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Model structures were introduced by Quillen in 1967, and are
mostly motivated by their utility in solving a localization
problem for categories.

Abelian model structures were introduced by Hovey in 2002.
It’s related to relative homological algebra and triangulated
categories.
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Model structures

Given morphisms f : A→ B, g : C → D morphisms in E, we
say that the pair (f , g) is orthogonal, denoted by f ⊥ g , if for
any commutative diagram

A

f
��

l
// C

g
��

B

t

??

r
// D

∃ t : B → C such that both the triangles commute.

Thus we say f has the left lifting property for g and g has the
right lifting property for f .
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(Abelian) Model structures

An object A ∈ E is a retract of an object C ∈ E if there are

morphisms A
i
// C

p
// A s.t. pi = idA.

A morphism f : A→ B in E is said to be a retract of a
morphism g : C → D in E if f is a retract of g as objects of
the category of morphisms in E. I.e., ∃ i , i ′, p, p′ with pi = idA
and p′i ′ = idB s.t. the following diagram commutes:

A

f
��

i
//

idA

""

C

g
��

p
// A

f
��

B
i ′
//

idA

<<
D

p′
// B
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Model structures

Let (C,F) in E be a pair of classes of morphisms in E. We say
(C,F) is a weak factorization system if

C and F are closed under retracts.

The pair (f , g) is orthogonal for all f ∈ C and g ∈ F.

For any morphism h : X → Y in E, ∃ a factorization

X
h

//

f
��

X

Z

g

BB

with f ∈ C and g ∈ F.

Yajun Ma (Lanzhou Jiaotong University) Model structures and Q-shaped derived category



Model structures

Let (C,F) in E be a pair of classes of morphisms in E. We say
(C,F) is a weak factorization system if

C and F are closed under retracts.

The pair (f , g) is orthogonal for all f ∈ C and g ∈ F.

For any morphism h : X → Y in E, ∃ a factorization

X
h

//

f
��

X

Z

g

BB

with f ∈ C and g ∈ F.

Yajun Ma (Lanzhou Jiaotong University) Model structures and Q-shaped derived category



Model structures

Let (C,F) in E be a pair of classes of morphisms in E. We say
(C,F) is a weak factorization system if

C and F are closed under retracts.

The pair (f , g) is orthogonal for all f ∈ C and g ∈ F.

For any morphism h : X → Y in E, ∃ a factorization

X
h

//

f
��

X

Z

g

BB

with f ∈ C and g ∈ F.

Yajun Ma (Lanzhou Jiaotong University) Model structures and Q-shaped derived category



Model structures

Let (C,F) in E be a pair of classes of morphisms in E. We say
(C,F) is a weak factorization system if

C and F are closed under retracts.

The pair (f , g) is orthogonal for all f ∈ C and g ∈ F.

For any morphism h : X → Y in E, ∃ a factorization

X
h

//

f
��

X

Z

g

BB

with f ∈ C and g ∈ F.

Yajun Ma (Lanzhou Jiaotong University) Model structures and Q-shaped derived category



Model structures

A pair (C,F) of subcategories of A is called a cotorsion pair if
C⊥ = F and ⊥F = C.

Here

C⊥ = {N ∈ A | Ext1A(C ,N) = 0 for all C ∈ C},

⊥F = {M ∈ A | Ext1A(M,F ) = 0 for all F ∈ F}.

A cotorsion pair (C,F) in A is called complete if for each
object M in A, there are two following exact sequence:

0→ M → F → C → 0 and 0→ F ′ → C ′ → M → 0

with C ,C ′ ∈ C and F ,F ′ ∈ F.
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Model structures

In fact, weak factorization systems and cotorsion pairs are related.

Theorem (Hovey, 2002)

Let (C,F) be a pair of classes of objects in A.

Then (C,F) is a
complete cotorsion pair if and only if the pair of classes of
morphisms (Mon(C),Epi(F)) is a weak factorization system in A.

Mon(C) =
{
α

∣∣ α is a monomorphism with Cokerα ∈ C
}
,

Epi(F) =
{
α

∣∣ α is an epimorphism with Kerα ∈ F
}
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Model structures

Definition (Quillen, 1967)

A model structure on a category E is a triple of classes of
morphisms (C,W,F) satisfying the following conditions:

(C,W ∩ F) and (C ∩W,F) are weak factorization systems.

W is closed under retracts and satisfies the two-out-of-three
property for compositions: for any composable pair of
morphisms f and g in E, if two of the three morphisms f , g ,
and gf belong to W, then so is the third.

Morphisms in the classes C, W and F are called cofibrations,
weak equivalences and fibrations, respectively.

A model category is a bicomplete category with a model
structure (C,W,F).
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Model structures

Model structures correspond to three classes of objects:

An object C in A is said to be cofibrant if the morphism
0→ C is a cofibration. An object F in A is said to be fibrant
if the morphism F → 0 is a fibration. An object W in A is
said to be trivial if the morphism 0→W is a weak
equivalence (or the morphism W → 0 is a weak equivalence).

A model structure (C,W,F) on A is called abelian if C is the
class of all monomorphisms with cofibrant cokernels and F is
the class of all epimorphisms with fibrant kernels.
That is, an abelian model structure is a model structure
compatible with abelian category.
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Model structures

Hovey described abelian model structures with complete cotorsion
pairs.

Theorem (Hovey, 2002)

There is a bijective correspondence between abelian model
structures (C,W,F) on A and the triples (C,W,F) of classes
satisfy the following conditions:

(C,W ∩ F) and (C ∩W,F) are complete cotorsion pairs.

W is a thick subcategory; that is, it is closed under direct
summands and satisfies the two-out-of-three property for
extensions.

Such a triple is called a Hovey triple.
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Model structures

Given an abelian model structure (C,W,F), ∃ a Hovey triple
(C,W,F):

C is the class of all cofibrant objects, W is the class
of all trivial objects, and F is the class of all fibrant objects.

Given a Hovey triple (C,W,F), ∃ an abelian model structure
(Mon(C),W,Epi(F)), where
W = {w | w = fc with c ∈ Mon(C ∩W), f ∈ Epi(W ∩ F)}.

So the problem of constructing model structures is transformed
into that of how to construct Hovey triples.
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Abelian model structures on Ch(R)

There are many important model structures on a complex category.

Theorem (Hovey, 2002)

For any ring R, ∃ two hereditary abelian model structures on
Ch(R) as follows: The proj. model structure (dgP,E ,Ch), and the
inj. model structure (Ch,E , dgI); their homotopy categories are
derived category D(R).

Theorem (Gillespie, 2004)

For any ring R, ∃ a hereditary abelian model structures on Ch(R):
The flat model structure (dgF,E , dgC = dwC).
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Abelian model structures on Q,R Mod

Setup

k is a commutative ring, R is a k-algebra and Q is a small k-linear
category. Set Q,R Mod = {k-linear functors Q→ R Mod} and

Q Mod = {k-linear functors Q→ k Mod}

Let’s look at some examples of functor categories.

Example

Consider the linear quiver Γ with the relations that consecutive
arrows compose to zero where

Γ = · · · → •
−2

∂−→ •
−1

∂−→ •
0

∂−→ •
1

∂−→ •
2
→ · · ·

Let Q be the path category of Γ. Then Ch(R) ' Q,R Mod
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Example

Consider the cyclic quiver with m vertices and the relations that
consecutive arrows compose to 0.

0

m−1m−2

.

.

.

2 1

Let Q be the path category of the quiver.Then Q,R Mod can be
identified with the category of m-periodic complexes.
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Abelian model structures on Q,R Mod

Question

Let Q be a small pre-additive category. Can we find projective,
injective and flat model structures on Q,R Mod ?

If the Q is nice, then the answer is Yes.
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Abelian model structures on Q,R Mod

We let
E = {exact complexes }

A projective model structure on Ch(R) corresponds to E s.t.
E is thick, (⊥E ,E ) is a complete cotorsion pair, and
⊥E ∩ E = Prj.

An injective model structure on Ch(R) corresponds to E s.t.
E is thick, (E ,E ⊥) is a complete cotorsion pair, and
E ∩ E ⊥ = Inj.

Figure out how to define the class E of exact objects in
functor category Q,R Mod and prove that E satisfies all the
required conditions above.
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Abelian model structures on Q,R Mod

Observation

There is a forgetful functor (−)\ : Ch(R)→ Ch(Z).

Take a complex
E of R-modules,

E ∈ E ⇔ E \ ∈ E

⇔ E \ has finite proj . dim. in Ch(Z)

⇔ E \ has finite inj . dim. in Ch(Z)

Fact

Ch(Z) is a locally Gorenstein category.

Recall that an abelian category A is locally Gorenstein if

For any M ∈ A one has pdA M <∞⇔ idA M <∞.

FPD(A) and FID(A) are both finite.

A has a generator of finite proj. dim.
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Abelian model structures on Q,R Mod

Question

For which Q is QMod, the additive functors from Q to kMod,
locally Gorenstein?

Theorem (Dell’Ambrogio, Stevenson, Št’ov́ıček, 2017)

If k is a Gorenstein ring and Q is Gorenstein, then QMod is locally
Gorenstein.
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Abelian model structures on Q,R Mod

Recall that a small pre-additive k-category Q is Gorenstein
provided that

Hom-finite: Each hom set Q(p, q) is f.g. proj. k-module.

locally bounded: For each q ∈ Q, the two sets

N−(q) = {p | Q(p, q) 6= 0} and N+(q) = {r | Q(q, r) 6= 0}
are finite.

existence of a Serre functor: ∃ a k-linear autoequivalence
S : Q→ Q and a natural isomorphism
Q(p, q) ∼= Homk(Q(q,S(p)),k).

strong retraction property : For each q ∈ Q, ∃ k-module
decomposition Q(q, q) = (k · idq)⊕ rq and rq ◦ rq ⊆ rq for all
q, and Q(q, p) ◦ Q(p, q) ⊆ rp for all p 6= q.

The category Q is often defined by path category of a quiver with
relations.
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Example

Consider the quiver Γ with the relations ∂2 = 0 where

Γ = · · · → •
2

∂−→ •
1

∂−→ •
0

∂−→ •
−1

∂−→ •
−2
→ · · ·

Let Q be the path category of Γ.Then Q is Gorenstein.

S(q)=q-1.
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Example

Consider the repetitive quiver ZA5 of A5

(1, i)
a1,i
��

(1, i − 1)
a1,i−1

��

(1, i − 2)
a1,i−2

��

(1, i − 3)
a1,i−3

��

(1, i − 4)

· · · (2, i)
a2,i
��

a∗1,i

??

(2, i − 1)
a2,i−1

��

a∗1,i−1

??

(2, i − 2)
a2,i−2

��

a∗1,i−2

??

(2, i − 3)
a2,i−3

��

a∗1,i−3

??

· · ·

(3, i + 1)
a3,i+1

��

a∗2,i+1

??

(3, i)
a3,i
��

a∗2,i

??

(3, i − 1)
a3,i−1

��

a∗2,i−1

??

(3, i − 2)
a3,i−2

��

a∗2,i−2

??

(3, i − 3)

· · · (4, i + 1)
a4,i+1

��

a∗3,i+1

??

(4, i)
a4,i
��

a∗3,i

??

(4, i − 1)
a4,i−1

��

a∗3,i−1

??

(4, i − 2)
a4,i−2

��

a∗3,i−2

??

· · ·

(5, i + 2)

a∗4,i+2

??

(5, i + 1)

a∗4,i+1

??

(5, i)

a∗4,i

??

(5, i − 1)

a∗4,i−1

??

(5, i − 2)

Let Γ be the repetitive quiver ZA5 modulo mesh relations and Q
the path category of Γ. Then Q is a Gorenstein category.

Serre functor S is defined by S(p, i) = (6− p, i + 1− p)
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Abelian model structures on Q,R Mod

Setup

Q: Gorenstein small pre-additive k-category

AIM: Figure out how to define the class E of exact objects in

Q,R Mod such that E satisfies all of the required conditions.

Definition (Holm and Jørgensen, 2022)

Let k be a Gorenstein ring. Define

E = {X ∈ Q,R Mod | pd( X \) or id( X \)is finite in Q Mod}

Here (−)\ : Q,R Mod→ Q Mod is the forgetful functor.
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Abelian model structures on Q,R Mod

If Q is Gorenstein, then E satisfies all the required conditions,
Holm and Jørgensen constructed the two hereditary abelian model
structres on functor category Q,R Mod.

Theorem (Holm and Jørgensen, 2022)

Let k be Gorenstein. Then ∃ two hereditary abelian model
structures on Q,R Mod as follows: The proj. model structure
(⊥E ,E , Q,R Mod) and inj. model structure (Q,R Mod,E ,E ⊥); the
two model structures have the same weak equivalence , and their
homotopy categories are called the Q-shaped derived category.

Remark

If Q is the path category of linear quiver with the relation that the
consecutive arrows compose to 0, then Q-shaped derived category
is the usual derived category.
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If Q is the path category of linear quiver with the relation that the
consecutive arrows compose to 0, then Q-shaped derived category
is the usual derived category.
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Flat model structures on Q,R Mod

Theorem

For any ring R, ∃ a hereditary abelian model structures on Ch(R):
The flat model structure (dgF,E , dgC = dwC).

Question

Can we construct flat model structures on functor categories?

We can solve it by PGF -modules.
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Flat model structures on Q,R Mod

Definition (Šaroch and Št’ov́ıček, 2020)

An object X on a category Q Mod is a PGF-module if ∃ an exact
sequence

· · · → P−1
d−→ P0 → P1 → P2 → · · ·

with each P i projective such that X = Cokerd and the sequence
remains exact after tensor by any injecive object in ModQ.

(PGF,PGF⊥) is a proj. cotorsion pair on Q Mod.

In what follows, we define the class

E = {X ∈ Q,R Mod | X\ ∈ PGF⊥}.
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Flat model structures on Q,R Mod

Theorem (Di, Li, Liang and Ma, 2023)

∃ a hereditary abelian model structures on Q,R Mod: The flat
model structure (⊥(Cot(Q,R Mod) ∩ E),E,Cot(Q,R Mod));

the
intersection of cofibrant objects, trivial objects and fibrant objects
are flat-cotorsion objects.

Remark

If k is Gorenstein, then Q Mod is a locally Gorenstein category. In
this case, E is the class of exact objects and the above flat model
structure’s homotopy category is also the Q-shaped derived
category.
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