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The functoriality of Hochschild chain complex/homology

▶ The Hochschild chain complex is a functor C∗ : k- alg −→ Ck

A

B

f 7−→
C∗(A) : · · · A⊗n · · · A⊗2 A

C∗(B) : · · · B⊗n · · · B⊗2 B

C∗(f)

dn dn−1

f⊗n

d2 d1

f⊗2 f

dn dn−1 d2 d1

▶ The Hochschild homology is a functor

HH∗ = H∗ ◦ C∗ : k- alg −→ Grk.
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The Hochschild cochain complex/cohomology are not functors

The Hochschild cochain complex of k-algebras is not a functor.
The Hochschild cohomology of k-algebras is not a functor.
The center of k-algebras is not a functor.

Example

Let A =

(
k k
0 k

)
, S =

(
k 0
0 k

)
. Then Z(A) ∼= k, Z(S) = S ∼= k2.

S A S

id

==⇒ k2 k k2
id
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The lax functoriality of center

Theorem (Grady-Oren 2021)
The center of k-algebras is a lax functor.

Q1: Can we extend the lax functoriality of center to Hochschild cochain complex?
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An inspiring work of Keller

Theorem (Keller2003)
Let A,B, C be dg categories cofibrant over k,
and AXB, BYC are cofibrant dg bimodules,
such that −⊗L

A X : perA → DB is fully faithful.
Then there is a morphism C (X) : C(B)→ C(A) in HoB∞.
▶ Under more conditions, C (X ⊗L

B Y ) = C (X) ◦ C (Y ). ♣ Preserves compositions.
▶ C (IA) = idC(A). ♣ Preserves identities.

♣ [Keller2006]. There is a functor C : Hmoop
ff −→ HoB∞.
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An inspiring work of Keller

Hmoff −−−−→ HoB∞
A 7−−−−→ C(A)

repff(A,B) 3 X 7−−−−→ C (X) = ι∗A(ι
∗
B)

−1

Where the upper triangular matrix dg category TX =

(
A X
B

)
.

Q2: Can we extend repff(A,B) to all dg bimodules D(Aop ⊗ B)?
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From funtor to lax functor

C(TX)

C(A) C(B)

̸∼=

When X ∈ repff(A,B), Y ∈ repff(B, C):

♣ The composition of spans should be given by pullbacks.
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From associativity to lax associativity constraints

The span C (X) ◦ C (Y ):

C(TX)×C(B) C(TY )

C(A) C(B)

The span C (X ⊗L
B Y ):

Problem: In general, C(TX)×C(B) C(TY ) 6∼=C(TX⊗L
BY

), so C (X) ◦C (Y ) 6=C (X ⊗L
B Y ).

▶ This construction does not preserve compositions, i.e. this construction is a lax
functor.
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From unity to lax unity constraints

The span C (IA):

C(TIA)

C(A) C(A)

The span idC(A):

Problem: In general, C(TIA) 6= C(A), so C (IA) 6=idC(A).
▶ This construction does not preserve identities, i.e. this construction is a lax functor.
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From functor to lax functor

Hmoff −−−−→ HoB∞
A 7−−−−→ C(A)

repff(A,B) 3 X 7−−−−→ C (X)

Hmoff −−−−→ HoB∞
A 7−−−−→ C(A)

D(Aop ⊗ B) 3 X 7−−−−→ C (X)

X
f−→ Y 7−−−−→ C (f) =?

Q2: Can we extend repff(A,B) to all dg bimodules D(Aop ⊗ B)?
A2: Yes, but we should use the language of bicategory and lax functor.
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Constructions of bicategories
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From category to bicategory

A category consists of
▶ A class of objects.
▶ Hom sets.
▶ For each object, an identity morphism.
▶ Composition functions between Hom

sets.
The above data satisfy:
♣ Equalities of associativity.
♣ Equalities of unity.

A bicategory consists of
▶ A class of objects.
▶ Hom categories.
▶ For each object, an identity 1-cell.
▶ Composition functors between Hom

categories.
The above data satisfy:
♣ Natural isomorphisms of associativity.
♣ Natural isomorphisms of unity.
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From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

From functor to lax functor

A functor F is consist of
▶ A function on objects.
▶ Functions between Hom sets.

The above data satisfy
▶ F (g) ◦ F (f)=F (g ◦ f)
▶ idFX=F (idX)

A lax functor (F, F 2, F 0) is consist of
▶ A function on objects.
▶ Functors between Hom categories.
▶ Lax functoriality constraint

F 2 : F (g) ◦ F (f)⇒F (g ◦ f)
▶ Lax unity constraint

F 0 : idFX⇒F (idX)

The above data satisfy
▶ Lax associativity.
▶ Lax unity.

15/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories

Hmoff −−−−→ HoB∞
A 7−−−−→ C(A)

repff(A,B) 3 X 7−−−−→ C (X)

cdgCAT −−−−→ HoB∞
A 7−−−−→ C(A)

D(Aop ⊗ B) 3 X 7−−−−→ C (X)

X
f−→ Y 7−−−−→ C (f) =?

The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.

▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.
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The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories
The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.
▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.

The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories
The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.
▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.

The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories
The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.
▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.

The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories
The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.
▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.

The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories
The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.
▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.

The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of source bicategories
The bicategory cdgCAT is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are dg bimodules.
▶ Identity 1-cell is IA.
▶ 2-cells are isomorphisms.
▶ Composition functor is −⊗L

B −.
▶ Unitors and associators are natural

isomorphisms.

The bicategory cdgCATc,h is defined by
▶ Objects are small dg categories

cofibrant over k.
▶ 1-cells are cofibrant dg bimodules.
▶ Identity 1-cell is pIA.
▶ 2-cells are quasi-isomorphisms.
▶ Composition functor is −⊗B −.
▶ Unitors and associators are natural

isomorphisms.

Lemma
The bicategories cdgCAT and cdgCATc,h are biequivalent.

17/34



Motivations Constructions of bicategories Constructions of lax functors

Consturction of target bicategory

cdgCAT −−−−→ B∞- span2

A 7−−−−→ C(A)
D(Aop ⊗ B) 3 X 7−−−−→ C (X)

X
f−→ Y 7−−−−→ C (f)?

C(A) ↞ C(TX) ↠ C(B)

C(A) === C(A) === C(A)

The bicategory B∞- span2 is defined by
▶ Objects are B∞-algebras.
▶ 1-cells are spans of B∞-algebras with

two surjections.
▶ Identity 1-cell is A == A == A.
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D(Aop ⊗ B) 3 X 7−−−−→ C (X)

X
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C(TX)

C(A) Ĉ(Tf ) C(B)

C(TY )

∼

The bicategory B∞- span2 is defined by
▶ Objects are B∞-algebras.
▶ 1-cells are spans of B∞-algebras with

two surjections.
▶ Identity 1-cell is A == A == A.

▶ 2-cells are some equivalence classes of
special spans of spans.

▶ Composition functor is given by
pullbacks.

▶ Unitors and associators are natural
isomorphisms.
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Motivations Constructions of bicategories Constructions of lax functors

Consturction of target bicategories

Theorem
For each model category M, there is a bicategory M- span2 given by
▶ Objects are objects of M.
▶ 1-cells are spans of M with two fibrations.
▶ Identity 1-cell is A == A == A.
▶ 2-cells are some equivalent classes of special spans of spans.
▶ Composition functor is given by pullbacks.
▶ Unitors and associators are natural isomorphisms.

Corollary
There are two bicategories B∞- span2 and HoB∞- span2.
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Constructions of lax functors
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Construction of lax functor

(C ,C 2,C 0) : cdgCATc,h −−−−→ B∞- span2

A 7−−−−→ C(A)
X 7−−−−→ C (X): C(A)← C(TX)→ C(B)

X
f−→ Y 7−−−−→ C (f) =?

Problem: What is the image C (f) of the morphism f : X → Y ?
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Property of upper triangular matrix dg category of IA

Lemma
There is a B∞-quasi-isomorphism θA : C(A)→ C(TIA).
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The image of a morphism of dg bimodules

For each quasi-isomorphism f : X → Y , it induces a quasi-equivalence Tf : TX → TY .
♣ [Keller2003] The quasi-equivalence Tf induces a dg TX -TY -bimodule XTf .

C(TX)
∼←− C(TXTf

)
∼−→ C(TY )
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Construction of lax functor
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X
f−→ Y 7−−−−→ C (f)

Problem: What is the lax functoriality constraint C 2 : C (Y ) ◦ C (X)⇒ C (Y ◦X)?
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Construction of lax functoriality constraint

A natural transformation C 2 : C (Y ) ◦ C (X)⇒ C (Y ◦X) is the equivalence class of
span of spans

C(TX)×C(B) C(TY )

C(A) C(C)

C(TX⊗L
BY

)

where the upper triangular matrix dg category TX,Y =

A X X ⊗B Y
B Y

C

.
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Construction of the lax unity constraint
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C(A) C(A)

Ĉ(TpIA) C(TIA)
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The lax functoriality of Hochschild cochian complex

Theorem
The above data (C ,C 2,C 0) : cdgCATc,h → B∞- span2 is a lax functor.
Furthermore, there is a lax functor of Hochschild cochain complex

C : cdgCAT → B∞- span2 .
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The functoriality of Hochschild cohomology

Lemma
The localization functor induces a lax functor B∞- span2

ra → HoB∞- span2, where
B∞- span2

ra is a sub-bicategory of B∞- span2.

Corollary (Keller2006)
There is a lax functor of Hochschild cohomology HH : cdgCATff → HoB∞- span2,
which induces the functor

C : Hmoff → HoB∞.
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Comparing with Grady-Oren’s work

Theorem (Grady-Oren 2021)
The center of k-algebras is a lax functor.

We extend the lax functoriality of center of k-algebras to the lax functoriality of
Hochschild cochain complex of dg categories.

Theorem
The Hochschild cochain complex of dg categories is a lax functor.
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Comparing with Keller’s work

Hmoff −−−−→ HoB∞
A 7−−−−→ C(A)

repff(A,B) 3 X 7−−−−→ C (X)

cdgCATc,h −−−−→ B∞- span2

A 7−−−−→ C(A)
D(Aop ⊗ B) 3 X 7−−−−→ C (X)

X
f−→ Y 7−−−−→ C (f)

We extend the repff(A,B) to all dg bimodules D(Aop ⊗ B),
and show that there is a lax functor that generalizes the constructions.
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Thanks!
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