Classifying recollements of derived module categories for derived discrete algebras

Xiuli Bian

East China Normal University & University of Cologne

ICRA 21 (2024, Shanghai)

August 8, 2024

< ロ > < 団 > < 匠 > < 匠 > < 匠 > < 匠 < 〇 < 〇</p>

- Background and motivation
- Recollements
- Derived module categories of derived discrete algebras

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

- The main result
- Examples

- Background and motivation
- Recollements
- Derived module categories of derived discrete algebras

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

- The main result
- Examples

• **Recollement**, introduced by Beilinson, Bernstein, and Deligne in 1980s, originates from an observation by Grothendieck on six functors in algebraic geometry.

• In representation theory, most examples of recollement are given by stratifying recollements, that is, they are of the form

$$\mathcal{D}(A/AeA) \xrightarrow{\leqslant} \mathcal{D}(A) \xrightarrow{\leqslant} \mathcal{D}(eAe),$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where A is an algebra and $e \in A$ is an idempotent, such that AeA is a stratifying ideal (i.e. $Ae \otimes_A^{\mathsf{L}} eA \cong AeA$) of A.

Question 1 (Xi's question)

Are all recollements of derived module categories of *K*-algebras stratifying up to equivalence?

• This question has a positive answer for hereditary algebras, see [Psaroudakis-Vitória'18].

• In general it is not true, as shown by Angeleri Hügel, Koenig, Liu and Yang in 2017.

L. Angeleri Hügel, S. Koenig, Q. Liu and D. Yang, Recollements and stratifying ideals, *J. Algebra*, **484** (2017), 47–65.

Question 1 (Xi's question)

Are all recollements of derived module categories of *K*-algebras stratifying up to equivalence?

• This question has a positive answer for hereditary algebras, see [Psaroudakis-Vitória'18].

• In general it is not true, as shown by Angeleri Hügel, Koenig, Liu and Yang in 2017.

- C. Psaroudakis and J. Vitória, Realisation functors in tilting theory, *Math. Z*, **288** (2018), 965–1028.
- L. Angeleri Hügel, S. Koenig, Q. Liu and D. Yang, Recollements and stratifying ideals, *J. Algebra*, **484** (2017), 47–65.

Goal

• Study Xi's question within the framework of derived discrete algebras.

- Background and motivation
- Recollements
- Derived module categories of derived discrete algebras

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

- The main result
- Examples

Notations

- K: field,
- A: finite dimensional algebra over K,
- ModA: the category of right A-modules,
- modA: the full subcategory consisting of all finitely generated right A-modules,
- $\mathcal{D}(A)$: unbounded derived category of ModA,
- $\mathcal{D}^{b}(\mathrm{mod}A)$: bounded derived category of $\mathrm{mod}A$,
- *H^b*(proj*A*): the homotopy category of cochain complexes of objects in proj*A*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

Definition (Beilinson-Bernstein-Deligne 1982)

A recollement of triangulated categories is a diagram

of triangulated categories and triangulated functors such that

- $(i^*, i_* = i_!, i^!), (j_!, j^! = j^*, j_*)$ are adjoint triples;
- i_* , j_* , $j_!$ are fully faithful;
- $i^! \circ j_* = 0;$
- for each $C \in C$ there are two induced triangles

$$i_!i^!(C) \longrightarrow C \longrightarrow j_*j^*(C) \longrightarrow$$

 $j_!j^!(C) \longrightarrow C \longrightarrow i_*i^*(C) \longrightarrow$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A.A. Beilinson, J. Bernstein, P. Delligne, *Faisceaux pervers, Asterisque,* Soc. Math. France **100** (1982).

Examples of recollement

Example

Let A be an algebra and let $e \in A$ be an idempotent.

• There is a recollement

where B is a non-positive differential graded algebra with $H^0B = A/AeA$ [Kalck-Yang 2016].

• If moreover, AeA is stratifying, then the recollement above is stratifying, that is, B can be chosen as A/AeA, see [Cline-Parshall-Scott 1996].

E. Cline, B. Parshall and L. Scott, Stratifying endomorphism algebras, *Mem. Amer. Math. Soc.*, **124** (1996).

M. Kalck, D. Yang, Relative singularity categories I: Auslander resolutions, Adv.Math., 301 (2016), 973–1021.

- Background and motivation
- Recollements
- Derived module categories of derived discrete algebras

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The main result
- Examples

Definition (Vossieck 2001)

An algebra A is derived discrete provided that for every vector $\underline{d} = (d_i)_{i \in \mathbb{Z}}$ of natural numbers there are only finitely many isomorphism classes of indecomposable objects X in $\mathcal{D}^b(\text{mod}A)$ of cohomology dimension vector $(\underline{\dim}H^i(X))_{i \in \mathbb{Z}} = \underline{d}$ up to shift.

D. Vossieck, The algebras with discrete derived category, *J. Algebra*, 243 (2001), 168–176.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ ののの

Example

Hereditary algebras of Dynkin type are derived discrete.

Definition (Vossieck 2001)

An algebra A is derived discrete provided that for every vector $\underline{d} = (d_i)_{i \in \mathbb{Z}}$ of natural numbers there are only finitely many isomorphism classes of indecomposable objects X in $\mathcal{D}^b(\text{mod}A)$ of cohomology dimension vector $(\underline{\dim}H^i(X))_{i \in \mathbb{Z}} = \underline{d}$ up to shift.

D. Vossieck, The algebras with discrete derived category, J. Algebra, 243 (2001), 168–176.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のへで

Example

Hereditary algebras of Dynkin type are derived discrete.

Theorem (Bobiński-Geiß-Skowroński 2004)

Let A be a derived discrete algebra. Then A is derived equivalent to either a hereditary algebra of Dynkin type or a gentle algebra $\Lambda(r, n, m)$ with $1 \le r \le n$ and $m \ge 0$, given by the quiver Q(r, n, m):

with relations $\alpha_{n-1}\alpha_0, \alpha_{n-2}\alpha_{n-1}, \ldots, \alpha_{n-r}\alpha_{n-r+1}$.

G. Bobiński, C. Geiß and A. Skowroński, Classification of discrete derived categories, *Cent. Eur. J. Math.*, **2** (2004), 19–49.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

AR-quiver of $\Lambda(r, n, m)$ (Bobiński-Geiß-Skowroński 2004)

The AR-quiver of $\mathcal{D}^{b}(\text{mod}A)$ of $A = \Lambda(r, n, m)$ has precisely 3r components, namely, \mathcal{X}^{k} , \mathcal{Y}^{k} and \mathcal{Z}^{k} with $k = 0, 1, \ldots, r - 1$, pictures of which can be illustrated as follows:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● の Q @

From now on, A will always be the algebra $\Lambda(r, n, 0)$ with $1 \le r < n$, that is, the bound quiver algebra given by the quiver Q(r, n, 0):

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

with relations $\alpha_{n-1}\alpha_0, \alpha_{n-2}\alpha_{n-1}, \ldots, \alpha_{n-r}\alpha_{n-r+1}$. In this case, gl.dim $A = r + 1 < \infty$.

- Background and motivation
- Recollements
- Derived module categories of derived discrete algebras

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

- The main result
- Examples

The main result

- An object $X \in \mathcal{D}(A)$ is an exceptional object if $\operatorname{Hom}(X, X[i \neq 0]) = 0$.
- Let $A = \Lambda(r, n, 0)$ with $1 \le r < n$. Assume there are two finite dimensional algebras B and C, such that there is a recollement

Theorem (Xiuli Bian 2023)

Assume $j_!(C)$ or $i_*(B)$ is an indecomposable exceptional object in $\mathcal{D}(A)$. Then (\mathcal{R}) is equivalent to a stratifying recollement.

X. Bian, Classifying recollements of derived module categories for derived discrete algebras, *Algebr Represent Theor*, **27** (2023), 279–304.

The main result

Remark

- If X ∈ D^b(modA) is indecomposable exceptional, then End(X) = K or K[x]/x²;
- If B (resp. C) is given by K[x]/x² for some indecomposable exceptional object X, then C (resp. B) cannot be chosen as a finite dimensional algebra due to the fact below.
- **In the main theorem, B or C is K.**
- In the main theorem, i_{*}(B) or j_!(C) is indecomposable object in Y or Z component.

Fact (Angeleri Hügel-Koenig-Liu-Yang 2017)

If A, B and C are finite dimensional with recollement (\mathcal{R}), then $\operatorname{gl.dim} A < \infty$ if and only if $\operatorname{gl.dim} B < \infty$ and $\operatorname{gl.dim} C < \infty$.

L. Angeleri Hügel, S. Koenig, Q. Liu and D. Yang, Ladders and simplicity of derived module categories, J. Algebra, 472 (2017), 15–66.

- Background and motivation
- Recollements
- Derived module categories of derived discrete algebras

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ◆ ○ へ ⊙

- The main result
- Examples

Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

with relations $\alpha_3 \alpha_0$, $\alpha_2 \alpha_3$.

Example

• P_0 in \mathcal{X} generates a recollement

where $C = \operatorname{End}_A(P_0) \simeq K$, B is a dg-algebra which is derived equivalent to the graded bound quiver algebra given by:

with relation $\beta_2\beta_0$, and $deg\beta_0 = -1$, $deg\beta_1 = deg\beta_2 = 0$. This is not a stratifying recollement (because *B* is not derived equivalent to a finite dimensional algebra).

Example

- Consider the recollement generated by S_1 (which is in \mathcal{Y} -component):
 - A is derived equivalent to the algebra A'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

with relation $\alpha\delta$, $\gamma\alpha$, $\beta\gamma$, sends S_1 to P_1' .

Using A', we show that the recollement generated by S_1 is equivalent to

with $B \simeq \Lambda(2,3,0)$. This is a stratifying recollement. Moreover, by extending this recollement one-step downwards, we can also obtain a new recollement which is stratifying as well. Using A', we show that the recollement generated by S_1 is equivalent to

with $B \simeq \Lambda(2,3,0)$. This is a stratifying recollement. Moreover, by extending this recollement one-step downwards, we can also obtain a new recollement which is stratifying as well.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The main result

The main result

Moreover, by extending this recollement one-step downwards, we can also obtain a new recollement which is stratifying as well.

Thank you!

◆□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶