linear functors } \mathbb{Q} \to_{R} \operatorname{Mod}\} \text{ and } \mathbb{Q} \operatorname{Mod} = \{\mathbb{k}\text{-linear functors } \mathbb{Q} \to_{\mathbb{k}} \operatorname{Mod}\} \end{aligned}$

Let's look at some examples of functor categories.

EXAMPLE

Consider the linear quiver Γ with the relations that consecutive arrows compose to zero where

$$\Gamma = \cdots \to \underbrace{\bullet}_{-2} \xrightarrow{\partial} \underbrace{\bullet}_{-1} \xrightarrow{\partial} \underbrace{\bullet}_{0} \xrightarrow{\partial} \underbrace{\bullet}_{1} \xrightarrow{\partial} \underbrace{\bullet}_{2} \to \cdots$$

Setup

 $\begin{array}{l} \mathbb{k} \text{ is a commutative ring, } R \text{ is a } \mathbb{k}\text{-algebra and } \mathbb{Q} \text{ is a small } \mathbb{k}\text{-linear category. Set } \mathbb{Q}, \mathbb{R} \operatorname{Mod} = \{\mathbb{k}\text{-linear functors } \mathbb{Q} \to_{R} \operatorname{Mod}\} \text{ and } \mathbb{Q} \operatorname{Mod} = \{\mathbb{k}\text{-linear functors } \mathbb{Q} \to_{\mathbb{k}} \operatorname{Mod}\} \end{aligned}$

Let's look at some examples of functor categories.

EXAMPLE

Consider the linear quiver Γ with the relations that consecutive arrows compose to zero where

$$\Gamma = \cdots \to \underbrace{\bullet}_{-2} \xrightarrow{\partial} \underbrace{\bullet}_{-1} \xrightarrow{\partial} \underbrace{\bullet}_{0} \xrightarrow{\partial} \underbrace{\bullet}_{1} \xrightarrow{\partial} \underbrace{\bullet}_{2} \to \cdots$$

• Let Ω be the path category of Γ . Then $\operatorname{Ch}(R) \simeq {}_{\Omega,R}\operatorname{\mathsf{Mod}}$

Consider the cyclic quiver with m vertices and the relations that consecutive arrows compose to 0.

Consider the cyclic quiver with m vertices and the relations that consecutive arrows compose to 0.

Let $\ensuremath{\mathfrak{Q}}$ be the path category of the quiver.

Consider the cyclic quiver with m vertices and the relations that consecutive arrows compose to 0.

Let Ω be the path category of the quiver. Then $_{\Omega,R}$ Mod can be identified with the category of *m*-periodic complexes.

QUESTION

Let Ω be a small pre-additive category. Can we find projective, injective and flat model structures on $_{\Omega,R}$ Mod ?

QUESTION

Let Ω be a small pre-additive category. Can we find projective, injective and flat model structures on $_{\Omega,R}$ Mod ?

If the $\ensuremath{\mathbb{Q}}$ is nice, then the answer is Yes.

We let

$$\mathscr{E} = \{ exact \ complexes \ \}$$

A projective model structure on Ch(R) corresponds to & s.t.
 & is thick, ([⊥] &, &) is a complete cotorsion pair, and
 [⊥] & ∩ & = Prj.

We let

$$\mathscr{E} = \{ exact \ complexes \}$$

- A projective model structure on Ch(R) corresponds to & s.t.
 & is thick, ([⊥] &, &) is a complete cotorsion pair, and
 [⊥] & ∩ & = Prj.
- An injective model structure on Ch(R) corresponds to \mathscr{E} s.t. \mathscr{E} is thick, $(\mathscr{E}, \mathscr{E}^{\perp})$ is a complete cotorsion pair, and $\mathscr{E} \cap \mathscr{E}^{\perp} = Inj.$

We let

$$\mathscr{E} = \{ exact \ complexes \}$$

- A projective model structure on Ch(R) corresponds to & s.t.
 & is thick, ([⊥] &, &) is a complete cotorsion pair, and
 [⊥] & ∩ & = Prj.
- An injective model structure on Ch(R) corresponds to \mathscr{E} s.t. \mathscr{E} is thick, $(\mathscr{E}, \mathscr{E}^{\perp})$ is a complete cotorsion pair, and $\mathscr{E} \cap \mathscr{E}^{\perp} = Inj.$
- Figure out how to define the class & of exact objects in functor category _{Q,R} Mod and prove that & satisfies all the required conditions above.

There is a forgetful functor $(-)^{\natural} : Ch(R) \to Ch(\mathbb{Z})$.

There is a forgetful functor $(-)^{\natural}$: $Ch(R) \rightarrow Ch(\mathbb{Z})$. Take a complex *E* of *R*-modules,

$$\begin{split} E \in \mathscr{E} \Leftrightarrow E^{\natural} \in \mathscr{E} \\ \Leftrightarrow E^{\natural} \text{ has finite proj. dim. in } Ch(\mathbb{Z}) \\ \Leftrightarrow E^{\natural} \text{ has finite inj. dim. in } Ch(\mathbb{Z}) \end{split}$$

There is a forgetful functor $(-)^{\natural}$: $Ch(R) \rightarrow Ch(\mathbb{Z})$. Take a complex *E* of *R*-modules,

$$\begin{split} E \in \mathscr{E} \Leftrightarrow E^{\natural} \in \mathscr{E} \\ \Leftrightarrow E^{\natural} \text{ has finite proj. dim. in } Ch(\mathbb{Z}) \\ \Leftrightarrow E^{\natural} \text{ has finite inj. dim. in } Ch(\mathbb{Z}) \end{split}$$

Fact

 $Ch(\mathbb{Z})$ is a locally Gorenstein category.

There is a forgetful functor $(-)^{\natural}$: $Ch(R) \to Ch(\mathbb{Z})$. Take a complex *E* of *R*-modules,

$$\begin{split} E \in \mathscr{E} \Leftrightarrow E^{\natural} \in \mathscr{E} \\ \Leftrightarrow E^{\natural} \text{ has finite proj. dim. in } Ch(\mathbb{Z}) \\ \Leftrightarrow E^{\natural} \text{ has finite inj. dim. in } Ch(\mathbb{Z}) \end{split}$$

Fact

 $Ch(\mathbb{Z})$ is a locally Gorenstein category.

Recall that an abelian category ${\mathcal A}$ is locally Gorenstein if

- For any $M \in \mathcal{A}$ one has $pd_{\mathcal{A}} M < \infty \Leftrightarrow id_{\mathcal{A}} M < \infty$.
- FPD(A) and FID(A) are both finite.
- \mathcal{A} has a generator of finite proj. dim.

QUESTION

For which ${\mathfrak Q}$ is ${}_{\mathbb Q}Mod,$ the additive functors from ${\mathfrak Q}$ to ${}_{\Bbbk}Mod,$ locally Gorenstein?

QUESTION

For which ${\Omega}$ is ${}_{\Omega}Mod,$ the additive functors from ${\Omega}$ to ${}_{\Bbbk}Mod,$ locally Gorenstein?

THEOREM (DELL'AMBROGIO, STEVENSON, ŠT'OVÍČEK, 2017) If \Bbbk is a Gorenstein ring and Ω is Gorenstein, then $_{\Omega}$ Mod is locally Gorenstein.

Recall that a small pre-additive $\Bbbk\text{-category } \Omega$ is Gorenstein provided that

Recall that a small pre-additive $\Bbbk\mbox{-category}\ \mbox{$\mathbb Q$}$ is Gorenstein provided that

• Hom-finite

Recall that a small pre-additive $\Bbbk\text{-category}\ \Omega$ is Gorenstein provided that

• Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.

Recall that a small pre-additive $\Bbbk\text{-category } \Omega$ is Gorenstein provided that

- Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.
- locally bounded

Recall that a small pre-additive $\Bbbk\text{-category}\ \Omega$ is Gorenstein provided that

- Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.
- locally bounded: For each q ∈ Q, the two sets
 N₋(q) = {p | Q(p,q) ≠ 0} and N₊(q) = {r | Q(q,r) ≠ 0} are finite.

Recall that a small pre-additive $\Bbbk\text{-category}\ \Omega$ is Gorenstein provided that

- Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.
- locally bounded: For each q ∈ Q, the two sets
 N₋(q) = {p | Q(p,q) ≠ 0} and N₊(q) = {r | Q(q,r) ≠ 0} are finite.
- existence of a Serre functor

Recall that a small pre-additive $\Bbbk\mbox{-category } Q$ is Gorenstein provided that

- Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.
- locally bounded: For each q ∈ Q, the two sets
 N₋(q) = {p | Q(p,q) ≠ 0} and N₊(q) = {r | Q(q,r) ≠ 0} are finite.
- existence of a Serre functor: \exists a k-linear autoequivalence $\mathbb{S}: \Omega \to \Omega$ and a natural isomorphism $\Omega(p,q) \cong \operatorname{Hom}_{\Bbbk}(\Omega(q, \mathbb{S}(p)), \Bbbk).$

Recall that a small pre-additive $\Bbbk\mbox{-category } Q$ is Gorenstein provided that

- Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.
- locally bounded: For each q ∈ Q, the two sets
 N₋(q) = {p | Q(p,q) ≠ 0} and N₊(q) = {r | Q(q,r) ≠ 0} are finite.
- existence of a Serre functor: ∃ a k-linear autoequivalence
 S: Q → Q and a natural isomorphism
 Q(p,q) ≅ Hom_k(Q(q,S(p)),k).
- strong retraction property : For each q ∈ Q, ∃ k-module decomposition Q(q, q) = (k · id_q) ⊕ v_q and v_q ∘ v_q ⊆ v_q for all q, and Q(q, p) ∘ Q(p, q) ⊆ v_p for all p ≠ q.

Recall that a small pre-additive $\Bbbk\text{-category}\ \Omega$ is Gorenstein provided that

- Hom-finite: Each hom set $\Omega(p, q)$ is f.g. proj. k-module.
- locally bounded: For each q ∈ Q, the two sets
 N₋(q) = {p | Q(p,q) ≠ 0} and N₊(q) = {r | Q(q,r) ≠ 0} are finite.
- existence of a Serre functor: ∃ a k-linear autoequivalence
 S: Q → Q and a natural isomorphism
 Q(p,q) ≅ Hom_k(Q(q,S(p)),k).
- strong retraction property : For each q ∈ Q, ∃ k-module decomposition Q(q, q) = (k · id_q) ⊕ r_q and r_q ∘ r_q ⊆ r_q for all q, and Q(q, p) ∘ Q(p, q) ⊆ r_p for all p ≠ q.

The category $\ensuremath{\mathfrak{Q}}$ is often defined by path category of a quiver with relations.

Consider the quiver Γ with the relations $\partial^2=0$ where

$$\Gamma = \cdots \to \underbrace{\bullet}_{2} \xrightarrow{\partial} \underbrace{\bullet}_{1} \xrightarrow{\partial} \underbrace{\bullet}_{0} \xrightarrow{\partial} \underbrace{\bullet}_{-1} \xrightarrow{\partial} \underbrace{\bullet}_{-2} \to \cdots$$

Consider the quiver Γ with the relations $\partial^2 = 0$ where

$$\Gamma = \dots \to \underbrace{\bullet}_{2} \xrightarrow{\partial} \underbrace{\bullet}_{1} \xrightarrow{\partial} \underbrace{\bullet}_{0} \xrightarrow{\partial} \underbrace{\bullet}_{-1} \xrightarrow{\partial} \underbrace{\bullet}_{-2} \to \dots$$

Let ${\mathbb Q}$ be the path category of $\Gamma.$

Consider the quiver Γ with the relations $\partial^2 = 0$ where

$$\Gamma = \dots \to \underbrace{\bullet}_{2} \xrightarrow{\partial} \underbrace{\bullet}_{1} \xrightarrow{\partial} \underbrace{\bullet}_{0} \xrightarrow{\partial} \underbrace{\bullet}_{-1} \xrightarrow{\partial} \underbrace{\bullet}_{-2} \to \dots$$

Let Ω be the path category of Γ . Then Ω is Gorenstein.

Consider the quiver Γ with the relations $\partial^2 = 0$ where

$$\Gamma = \dots \to \underbrace{\bullet}_{2} \xrightarrow{\partial} \underbrace{\bullet}_{1} \xrightarrow{\partial} \underbrace{\bullet}_{0} \xrightarrow{\partial} \underbrace{\bullet}_{-1} \xrightarrow{\partial} \underbrace{\bullet}_{-2} \to \dots$$

Let Ω be the path category of Γ . Then Ω is Gorenstein.

•
$$\mathbb{S}(q) = q-1$$
.

Consider the repetitive quiver $\mathbb{Z}A_5$ of A_5

Consider the repetitive quiver $\mathbb{Z}A_5$ of A_5

Let Γ be the repetitive quiver $\mathbb{Z}A_5$ modulo mesh relations and Q the path category of Γ . Then Ω is a Gorenstein category.
EXAMPLE

Consider the repetitive quiver $\mathbb{Z}A_5$ of A_5

Let Γ be the repetitive quiver $\mathbb{Z}A_5$ modulo mesh relations and Q the path category of Γ . Then Ω is a Gorenstein category.

• Serre functor \mathbb{S} is defined by $\mathbb{S}(p, i) = (6 - p, i + 1 - p)$

Setup

Q: Gorenstein small pre-additive k-category

Setup

Q: Gorenstein small pre-additive k-category

AIM: Figure out how to define the class \mathscr{E} of exact objects in $\mathcal{Q}_{\mathcal{R}}$ Mod such that \mathscr{E} satisfies all of the required conditions.

Setup

AIM: Figure out how to define the class \mathscr{E} of exact objects in $\mathcal{Q}_{,R}$ Mod such that \mathscr{E} satisfies all of the required conditions.

DEFINITION (HOLM AND JØRGENSEN, 2022)

Let \Bbbk be a Gorenstein ring. Define

 $\mathscr{E} = \{ X \in {}_{\mathbb{Q},R} \operatorname{\mathsf{Mod}} \mid \operatorname{pd}(X^{\natural}) \text{ or } \operatorname{id}(X^{\natural}) \text{ is finite in } {}_{\mathbb{Q}} \operatorname{\mathsf{Mod}} \}$

Here $(-)^{\natural}: {}_{\mathfrak{Q},R} \operatorname{\mathsf{Mod}} \to {}_{\mathfrak{Q}} \operatorname{\mathsf{Mod}}$ is the forgetful functor.

THEOREM (HOLM AND JØRGENSEN, 2022)

Let \Bbbk be Gorenstein. Then \exists two hereditary abelian model structures on $_{Q,R}$ Mod as follows:

THEOREM (HOLM AND JØRGENSEN, 2022)

Let \Bbbk be Gorenstein. Then \exists two hereditary abelian model structures on $_{\Omega,R}$ Mod as follows: The proj. model structure $(^{\perp}\mathscr{E}, \mathscr{E}, _{\Omega,R} \operatorname{Mod})$

THEOREM (HOLM AND JØRGENSEN, 2022)

Let \Bbbk be Gorenstein. Then \exists two hereditary abelian model structures on $_{\Omega,R}$ Mod as follows: The proj. model structure $(^{\perp}\mathscr{E}, \mathscr{E}, _{\Omega,R}$ Mod) and inj. model structure $(_{\Omega,R}$ Mod, $\mathscr{E}, \mathscr{E}^{\perp})$; the two model structures have the same weak equivalence, and their homotopy categories are called the Ω -shaped derived category.

THEOREM (HOLM AND JØRGENSEN, 2022)

Let \Bbbk be Gorenstein. Then \exists two hereditary abelian model structures on $_{\Omega,R}$ Mod as follows: The proj. model structure $(^{\perp}\mathscr{E}, \mathscr{E}, _{\Omega,R}$ Mod) and inj. model structure $(_{\Omega,R}$ Mod, $\mathscr{E}, \mathscr{E}^{\perp})$; the two model structures have the same weak equivalence, and their homotopy categories are called the Ω -shaped derived category.

Remark

If Q is the path category of linear quiver with the relation that the consecutive arrows compose to 0, then Q-shaped derived category is the usual derived category.

Theorem

For any ring R, \exists a hereditary abelian model structures on Ch(R): The flat model structure (dgF, \mathscr{E} , dgC = dwC).

THEOREM

For any ring R, \exists a hereditary abelian model structures on Ch(R): The flat model structure (dgF, \mathscr{E} , dgC = dwC).

QUESTION

Can we construct flat model structures on functor categories?

THEOREM

For any ring R, \exists a hereditary abelian model structures on Ch(R): The flat model structure (dgF, \mathscr{E} , dgC = dwC).

QUESTION

Can we construct flat model structures on functor categories?

We can solve it by *PGF*-modules.

Definition (Šaroch and Št'ovíček, 2020)

An object X on a category $_{\mathbb{Q}}$ Mod is a PGF-module if \exists an exact sequence

$$\cdots \rightarrow P^{-1} \xrightarrow{d} P^0 \rightarrow P^1 \rightarrow P^2 \rightarrow \cdots$$

with each P^i projective such that X = Cokerd and the sequence remains exact after tensor by any injecive object in Mod_{Q} .

Definition (Šaroch and Št'ovíček, 2020)

An object X on a category $_{\mathbb{Q}}$ Mod is a PGF-module if \exists an exact sequence

$$\cdots \rightarrow P^{-1} \xrightarrow{d} P^0 \rightarrow P^1 \rightarrow P^2 \rightarrow \cdots$$

with each P^i projective such that X = Cokerd and the sequence remains exact after tensor by any injecive object in Mod_{Q} .

• (PGF, PGF^{\perp}) is a proj. cotorsion pair on $_{\Omega}$ Mod.

Definition (Šaroch and Št'ovíček, 2020)

An object X on a category $_{\mathbb{Q}}$ Mod is a PGF-module if \exists an exact sequence

$$\cdots \rightarrow P^{-1} \xrightarrow{d} P^0 \rightarrow P^1 \rightarrow P^2 \rightarrow \cdots$$

with each P^i projective such that X = Cokerd and the sequence remains exact after tensor by any injecive object in Mod_{Q} .

• (PGF, PGF^{\perp}) is a proj. cotorsion pair on $_{\Omega}$ Mod.

In what follows, we define the class

$$\mathsf{E} = \{\mathsf{X} \in {}_{\mathbb{Q},\mathsf{R}} \, \mathsf{Mod} \ \mid \mathsf{X}^{\natural} \in \mathsf{P}\mathsf{G}\mathsf{F}^{\bot}\}.$$

THEOREM (DI, LI, LIANG AND MA, 2023)

 \exists a hereditary abelian model structures on $_{Q,R}$ Mod: The flat model structure ($^{\perp}(Cot(_{Q,R} Mod) \cap E), E, Cot(_{Q,R} Mod));$

THEOREM (DI, LI, LIANG AND MA, 2023)

 \exists a hereditary abelian model structures on $_{\Omega,R}$ Mod: The flat model structure ($^{\perp}(Cot(_{\Omega,R} Mod) \cap E), E, Cot(_{\Omega,R} Mod))$; the intersection of cofibrant objects, trivial objects and fibrant objects are flat-cotorsion objects.

THEOREM (DI, LI, LIANG AND MA, 2023)

 \exists a hereditary abelian model structures on $_{\Omega,R}$ Mod: The flat model structure ($^{\perp}(Cot(_{\Omega,R} Mod) \cap E), E, Cot(_{\Omega,R} Mod))$; the intersection of cofibrant objects, trivial objects and fibrant objects are flat-cotorsion objects.

Remark

If \Bbbk is Gorenstein, then ${}_{\Omega}$ Mod is a locally Gorenstein category. In this case, E is the class of exact objects and the above flat model structure's homotopy category is also the Ω -shaped derived category.

Model structures and Q-shaped derived category

Yajun Ma

Lanzhou Jiaotong University

Zhenxing Di, Liping Li, Li Liang and Yajun Ma, Flat model structures and Gorenstein objects in functor categories, **Proc. Roy. Soc. Edinburgh Sect. A**, http://doi.org/10.1017/prm.2024.60.