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Background

Cluster algebra
(Fomin − Zelevinsky)

��

// Quantum cluster algebra
(Berenstein − Zelevinsky)

��Generalized cluster algebra
(Chekhov − Shapiro)

// Generalized Quantum cluster algebra
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Quantum Cluster Algebras

Now the quantum deformation of a cluster algebra is a Q(q)-algebra
obtained by making each cluster into a quasi-commuting family
{X1, . . . ,Xm}; this means that XiXj = qλij XjXi for a skew-symmetric
integer m ×m matrix Λ = (λij). In doing so, we have to modify the
mutation process and the exchange relations so that all the adjacent
quantum clusters will also be quasi-commuting. This imposes the
compatibility relation between the quasi-commutation matrix Λ and
the exchange matrix B̃. Any compatible matrix pair (Λ, B̃) gives rise
to a well defined quantum cluster algebra.
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Set Up

Write [s, t ] : {s, s + 1, . . . , t − 1, t} for s < t .
A square integer matrix B is called skew-symmetrizable if there exists
some integer diagonal matrix D with positive diagonal entries such
that DB is skew-symmetric, D: the skew-symmetrizer of B.
Let m and n be two positive integers with m ≥ n.
Let B̃ = (bij) be an m × n integer matrix with its upper n × n
submatrix being skew-symmetrizable denoted by B called the
principal part of B̃.
We can choose an m ×m skew-symmetric integer matrix Λ such that
B̃T Λ =

[
D 0

]
for some integer diagonal matrix D with positive

diagonal entries.
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Compatible Pair

The pair (B̃,Λ) is called a compatible pair, which is specified by the
following data:

1. an m × n integer matrix B̃ with the skew-symmetrizable principal
part B and its skew-symmetrizer D = diag(d1,d2, . . . ,dn) and
B̃ =

[
b1 b2 . . . bn

]
with bj ∈ Zm for j ∈ [1,n];

2. a skew-symmetric bilinear form Λ : Zm × Zm → Z satisfying the
compatibility condition with B̃, i.e.,

Λ(bj ,ei) = δijdj (i ∈ [1,m], j ∈ [1,n])

where ei is the i-th unit vector in Zm for any i ∈ [1,m].

Note that we can identify the bilinear form Λ with the skew-symmetric
m ×m matrix still denoted by Λ = (λij) with λij := Λ(ei ,ej).
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Quantum Torus

Let q be a formal variable and denote Z[q±
1
2 ] the ring of integer

Laurent polynomials in the variable q
1
2 .

The based quantum torus T = T (Λ) is the Z[q±
1
2 ]-algebra with a

distinguished Z[q±
1
2 ]-basis {X e : e ∈ Zm} and the multiplication given

by
X eX f = q

Λ(e,f)
2 X e+f (e, f ∈ Zm).

Denote by xi = X ei for any i ∈ [1,m], then the elements of xi and their
inverses generate T as a Z[q±

1
2 ]-algebra, subject to the

quasi-commutative relations

xixj = qλij xjxi

for i , j ∈ [1,m]. For any a = (a1,a2, . . . ,am) ∈ Zm, define

X a := q
1
2
∑

l<k ak alλkl xa1
1 xa2

2 · · · x
am
m .
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Quantum Seed

Definition

With the above notations, a quantum seed is defined to be the triple(
x̃,Λ, B̃

)
, where the set x̃ = {x1, x2, . . . , xm} is the extended cluster,

x = {x1, x2, . . . , xn} is the cluster, elements xi for i ∈ [1,n] are called
quantum cluster variables and elements xi for i ∈ [m + 1,n] are called
frozen variables.

Define the function

[x ]+ :=

x , if x ≥ 0;

0, if x < 0.
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Mutation

Definition
For k ∈ [1,n], the mutation of a quantum seed

(
x̃,Λ, B̃

)
in the

direction k is the quantum seed µk
(
x̃,Λ, B̃

)
:=
(
x̃′,Λ′, B̃′

)
, where

(1) the set x̃′ := (x̃− {xk}) ∪ {x ′k} with

x ′k = X−ek +[bk ]+ + X−ek +[−bk ]+ ; (1)

(2) the matrix B̃′ := µk
(
B̃
)

is defined by

b′ij =

−bij , if i = k or j = k ;

bij +
|bik |bkj + bik |bkj |

2
, otherwise;

(2)
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Mutation

Definition

(3) the skew-symmetric matrix Λ′ := µk
(
Λ
)

is defined by

λ′ij =


λij , if i , j 6= k ;

−λij +
m∑

t=1
[bti ]+λtj , if i = k , j 6= k .

(3)

Note that µk is an involution. Two quantum seeds are called
mutation-equivalent if one can be obtained from another by a
sequence of mutations. Denote the skew-field of fractions of T by F
and

ZP := Z[q±
1
2 ][x±n+1, . . . , x

±
m ].
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Quantum Cluster Algebras

Definition

Given an initial quantum seed
(
x̃,Λ, B̃

)
, the quantum cluster algebra

A
(
x̃,Λ, B̃

)
is the ZP-subalgebra of F generated by all cluster

variables from all quantum seeds mutation-equivalent to
(
x̃,Λ, B̃

)
.

Note that one can recover the classical cluster algebra by setting
q = 1.

The directed graph associated to a quantum seed
(
x̃,Λ, B̃

)
is

denoted by Γ
(
x̃,Λ, B̃

)
with vertices [1,n] and the directed edges from

i to j if bij > 0.

Definition
A quantum seed

(
x̃,Λ, B̃

)
is called acyclic if Γ

(
x̃,Λ, B̃

)
does not

contain any oriented cycle. A quantum cluster algebra is called
acyclic if it has an acyclic quantum seed.
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Quantum Cluster Algebras

Definition (Berenstein-Zelevinsky)
A standard monomial in x1, x ′1, . . . , xn, x ′n is an element of the form
xa1

1 · · · x
an
n (x ′1)a′1 · · · (x ′n)a′n , where all exponents are non-negative

integers, and aka′k =
.
0 for k ∈ [1,n].

Denote by L(x̃,Λ, B̃) := ZP[x1, x ′1, . . . xn, x ′n]. The following theorems
are quantum versions of the corresponding results in
Berensrein-Fomin-Zelevinsky: Cluster Algebras. III..

Theorem (Berenstein-Zelevinsky)
The standard monomials in x1, x ′1, . . . , xn, x ′n are linearly independent
over ZP (i.e., they form a ZP-basis of L(x̃,Λ, B̃)) if and only if B is
acyclic.

Theorem (Berenstein-Zelevinsky)
The condition that a quantum seed

(
x̃,Λ, B̃

)
is acyclic, is necessary

and sufficient for the equality L(x̃,Λ, B̃) = A
(
x̃,Λ, B̃

)
.
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Quantum Projective Cluster Variables

Up to simultaneously reordering of columns and rows, we can
assume that the entries in the skew-symmetrizable matrix B satisfy
bij ≥ 0 for any i > j which then defines a linear order / on [1,n]. In
the following, let Σ = (x̃,Λ, B̃) be an acyclic quantum seed of an
acyclic quantum cluster algebra with principal coefficients.

Definition

For any i ∈ [1,n], define a new acyclic quantum seed

Σ(i) = (x̃(i),Λ(i), B̃(i)) := µi · · ·µ2µ1(x̃,Λ, B̃),

where x̃(i) = {x (i)
1 , x (i)

2 , . . . , x (i)
n , x (i)

n+1 . . . , x
(i)
2n }. Thus we have

Σ(n) = (x̃(n),Λ(n), B̃(n)). The cluster x(n) = {x (n)
1 , x (n)

2 , . . . , x (n)
n } is

called the quantum projective cluster, and each cluster variable in x(n)

is called a quantum projective cluster variable.
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Quantum Cluster Algebras with Principle Coefficients

Note that the new quantum seed Σ(i) is obtained by applying a
sequence of mutations on Σ corresponding to a sink sequence of the
directed graph Γ(Σ) and by the above definition we have B(n) = B,
x (i)

i = x (j)
i for any 1 ≤ i ≤ j ≤ n and x (j)

i = xi for any i ∈ [n + 1,2n]

and j ∈ [1,n].

14



Quantum Cluster Algebras with Principle Coefficients

It is straightforward to obtain that

B̃(i) =



0 b12 · · · b1i −b1 i+1 −b1 i+2 · · · −b1 n−1 −b1n
b21 0 · · · b2i −b2 i+1 −b2 i+2 · · · −b2 n−1 −b2n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
bi1 bi2 · · · 0 −bi i+1 −bi i+2 · · · −bi n−1 −bin
−bi+1 1 −bi+1 2 · · · −bi+1 i 0 bi+1 i+2 · · · bi+1 n−1 bi+1 n
−bi+2 1 −bi+2 2 · · · −bi+2 i bi+2 i+1 0 · · · bi+2 n−1 bi+2 n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
−bn−1 1 −bn−1 2 · · · −bn−1 i bn−1 i+1 bn−1 i+2 · · · 0 bn−1 n
−bn1 −bn2 · · · −bni bn i+1 bn i+2 · · · bn n−1 0
−1

−1

. . .
−1

1
1

. . .
1

1



,
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Quantum Cluster Algebras with Principle Coefficients

Λ(i) =



0 λ12 · · · λ1i −λ1 i+1 −λ1 i+2 · · · −λ1 2n−1 −λ1 2n
λ21 0 · · · λ2i −λ2 i+1 −λ2 i+2 · · · −λ2 2n−1 −λ2 2n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
λi1 λi2 · · · 0 −λi i+1 −λi i+2 · · · −λi 2n−1 −λi 2n
−λi+1 1 −λi+1 2 · · · −λi+1 i 0 λi+1 i+2 · · · λi+1 2n−1 λi+1 2n
−λi+2 1 −λi+2 2 · · · −λi+2 i λi+2 i+1 0 · · · λi+2 2n−1 λi+2 2n

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
−λ2n−1 1 −λ2n−1 2 · · · −λ2n−1 i λ2n−1 i+1 λ2n−1 i+2 · · · 0 λ2n−1 2n
−λ2n 1 −λ2n 2 · · · −λ2n i λ2n i+1 λ2n i+2 · · · λ2n 2n−1 0


.
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Quantum Cluster Algebras with Principle Coefficients

Definition

Given an acyclic quantum seed Σ. The lower bound quantum cluster
algebra L(n)(Σ) is defined to be the algebra generated by all initial
and quantum projective cluster variables over ZP, i.e.,

L(n)(Σ) = ZP[x1, x
(n)
1 , . . . , xn, x

(n)
n ].

It is obvious that L(n)(Σ) is a finitely generated subalgebra of the
quantum cluster algebra A(Σ).
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Quantum Cluster Algebras with Principle Coefficients

The following well-known result will be used later.

Lemma

If xy = q−1yx, then

(x + y)n =
n∑

k=0

[
n
k

]
q

xkyn−k ,

where
[

n
k

]
q

=
[n]q [n−1]q ···[n−k+1]q

[k ]q [k−1]q ···[1]q
and [n]q = qn−1

q−1 .
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Quantum Cluster Algebras with Principle Coefficients

The notation
/∏

j∈[1,m]

means that the product is taken in increasing

order with respect to /.

Lemma

For any k ∈ [1,n], we have

(X (k−1))−ek +[b(k−1)
k ]

+

= q
1
2

(
−

k−1∑
t=1

k−1∑
j=t+1

btk bjkλtj +
k−1∑
j=1

bjkλjk +
n∑

j=k+1
bjkλkj +λk n+k

)
·

/∏
j∈[1,k−1]

(x (k−1)
j )

−bjk · x−1
k (X (k−1))

n∑
j=k+1

bjk ej +en+k

.
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Quantum Cluster Algebras with Principle Coefficients

Proposition

The algebra ZP[x1, x ′1, . . . , xn, x ′n] is a ZP-subalgebra of L(n)(Σ).

Theorem

If Σ = (x̃,Λ, B̃) is an acyclic quantum seed, then

A(Σ) = L(n)(Σ).
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Dual PBW-bases

In this section, we first establish a class of formulas for acyclic
quantum cluster algebras with principal coefficients, and then
construct the dual PBW bases of these algebras.

Lemma

For any k ∈ [1,n] and l ∈ N, we have

(x (n)
k )lxk − xk (x (n)

k )l = f (k)
k ,l ,

where f (k)
k ,l = gk ,k ,l

/∏
j∈[k+1,2n]

xbjk
j ·

/∏
j∈[1,k−1]

(x (n)
j )
−bjk · (x (n)

k )l−1 and

gk ,k ,l ∈ Z[q±
1
2 ].
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Dual PBW-bases

Lemma

For any j ∈ [1,n] and l ∈ N, we have

(x (n)
j )lxj−1 − q−lλj j−1xj−1(x (n)

j )l = f (j)
j−1,l ,

where f (j)
j−1,1 ∈ ZP[x (n)

1 , . . . , x (n)
j−1, xj , . . . , xn], and

f (j)
j−1,l ∈ ZP[x (n)

1 , . . . , x (n)
j−1, x

(n)
j , xj , . . . , xn] for any l ≥ 2.
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Dual PBW-bases

Lemma

For any j ∈ [1,n] and k < j , we have

x (n)
j xk − q−λjk xkx (n)

j = f (j)
k ,1,

where f (j)
k ,1 = M(j)

k ,1(X (j−1))

n∑
v=j+1

bvj ev +en+j

and

M(j)
k ,1 =

j−1∑
t=k

(
q

Mj−λjk +λn+j k +
n∑

v=j+1
bvjλvk +

j−1∑
r=t+1

brjλrk
/∏

i∈[1,t−1]

(x (n)
i )
−bij · f (t)

k ,−btj

·
/∏

i∈[t+1,j−1]

(x (n)
i )
−bij · x−1

j

)
∈ ZP[x (n)

1 , . . . , x (n)
j−1, xk+1, . . . , xn],

with f (t)
k ,−btj

:=
−btj∑
i=1

q−(i−1)λtk (x (n)
t )
−btj−i

f (t)
k ,1(x (n)

t )i−1.
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Dual PBW-bases

By above Lemma,

Corollary

For any j ∈ [1,n] and k < j , we have

f (j)
k ,1 ∈ ZP[x (n)

1 , . . . , x (n)
j−1, xk+1, . . . , xn].

Remark
The above result is in the same spirit described as
Levendorskii-Soibelman straightening law.

Lemma

For any j , k ∈ [1,n], k < j and l ∈ N, we have

x (n)
j x l

k − q−lλjk x l
kx (n)

j = g(j)
k ,l ,

where g(j)
k ,l ∈ ZP[x (n)

1 , . . . , x (n)
j−1, xk , . . . , xn].
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Dual PBW-bases

Definition
A monomial xa1

1 · · · x
an
n (x (n)

1 )a(n)
1 · · · (x (n)

n )a(n)
n is called a projective

standard if all exponents are non-negative integers and aka(n)
k = 0 for

all k ∈ [1,n].
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Dual PBW-bases

Proposition

For any j , k ∈ [1,n],ak ,a
(n)
k ∈ N such that aka(n)

k = 0, the following
items are all ZP-linear combinations of projective standard
monomials:

1. x (n)
j

/∏
k∈[1,n]

xak
k ·

/∏
k∈[1,n]

(x (n)
k )

a(n)
k ;

2.
/∏

k∈[1,n]

xak
k ·

/∏
k∈[1,n]

(x (n)
k )

a(n)
k · x (n)

j ;

3. xj
/∏

k∈[1,n]

xak
k ·

/∏
k∈[1,n]

(x (n)
k )

a(n)
k ;

4.
/∏

k∈[1,n]

xak
k ·

/∏
k∈[1,n]

(x (n)
k )

a(n)
k · xj .
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Dual PBW-bases

For any a = (a1,a2, . . . ,an) ∈ Zn, we denote

xa := xa1
1 xa2

2 . . . xan
n .

Let ≺ denote the lexicographic order on Zn, i.e., for any two vectors
a = (a1,a2, . . . ,an), a′ =

(
a′1,a

′
2, . . . ,a

′
n
)
∈ Zn satisfy that a ≺ a′ if

and only if there exists k ∈ [1,n] such that ak < a′k and ai = a′i for all
i ∈ [1, k − 1]. This order induces the lexicographic order on the
Laurent monomials as

xa ≺ xa′ if a ≺ a′.

Definition
Let Y = gaxa +

∑
y

gay xay for nonzero elements ga,gay ∈ ZP. We call

gaxa the first Laurent monomial of Y if ay ≺ a for any y in some index
set.
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Dual PBW-bases

Theorem

Let Σ = (x̃,Λ, B̃) be an acyclic quantum seed. Then the projective
standard monomials in x1, x

(n)
1 , . . . , xn, x

(n)
n form a ZP-basis of A(Σ).

Remark

1. If we set q = 1 and B skew-symmtric, one can obtain a ZP-basis
of the classical acyclic cluster algebra which is proved in
[Baur–Nasr-Isfahani: Cluster algebras generated by projective
cluster variables, 2023].

2. If B is skew-symmtric, this basis should agree with an associated
dual PBW basis in the language of [Kimura–Qin: Graded quiver
varieties, quantum cluster algebras and dual canonical basis.
2014]. This is the reason why we call the basis in the above
Theorem the dual PBW basis.
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An Example

Example
Consider the acyclic quantum seed (x̃,Λ, B̃) as follows:

B̃ =



0 −1 −1
1 0 −2
1 2 0
1 0 0
0 1 0
0 0 1


,Λ =



0 −1 −1 1 2 −2
1 0 0 0 0 1
1 0 0 0 1 0
−1 0 0 0 −1 −1
−2 0 −1 1 0 −2
2 −1 0 1 2 0


.

We have

x ′1 = q−
1
2 x−1

1 x2x3x4 + x−1
1 ,

x ′2 = q−1x−1
2 x2

3 x5 + q−
1
2 x1x−1

2 ,

x ′3 = x−1
3 x6 + q

1
2 x1x2

2 x−1
3 . 29



An Example

Example
By mutating the seed (x̃,Λ, B̃) in the direction 1, we have

x (1)
1 = x ′1 = q−

1
2 x−1

1 x2x3x4 + x−1
1 ,

B̃(1) =



0 1 1
−1 0 −2
−1 2 0
−1 0 0
0 1 0
0 0 1


, Λ(1) =



0 1 1 −1 −2 2
−1 0 0 0 0 1
−1 0 0 0 1 0
1 0 0 0 −1 −1
2 0 −1 1 0 −2
−2 −1 0 1 2 0


.
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An Example

Example
By mutating the seed (x̃(1),Λ(1), B̃(1)) in the direction 2, we have

x (2)
2 = q−1x−1

1 x3
3 x4x5 + q−

1
2 x−1

1 x−1
2 x2

3 x5 + x−1
2 .

Multiplying both sides of the above equation from left by x1, we have

x1x (2)
2 = q−1x3

3 x4x5 + q
1
2 x ′2,

B̃(2) =



0 −1 1
1 0 2
−1 −2 0
−1 0 0
0 −1 0
0 0 1


, Λ(2) =



0 −1 1 −1 −2 2
1 0 0 0 0 −1
−1 0 0 0 1 0
1 0 0 0 −1 −1
2 0 −1 1 0 −2
−2 1 0 1 2 0


.
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An Example

Example
By mutating the seed (x̃(2),Λ(2), B̃(2)) in the direction 3, we have

x (3)
3

= q−1x−1
1 (x (1)

1 )2x−1
2 x4

3 x4x2
5 x6 + (q

1
2 + q

3
2 )x−1

1 x (1)
1 x−1

2 x2
3 x4x5x6

+qx−1
1 x−1

2 x4x6 + q
3
2 x−1

1 (x (1)
1 )2x−2

2 x3
3 x2

5 x6

+(q2 + q3)x−1
1 x (1)

1 x−2
2 x3x5x6 + q

3
2 x−1

1 x−2
2 x−1

3 x6 + x−1
3 .
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An Example

Example
Multiplying both sides of the above equality from left by x1x2

2 , we have

x1x2
2 x (3)

3

= q−7(x (1)
1 )2x2x4

3 x4x2
5 x6 + (q−

7
2 + q−

5
2 )x (1)

1 x2x2
3 x4x5x6

+q−1x2x4x6 + q−
9
2 (x (1)

1 )2x3
3 x2

5 x6 + (q−2 + q−1)x (1)
1 x3x5x6 + q−

1
2 x ′3.
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An Example

Example
Thus x ′1, x

′
2 and x ′3 ∈ ZP[x1, x

(3)
1 , x2, x

(3)
2 , x3, x

(3)
3 ]. Note that

x (3)
1 x1 − x1x (3)

1 = q−
1
2 (q − 1)x2x3x4,

x (3)
2 x2 − x2x (3)

2 = q−
1
2 (1− q−1)x (3)

1 x2
3 x5,

x (3)
3 x3 − x3x (3)

3 = q
1
2 (q − 1)x (3)

1 (x (3)
2 )2x6,

x (3)
2 x1 − q−1x1x (3)

2 = q−2(q − 1)x3
3 x4x5,

x (3)
3 x2 − x2x (3)

3 = 2q−3(1− q−1)x3x5x6(x (3)
1 )2x (3)

2 ,

x (3)
3 x1 − q−1x1x (3)

3

= q−
1
2 (q − 1)x2

3 x4x5x6x (3)
1 x (3)

2 + q−1(q − 1)x4x6x (3)
2

+q
1
2 (q − 1)x2

3 x4x5x6x (3)
1 x (3)

2 + q
3
2 (q − 1)x2

3 x4x5x6x (3)
1 x (3)

2 .
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Some Properties of Generalized Cluster Algebras of Geometric Type

Theorem
Let Σ = (x̃, ρ, B̃) be an acyclic and coprime generalized seed. Then
we have

A(Σ) = L(n)(Σ).

Definition
A monomial in x1, x

(n)
1 , . . . , xn, x

(n)
n is called a projective standard

monomial if it contains no product of the form xix
(n)
i for any i ∈ [1,n].

Theorem
Let Σ = (x̃, ρ, B̃) be an acyclic and coprime generalized seed. Then
the projective standard monomials in x1, x

(n)
1 , . . . , xn, x

(n)
n form a

ZP-basis of A(Σ).
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A Criterion of Generalized Cluster Algebras without 3-cycles

Theorem
If the standard monomials in x1, x ′1, . . . , xn, x ′n are linearly independent
over ZP, then the directed graph Γ

(
x̃, ρ, B̃

)
does not contain 3-cycles.

Remark
In classical cluster algebras, Berenstein, Fomin and Zelevinsky
proved that standard monomials in {x1, x ′1, . . . , xn, x ′n} are linearly
independent over ZP if and only if the directed graph associated to
the seed

(
x̃, B̃

)
is acyclic. The sufficient part was extended to the

case of generalized cluster algebras of geometric type by Bai, Chen,
Ding and Xu.
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Thanks for listening!
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