Categorification and mirror symmetry for Gr(k, n)jt. w. B T Jensen and A King

Xiuping Su

University of Bath

Plan of this talk:

- The Grassmannian cluster category CM C
- The invariant $\kappa(M, N)$
- Cluster characters, partition functions and flow polynomials.
- Rietsch-Williams' mirror symmetry for the Grassmannian Gr(k, n).
- Cones of <u>k</u>, g-vectors and the potential W (categorical interpretation of RW's mirror symmetry).

Plan of this talk:

- The Grassmannian cluster category CM C
- The invariant $\kappa(M, N)$
- Cluster characters, partition functions and flow polynomials.
- Rietsch-Williams' mirror symmetry for the Grassmannian Gr(k, n).
- Cones of <u>k</u>, g-vectors and the potential W (categorical interpretation of RW's mirror symmetry).

The Grassmannian cluster category CM C

- $R = \mathbb{C}[[t]]$ the formal power series ring in t.
- $C = R \ddot{Q} / \mathcal{I}$
 - Q = the double cyclic quiver with clockwise arrows x and anti-clockwise arrows y. The *trivial path* at vertex *i* is denoted by e_i.
 - the relations \mathcal{I} : xy = yx = t and $x^k = y^{n-k}$.
- CM C: the category of C-modules (or representations of (Q, I)) that are free over R.

The Grassmannian cluster category CM C

- $R = \mathbb{C}[[t]]$ the formal power series ring in t.
- C = RQ/I
 - Q = the double cyclic quiver with clockwise arrows x and anti-clockwise arrows y. The *trivial path* at vertex *i* is denoted by e_i.
 - the relations \mathcal{I} : xy = yx = t and $x^k = y^{n-k}$.
- CM C: the category of C-modules (or representations of (Q, I)) that are free over R.

Rank one modules M in CM C, i.e. $e_i M \cong R$ for all i

 $P_0 = M_{123}$

Rank one modules M in CM C, i.e. $e_i M \cong R$ for all i

Xiuping Su (University of Bath)

4 / 22

 M_{124}

<ロト <問ト < 目と < 目と

3

Remark:

- Rank one modules are parameterised by k-subsets of [n] = {1,...,n}.
 Denote the module corresponding to I by M_I.
- Rank one modules are parameterised by Young diagrams in the $k \times (n k)$ -grid.

э

イロト イヨト イヨト ・

Remark:

- Rank one modules are parameterised by k-subsets of [n] = {1,...,n}.
 Denote the module corresponding to I by M_I.
- Rank one modules are parameterised by Young diagrams in the $k \times (n k)$ -grid.
- There is a well-defined rank for any $M \in CM C$, given by

 $\operatorname{rank} M = \operatorname{rank}_R e_i M.$

CM C is of finite type, if and only if (k, n) = (2, n), (3, 6), (3, 7) or (3, 8). So in other types, there are infinitely many indecomposable modules of rank > 1.

(4回) (4回) (4回)

Remark:

- Rank one modules are parameterised by k-subsets of [n] = {1,...,n}.
 Denote the module corresponding to I by M_I.
- Rank one modules are parameterised by Young diagrams in the $k \times (n k)$ -grid.
- There is a well-defined rank for any $M \in CM C$, given by

 $\operatorname{rank} M = \operatorname{rank}_R e_i M.$

- CM C is of finite type, if and only if (k, n) = (2, n), (3, 6), (3, 7) or (3, 8). So in other types, there are infinitely many indecomposable modules of rank > 1.
- CM C is a Frobenius 2-CY category.
- CM C provides an additive categorification of the cluster structure on the Grassmannian Gr(k, n).

ヘロト 人間 とくほとう ほんし

The restriction functor and its adjoints

- $e_0 : CM \ C \to CM \ R$ (free *R*-modules) the restriction functor, $M \mapsto e_0 M$ (note: e_0 the trivial path at vertex 0).
- $\mathsf{P}: \mathsf{CM} R \to \mathsf{CM} C, \ W \mapsto Ce_0 \otimes_R W.$
- $J : CM R \to CM C, W \mapsto Hom_R(e_0 C, W).$
- P and J are left and right adjoints to e₀.
- α: Pe₀ M → M and β: N → Je₀ N are embeddings with finite dimensional quotients, since e₀ P e₀ M = e₀ M and e₀ J e₀ N = e₀ N.

The restriction functor and its adjoints

- $e_0 : CM \ C \to CM \ R$ (free *R*-modules) the restriction functor, $M \mapsto e_0 M$ (note: e_0 the trivial path at vertex 0).
- $\mathsf{P}: \mathsf{CM} R \to \mathsf{CM} C, \ W \mapsto Ce_0 \otimes_R W.$
- $J : CM R \to CM C, W \mapsto Hom_R(e_0 C, W).$
- P and J are left and right adjoints to e₀.
- α: Pe₀ M → M and β: N → Je₀ N are embeddings with finite dimensional quotients, since e₀ P e₀ M = e₀ M and e₀ J e₀ N = e₀ N.

Let ϕ_0 : Hom_C(M, N) \rightarrow Hom_R(e_0M, e_0N), $f = (f_i) \mapsto f_0$, and let

 $K(M,N) = \operatorname{cok} \phi_0.$

The restriction functor and its adjoints

- $e_0 : CM \ C \to CM \ R$ (free *R*-modules) the restriction functor, $M \mapsto e_0 M$ (note: e_0 the trivial path at vertex 0).
- $\mathsf{P}: \mathsf{CM} R \to \mathsf{CM} C, \ W \mapsto Ce_0 \otimes_R W.$
- $J : CM R \to CM C, W \mapsto Hom_R(e_0 C, W).$
- P and J are left and right adjoints to e₀.
- α: Pe₀ M → M and β: N → Je₀ N are embeddings with finite dimensional quotients, since e₀ P e₀ M = e₀ M and e₀ J e₀ N = e₀ N.

Let ϕ_0 : Hom_C(M, N) \rightarrow Hom_R(e_0M, e_0N), $f = (f_i) \mapsto f_0$, and let $K(M, N) = \operatorname{cok} \phi_0$.

Proposition [JKS] Let $M, N \in CM C$.

- $\operatorname{cok} \phi_0 \cong \operatorname{cok} \operatorname{Hom}(\alpha, N) \cong \operatorname{cok} \operatorname{Hom}(M, \beta) \leq \operatorname{Hom}(M, \operatorname{Je}_0 N/N).$
- K(M, N) is an (End M)^{op}-module.
- dim $K(M, N) < \infty$.

Definition

- Let $\kappa(M, N) = \dim K(M, N)$.
- When $M = \bigoplus_i M_i$, let $\underline{\kappa}(M, N) = (\kappa(M_i, N))_i$.

Remark: When each M_i is indecomposable, then $\underline{\kappa}(M, N)$ is the dimension vector of K(M, N) as an $(\text{End } M)^{\text{op}}$ -module.

Remark: $\kappa(P_0, N) = 0$ for all $N \in CM C$, since $P e_0 P_0 = P_0$ and so $Hom(P_0, N) = Hom(P e_0 P_0, N)$.

Example

3

イロト イ理ト イヨト イヨト

Example

Remark: Denote the Young diagram corresponding to *I* by λ_I . In general, we have $\kappa(M_I, M_J) = \text{MaxDiag}(\lambda_J \setminus \lambda_I)$, i.e. the maximal length of the diagonals in $\lambda_J \setminus \lambda_I$.

Weakly separated sets and the rectangle cluster tilting object

- Two sets I, J ⊆ [n] of size k are said to be weakly separated (or non-crossing) if there are no a, c ∈ I\J and b, d ∈ J\I such that a, b, c, d are cyclically ordered.
- $\operatorname{Ext}^{1}(M_{I}, M_{J}) = 0$ if and only if I, J are weakly separated.
- Let S be a collection of weakly separated sets. $T_S = \bigoplus_{I \in S} M_I$ is a cluster tilting object (CTO) if and only if S is maximal.

Weakly separated sets and the rectangle cluster tilting object

- Two sets I, J ⊆ [n] of size k are said to be weakly separated (or non-crossing) if there are no a, c ∈ I\J and b, d ∈ J\I such that a, b, c, d are cyclically ordered.
- $\operatorname{Ext}^1(M_I, M_J) = 0$ if and only if I, J are weakly separated.
- Let S be a collection of weakly separated sets. $T_S = \bigoplus_{I \in S} M_I$ is a cluster tilting object (CTO) if and only if S is maximal.
- Let S_□ be the collection of the labels of the boxes (including the empty box) in the k × (n k)-grid. Then S_□ is a maximal collection of weakly separated sets.
- Let T_□ = ⊕_{I∈S_□}M_I. Then T_□ is a CTO and is called a *rectangle* cluster tilting object.

The rectangle cluster for Gr(3, 6) and $\underline{\kappa}(T_{\Box}, M_{134})$

< 行

→ ∃ →

The rectangle cluster for Gr(3, 6) and $\underline{\kappa}(T_{\Box}, \overline{M_{134}})$

The rectangle cluster for Gr(3, 6) and $\underline{\kappa}(T_{\Box}, M_{134})$

- ∢ /⊐ >

Proposition [JKS]

$$\{\underline{\kappa}(T_{\Box}, M) \mid \operatorname{rank} M \leq r\} = \{\mathsf{GT}\text{-}r\text{-}\mathsf{patterns}\}.$$

æ

イロト イヨト イヨト イヨト

Proposition [JKS]

 $\{\underline{\kappa}(T_{\Box}, M) \mid \operatorname{rank} M \leq r\} = \{\mathsf{GT}\text{-}r\text{-}\mathsf{patterns}\}.$

Remark: When *I*, *J* are weakly separated *k*-sets, $\kappa(M_I, M_J) - \kappa(M_J, M_I)$ computes the quasi-commutation rule for the quantum minors Δ_I^q and Δ_J^q . So CM *C* provides a categorical model for the quantum Grassmannian $\mathbb{C}_q[\operatorname{Gr}(k, n)]$.

Let $T = \bigoplus_i T_i$, each T_i is indecomposable. There are two mutation sequences associated to each mutable summand T_i :

$$0 \longrightarrow T_j^* \longrightarrow E_j \longrightarrow T_j \longrightarrow 0$$

and

$$0 \longrightarrow T_j \longrightarrow F_j \longrightarrow T_j^* \longrightarrow 0$$

Let $T' = \bigoplus_{i \neq j} T_i \oplus T_j^*$. Then T' is again a CTO.

Let $T = \bigoplus_i T_i$, each T_i is indecomposable. There are two mutation sequences associated to each mutable summand T_i :

$$0 \longrightarrow T_j^* \longrightarrow E_j \longrightarrow T_j \longrightarrow 0$$

and

$$0 \longrightarrow T_j \longrightarrow F_j \longrightarrow T_j^* \longrightarrow 0$$

Let
$$T' = \bigoplus_{i \neq j} T_i \oplus T_j^*$$
. Then T' is again a CTO.

Theorem [JKS]

Let $M \in CM C$ be generic (e.g. when $Ext^1(M, M) = 0$). Then

$$\kappa(T_j^*, M) + \kappa(T_j, M) = \min\{\kappa(E_j, M), \kappa(F_j, M)\}.$$

Consequently, the map $\underline{\kappa}(T, M) \mapsto \underline{\kappa}(T', M)$ is a tropical A-mutation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Cluster characters

Let Ψ : CM $C \to \mathbb{C}[Gr(k, n)]$ be the cluster character such that $\Psi_{M_I} = \Delta_I$, the minor indexed by I. We have

$$\Psi_M \Psi_N = \Psi_{M \oplus N}$$
 and $\Psi_{T_i} \Psi_{T_i^*} = \Psi_{E_i} + \Psi_{F_i}$,

where $M, N, T_j, T_j^* \in CM C$, E_j , F_j are the middle terms in the mutation sequences for T_j, T_j^* .

Cluster characters

Let Ψ : CM $C \to \mathbb{C}[Gr(k, n)]$ be the cluster character such that $\Psi_{M_I} = \Delta_I$, the minor indexed by I. We have

$$\Psi_M \Psi_N = \Psi_{M \oplus N}$$
 and $\Psi_{T_j} \Psi_{T_i^*} = \Psi_{E_j} + \Psi_{F_j}$,

where $M, N, T_j, T_j^* \in CM C$, E_j , F_j are the middle terms in the mutation sequences for T_j, T_j^* .

Generalised partition functions

Define

$$\mathcal{P}_{M} = (\mathcal{P}_{M}^{T}) = \sum_{X \in \underline{\mathcal{D}}_{M}} \chi(\operatorname{Gr}_{d_{[X]}}(\underline{\operatorname{Hom}}(T, M))) x^{[X]},$$

where $\operatorname{Gr}_{d_{[X]}}(\operatorname{\underline{Hom}}(\mathcal{T}, M))$ is the Grassmannian of $d_{[X]}$ dim. submodules of $\operatorname{\underline{Hom}}(\mathcal{T}, M)$ and $d_{[X]}$ depends on the class [X] of X. Roughly, D_M consists of classes of submodules of $\operatorname{Hom}(\mathcal{T}, M)$ that are M when restricted to C.

Theorem [JKS]

- When $T = T_S$ and $M = M_I$, \mathcal{P}_M is the partition function associated to I, which is defined combinatorially on a (plabic) graph corresponding to T.
- $\mathcal{P}_M = \frac{\tilde{\Psi}_{\Omega M}}{\tilde{\Psi}_{P_M}}$, where $0 \to \Omega_M \to P_M \to M \to 0$ is any projective presentation of M.
- \mathcal{P}_M is a cluster character. Consequently, the (classical) partition functions \mathcal{P}_{M_l} satisfy Plücker relations.

Weight modules

Let $A = (\text{End } T)^{\text{op}}$. Note that C is a summand of T. Let $e : \text{CM } A \to \text{CM } C$ be the restriction functor, $X \mapsto e X$.

< 1 k

< ∃ ►

Xiuping Su (University of Bath)

Weight modules

Let $A = (\text{End } T)^{\text{op}}$. Note that C is a summand of T. Let $e : \text{CM } A \to \text{CM } C$ be the restriction functor, $X \mapsto e X$.

• Wt X is called a weight module of X.

Weight modules

Let $A = (\text{End } T)^{\text{op}}$. Note that C is a summand of T. Let $e : \text{CM } A \to \text{CM } C$ be the restriction functor, $X \mapsto e X$.

- Wt X is called a weight module of X.
- Wt : CM A → fd A is exact. So it induces a map wt : K(CM A) → K(fd A)

< 47 ▶

The generalised flow polynomial

Define

$$\mathcal{F}_{M} = \sum_{X \in D_{M}} \chi(\operatorname{Gr}^{d}(\underline{\operatorname{Hom}}(T,M))) x^{[\operatorname{Wt} X]}$$

æ

.∋...>

∃ >

The generalised flow polynomial

Define

$$\mathcal{F}_{M} = \sum_{X \in D_{M}} \chi(\operatorname{Gr}^{d}(\underline{\operatorname{Hom}}(T,M))) x^{[\operatorname{Wt} X]}$$

Theorem [JKS]

- \mathcal{F}_M is a cluster character.
- \mathcal{F}_M has a unique minimal term $x^{\underline{\kappa}(\mathcal{T},M)}$.
- When $T = T_S$, \mathcal{F}_{M_I} is the flow polynomial associated to I defined on the plabic graph corresponding to T.
- $\underline{\kappa}(\mathcal{T}, M_I)$ is RW's valuation of the minor Δ_I , i.e. $\operatorname{val}_{\mathbf{G}}(\Delta_I)$. Moreover,

 $\{\underline{\kappa}(T,M): M \in \mathsf{CM} C\} = \{\operatorname{val}_{\mathcal{G}}(f): f \in \mathbb{C}[\mathsf{Gr}(k,n)] \text{ is pointed}\}.$

イロト イヨト イヨト ・

Rietsch-Williams' mirror symmetry for Grassmannians

Newton-Okounkov body $\Delta(G)$ and the potential polytope $\Delta(W)$

 $\mathbb X$ side:

- $X = \operatorname{Gr}(k, n)$
- Newton-Okounkov body Δ(G) via the valuation val_G e.g. val_G(Δ_I)=exponent of minimal term of the flow polynomial ass. to I
- (G= a seed obtained from a plabic graph by mutation.)

 \mathbb{A} side:

- X̃ (mirror dual of X) with the potential W constructed by Marsh-Rietsch.
- Express the potential *W* in the cluster associated to *G* to obtain a Laurent polynomial *W*_G
- Tropicalise W_G to obtain a polytope Δ(W_G)

Rietsch-Williams' mirror symmetry for Grassmannians

Newton-Okounkov body $\Delta(G)$ and the potential polytope $\Delta(W)$

 $\mathbb X$ side:

- X = Gr(k, n)
- Newton-Okounkov body Δ(G) via the valuation val_G e.g. val_G(Δ_I)=exponent of minimal term of the flow polynomial ass. to I
- (G= a seed obtained from a plabic graph by mutation.)

Theorem [RW]

 \mathbbm{A} side:

- X̃ (mirror dual of X) with the potential W constructed by Marsh-Rietsch.
- Express the potential *W* in the cluster associated to *G* to obtain a Laurent polynomial *W*_G

イロト イポト イヨト イヨト

Tropicalise W_G to obtain a polytope Δ(W_G)

 $\Delta(G) = \Delta(W_G)$ (or equivalently $Cone(G) = Cone(W_G)$).

Marsh-Rietsch's superpotential W

$$W = q rac{\Delta_{\hat{J}_{n-k}}}{\Delta_{J_{n-k}}} + \sum_{i
eq n-k} rac{\Delta_{\hat{J}_i}}{\Delta_{J_i}},$$

where $J_i = [i + 1, i + k]$ and $\Delta_{\hat{J}_i} = [i + 1, i + k - 1] \cup \{i + k + 1\}$. For instance, when k = 2 and n = 5,

$$W = \frac{\Delta_{13}}{\Delta_{12}} + \frac{\Delta_{24}}{\Delta_{23}} + \frac{\Delta_{35}}{\Delta_{34}} + q\frac{\Delta_{14}}{\Delta_{45}} + \frac{\Delta_{25}}{\Delta_{15}}$$

< ロト < 同ト < ヨト < ヨト

Marsh-Rietsch's superpotential W

$$W = q rac{\Delta_{\hat{J}_{n-k}}}{\Delta_{J_{n-k}}} + \sum_{i
eq n-k} rac{\Delta_{\hat{J}_i}}{\Delta_{J_i}},$$

where $J_i = [i + 1, i + k]$ and $\Delta_{\hat{J}_i} = [i + 1, i + k - 1] \cup \{i + k + 1\}$. For instance, when k = 2 and n = 5,

$$W = \frac{\Delta_{13}}{\Delta_{12}} + \frac{\Delta_{24}}{\Delta_{23}} + \frac{\Delta_{35}}{\Delta_{34}} + q\frac{\Delta_{14}}{\Delta_{45}} + \frac{\Delta_{25}}{\Delta_{15}}$$

Example

$$J = [2,3] = \{2,3\} (M_J = P_1)$$
$$\hat{J} = [2,2] \cup \{4\} = \{2,4\}$$

Example: T_{\Box} and its Gabriel quiver for k = 5 and n = 2

Rename the summands, e.g. T_{ij} is the summand at row *i* and col *j*

12

э

< ロト < 同ト < ヨト < ヨト

Using Fu-Keller's cluster character formula, we express the numerators in W as Laurent polynomials in the initial cluster variables $\Delta_{ij} = \Psi_{T_{ij}}$, denoted by p_{ij} .

$$W = \frac{p_{11}}{p_{\emptyset}} + \frac{p_{21}}{p_{11}} + \frac{p_{13}}{p_{12}} + \frac{p_{12}}{p_{11}} + \frac{p_{22}p_{\emptyset}}{p_{11}p_{12}} + \frac{p_{23}p_{11}}{p_{12}p_{22}} + \frac{p_{22}p_{\emptyset}}{p_{11}p_{21}} + \frac{p_{23}p_{\emptyset}}{p_{12}p_{13}} + q\frac{p_{12}}{p_{23}}.$$

This provides an alternative explanation to MR's original proof.

< ロト < 同ト < ヨト < ヨト

Tropicalising W gives the following inequalities:

 $0 \leq x_{\emptyset} \leq x_{11} \leq x_{12} \leq x_{13}, \ x_{11} \leq x_{21}, \ x_{12} - x_{\emptyset} \leq x_{22} - x_{11} \leq x_{23} - x_{12} \leq r,$

$$x_{21} - x_{\emptyset} \le x_{22} - x_{11}$$

These are exactly the inequality defining a (cumulative) GT-r-pattern.

Tropicalising W gives the following inequalities:

 $0 \leq x_{\emptyset} \leq x_{11} \leq x_{12} \leq x_{13}, \ x_{11} \leq x_{21}, \ x_{12} - x_{\emptyset} \leq x_{22} - x_{11} \leq x_{23} - x_{12} \leq r,$

$$x_{21} - x_{\emptyset} \le x_{22} - x_{11}$$

These are exactly the inequality defining a (cumulative) GT-r-pattern.

Let $\mathbb{C}[Gr(k, n)]_{\bullet} = \{f \in \mathbb{C}[Gr(k, n)]: f \text{ is homogeneous}\}$. Define

- $\operatorname{Cone}_{\operatorname{NO}}(G) = \mathbb{R}_{\geq 0}\operatorname{-span}\{(\operatorname{deg}(f), \operatorname{val}_G(f)) \colon 0 \neq f \in \mathbb{C}[\operatorname{Gr}(k, n)]_{\bullet}\}.$
- $\operatorname{Cone}_W(T) = \mathbb{R}_{\geq 0}\operatorname{-span}\{(r, v) \colon \operatorname{Trop}_T(W)(r, v) \geq 0\}.$
- $\operatorname{Cone}_{\underline{\kappa}}(T) = \mathbb{R}_{\geq 0}\operatorname{-span}\{(\operatorname{rank} M, \underline{\kappa}(T, M)) \colon M \in \operatorname{CM} C\}.$
- Cone_{GV}(T) = $\mathbb{R}_{\geq 0}$ -span{[T, M]: $M \in CM C$ }.

Remark: The four cones are the same when $T = T_{\Box}$.

Theorem

Let T be a cluster tilting object and G the associated seed.

$$\operatorname{Cone}_{\underline{\kappa}}(T) = \operatorname{Cone}_W(G),$$

which can also be interpreted as

$$\operatorname{Cone}_{\operatorname{GV}}(T) = \operatorname{Cone}_W(G).$$