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Theorem (Grady-Oren 2021)

The center of k-algebras is a lax functor.

Q1: Can we extend the lax functoriality of center to Hochschild cochain complex?
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Let A, B,C be dg categories cofibrant over k,

and A Xp,Yc are cofibrant dg bimodules,

such that — ®Y X : perA — DB is fully faithful.

Then there is a morphism ¢ (X ) : C(B) — C(A) in Ho Bu.
» Under more conditions, €(X ®5Y) = €(X)o%(Y). & Preserves compositions.
> C(La) = ide(a)- & Preserves identities.

.

& [Keller2006]. There is a functor ¢ : Hmoy — Ho Be.
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An inspiring work of Keller

HmOff — Ho Boo

A C(A) 2 N

rep(A, B) 3 X ——— €(X) = %4 ()" C(A) €mmmmmmee C(B)

X
Where the upper triangular matrix dg category Tx = (A B)'

Q2: Can we extend repg(.A, B) to all dg bimodules D(A @ 15)?
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From funtor to lax functor
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C(A) < C(B) C(A) C(B)
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/
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From funtor to lax functor

C(Tx)
/ ’ \ ?(X) = / \
C(A)

C(A) < 0 C(B)
When X € repg(A, B),Y € repg(B,C):
C(Tx) xew) C(Fy) |
o) om)
S S 7
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From funtor to lax functor

C(7x) C(Tx)

SN

C(A) < C(B) C(A) C(B)

X

When X € repg(A, B),Y € repg(B,C):
¢-e
C(Tx) xcw) C(Ty) N

~

'd NN
C) g

& The composition of spans should be given by pullbacks.
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C(A)
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(A) C(A

Problem: In general, C(7;,) # C(A), so € (1a)#idc(a)-

» This construction does not preserve identities, i.e. this construction is a lax functor.
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From functor to lax functor
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Q2: Can we extend repgy (A, 3) to all dg bimodules D( AP @ 3)?
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A lax functor (F, F?, F°) is consist of

» A function on objects.

A functor I is consist of » Functors between Hom categories.

> A function on objects. » Lax functoriality constraint

» Functions between Hom sets. F2:F(g)o F(f)=F(gof)
The above data satisfy » Lax unity constraint

> F(g)o F(f)=F(gof) FO:idpx=F(idx)

> idpx—F(idx) The above data satisfy

> Lax associativity.

> Lax unity.
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repg(A,B) 3 X —— ¢(X) D(AP@B)> X — €(X)
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The bicategory cdgC. AT is defined by

» Objects are small dg categories » 2-cells are isomorphisms.
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» 1-cells are dg bimodules. » 1-cells are cofibrant dg bimodules.

> Identity 1-cell is /4. > Identity 1-cell is p/ 4.

» 2-cells are isomorphisms. » 2-cells are quasi-isomorphisms.

» Composition functor is — xh —. » Composition functor is — ®p —.
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Consturction of target bicategories

cdgCAT —— B..-span’ z///// T \\\\\\/l
Ar— C(A)

D(A® ® B) 3 X — (X)) (B)
xLy—— ey \ i /
The bicategory 3..-span” is defined by » 2-cells are some equwalence classes of
» Objects are B,.-algebras. special spans of spans.
» 1-cells are spans of B.-algebras with » Composition functor is given by
two surjections. pullbacks.
» ldentity 1-cell is A =— A — A. » Unitors and associators are natural

isomorphisms.
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Consturction of target bicategories

For each model category M, there is a bicategory M-span? given by
» Objects are objects of M.
» 1-cells are spans of M with two fibrations.
> Identity 1-cell is A =— A — A.
> 2-cells are some equivalent classes of special spans of spans.
>
| 2

Composition functor is given by pullbacks.

Unitors and associators are natural isomorphisms.
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Consturction of target bicategories

For each model category M, there is a bicategory M-span? given by
» Objects are objects of M.
» 1-cells are spans of M with two fibrations.
> Identity 1-cell is A =— A — A.
> 2-cells are some equivalent classes of special spans of spans.
>
| 2

Composition functor is given by pullbacks.

Unitors and associators are natural isomorphisms.

There are two bicategories B..-span® and Ho B..-span®.
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Construction of lax functor

(6,62 6°) :cdgCAT,,, —— Boo-span?
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Construction of lax functor

(6,62 6°) : cdgCAT,,, —— Boo-span?
Ar— C(A)
X — F(X): C(A) « C(Tx) — C(B)

XLy — =2

Problem: What is the image ¢'(f) of the morphism f: X — Y7
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Property of upper triangular matrix dg category of I4

There is a Boo-quasi-isomorphism 6 4 : C(A) — C(T1,).
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The image of a morphism of dg bimodules

For each quasi-isomorphism f: X =Y,
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For each quasi-isomorphism f: X — Y, it induces a quasi-equivalence Ty : Tx — Ty.
& [Keller2003] The quasi-equivalence 7 induces a dg 7x-Ty-bimodule X7,.

C(Tx) & C(Tx,,) = C(Ty)
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The image of a morphism of dg bimodules

For each quasi-isomorphism f: X — Y, it induces a quasi-equivalence Ty : Tx — Ty.
% [Keller2003] The quasi-equivalence 7y induces a dg Tx-Ty-bimodule Xr,.

C(Tx) & C(Tx,,) = C(Ty)

C(T;) ——— C(A) x C(B)

l leA x0p

C(Tir,) — C(Ti,) % C(Ti)
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The image of a morphism of dg bimodules

For each quasi-isomorphism f: X — Y, it induces a quasi-equivalence Ty : Tx — Ty
% [Keller2003] The quasi-equivalence 7 induces a dg 7x-Ty-bimodule X7,.

C(Tx) & C(Txy,) = C(Ty)

C(T}) —— C(A) x C(B) / T \

| |0t C(f) (B)

C(Txs,) —— C(Try) x C(Tig) \ l /
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Construction of lax functor

(¢,¢7%,6Y) :cdgCAT, ,, —— Boo-span?
Ar—— C(A)
X —— F(X):C(A) « C(Tx) = C(B)

xhy— e
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Construction of lax functor

(€¢,€62,¢°) : cdgCAT,;, —— Beoo-span?

A O(A)
X —— 9(X): C(A) « C(Tx) — C(B)

xhy— e

Problem: What is the lax functoriality constraint €2 : €(Y) o €¢(X) = € (Y o X)?
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Construction of lax functoriality constraint

A natural transformation €2 : €(Y) 0o ¢(X) = € (Y o X) is the equivalence class of
span of spans

C(Tx) xcm) C(Ty)
/ \
\ /

TX®LY
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Construction of lax functoriality constraint

A natural transformation €2 : €(Y) 0o ¢(X) = € (Y o X) is the equivalence class of
span of spans

C(Tx) xcmp) C(Ty)

/NT\

C(Txy)

\l/

7‘X®LY
A X XY
where the upper triangular matrix dg category 7xy = B Y )
C
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Construction of lax functor

(6,62 6°) :cdgCAT,,, —— Boo-span?
Ar— C(A)
X— F(X): C(A) « C(Tx) — C(B)

xLy— e
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Construction of lax functor

(€¢,¢2,€°) :cdgCAT,,, —— Bs-span?
c,h
Ar— C(A)
X— F(X): C(A) « C(Tx) — C(B)

xLy— e

Problem: What is the lax unity constraint €0 : idg (1) = €(La)?
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Construction of the lax unity constraint

A natural transformation €V : idy(7,) = € (La) is the equivalence class of span of
spans
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Construction of the lax unity constraint

A natural transformation € : idy(r,) = € (La) is the equivalence class of span of

spans
C(A)
C(A) — C(A) / \
l PA C(A) C(A)
6%7;LA)4444% Cx7}A) r\\\\\\ /////Z
C(Tpr4)
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Construction of the lax unity constraint

A natural transformation € : idy(r,) = € (La) is the equivalence class of span of

spans
C(A)
C(A) — C(A) / NT \
l PA C(A) ¢(A) C(A)
0(7;[,4) — 0(7-1,4) \ Nl /
C(Tora)
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The lax functoriality of Hochschild cochian complex

The above data (¢,¢2,¢") : cdgCAT, }, = Boo-span? is a lax functor.

.
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The lax functoriality of Hochschild cochian complex

The above data (¢,¢2,¢") : cdgCAT, }, = Boo-span? is a lax functor.
Furthermore, there is a lax functor of Hochschild cochain complex

€ : cdgCAT — Boo-span?.

.
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The functoriality of Hochschild cohomology

The localization functor induces a lax functor Buo-span?, — Ho Bso-span?, where
Boo-span?, is a sub-bicategory of Bu,-span?.
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The functoriality of Hochschild cohomology

The localization functor induces a lax functor Buo-span?, — Ho Bso-span?, where
Boo-span?, is a sub-bicategory of Bu,-span?.

.

Corollary (Keller2006)

There is a lax functor of Hochschild cohomology % : cdgC ATy — Ho Buo-span?,
which induces the functor

% : Hmogi — Ho Bo.

.
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Comparing with Grady-Oren's work

Theorem (Grady-Oren 2021)

The center of k-algebras is a lax functor.
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Theorem (Grady-Oren 2021)

The center of k-algebras is a lax functor.

We extend the lax functoriality of center of k-algebras to the lax functoriality of
Hochschild cochain complex of dg categories.
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Comparing with Grady-Oren's work

Theorem (Grady-Oren 2021)

The center of k-algebras is a lax functor.

We extend the lax functoriality of center of k-algebras to the lax functoriality of
Hochschild cochain complex of dg categories.

The Hochschild cochain complex of dg categories is a lax functor.
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Comparing with Keller's work

Hmoy —— Ho B,
Ar— C(A)
repp( A B) 5 X — €(X)
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Comparing with Keller's work

Hmo; —— Ho B CdgCAj¥m —— By~ span’
A— C(A) Ar—— C(A)
repp( A B) 5 X — €(X) DA®P®B) 2 X — ¥ (X)

xhy— e
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Comparing with Keller's work

Hmo; —— Ho B CdgCATc,h —— By~ span®
A— C(A) Ar—— C(A)
repp( A B) 5 X — €(X) DA®P®B) 2 X — ¥ (X)

xhy— e

We extend the repy(A, ) to all dg bimodules D(A @ B),
and show that there is a lax functor that generalizes the constructions.
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