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A: ring or DG-ring
D(A): the der.cat. over A

Df(A): the full tri.subcat.of objects X s.t. Hn(X) is f.g.

D+(A): the full tri.subcat.of objects X s.t. Hn(X) = 0 for n � 0,
D+

f (A) = D+(A) ∩ Df(A)

D−(A): the full tri.subcat.of objects X s.t. Hn(X) = 0 for n � 0,
D−f (A) = D−(A) ∩ Df(A)

Db(A) = D−(A) ∩ D+(A), Db
f (A) = Db(A) ∩ Df(A)
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The projective dimension is a most important invariant for mod-
ules; this is illustrated by the next two results.

Regularity Theorem for modules
(Serre, Auslander, Buchsbaum) TFAE
• The local ring (A,m) is regular (the maximal ideal m can be
generated by dimA elements);
• k = A/m has finite projective dimension;
• All f.g. A-modules has finite projective dimension;

Auslander-Buchsbaum Formula
A: local ring, M: f.g. A-module. If projdimAM <∞, then

projdimAM = depthA− depthAM.
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Regularity Theorem for complexes
TFAE
• The local ring (A,m) is regular;
• k = A/m has finite projective dimension;
• All A-complexes in Db

f (A) has finite projective dimension;

Auslander-Buchsbaum Formula for complexes

A: local ring, M ∈ Db
f (A). If projdimAM <∞, then

projdimAM = depthA− depthAM.

Homological methods found their way into commutative algebra.

[1] M. Auslander, D.A. Buchsbaum, Homological dimension in Noetherian rings, Proc. Nat. Acad. Sci. 42 (1956)
36–38.

[2] J.-P. Serre, Surla dimension homologique des anneaux et des modules noethdriens, Proceedings of the inter-

national symposium on algebraic number theory, Tokyo § Nikko, 1955 (Tokyo), Science Council of Japan, 1956,

175–189.
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The G-dimension for f.g. module over a commutative noethe-
rian ring was introduced by Auslander in [3], and was developed
deeply by Auslander and Bridger in [4].

A: comm. noetherian ring. A f.g. A-module M is in G(A) iff
(i) ExtmA (M,A) = 0 for m 6= 0;
(ii) ExtmA (HomA(M,A),A) = 0 for m 6= 0;
(iii) The biduality map δM : M → HomA(HomA(M,A),A) is an iso.

All conditions in Definition are necessary.

[3] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d’algèbre commutative dirigé
par P. Samuel, Secrétariat mathématique, Paris, 1967.

[4] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. vol. 94, 1969.
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{f.g. projective A-modules} ( G(A)

k: field, A = k[[x]]/(x2): local and self-injective (0-Gorenstein
ring)⇒ k ∈ G(A), but k is not projective because A is not regular.

A f.g. A-module M is said to have finite G-dimension if it has a
G(A)-resolution of finite length, i.e. ∃ exact sequence

0→ Gn → · · · → G0 → M → 0

with each Gi ∈ G(A). G-dimension is a refinement of projective
dimension for f.g. modules.
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The G-dimension shares many of the nice properties of the pro-
jective dimension.

Gorenstein Theorem for modules
TFAE
• The local ring (A,m) is Gorenstein (injdimAA <∞);
• k = A/m has finite G-dimension;
• All f.g. A-modules has finite G-dimension.

[5] L.W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., vol. 1747, Springer-Verlag, Berlin, 2000.
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G-dimension has played an important role in singularity the-
ory, cohomology theory of commutative rings and representation
theory of Artin algebras.

[6] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991) 111–152.

[7] L.L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein
dimension, Proc. London Math. Soc. 85 (2002) 393–440.

[8] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings, with appendices
by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar, and Janina C. Letz, Math. Surveys and Monographs
262, Amer. Math. Soc. 2021.

[9] C.M. Ringel and P. Zhang, Representations of quivers over the algebra of dual numbers, J. Algebra 475 (2017)
327–360.

[10] Y. Yoshino, Cohen-Macaulay Modules Over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser., vol.

146, Cambridge Univ. Press, Cambridge, 1990.
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Yassemi [11] studied G-dimension for complexes through a con-
sistent use of the RHom-functor of complexes and the related
category of reflexive complexes.

A: comm. noetherian local ring. An A-complex X is said to be
reflexive iff
• X ∈ Db

f (A);
• RHomA(X,A) ∈ Db

f (A);
• X represents RHomA(RHomA(X,A),A) canonically.

[11] S. Yassemi, G-dimension, Math. Scand. 77 (1995) 161–174.
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Christensen [5] gave the definition of G-dimension for complexes
in terms of resolutions.

G-dimAX = inf{sup{l ∈ Z|G−l 6= 0}|X ' G ∈ CG(A)
(A) (A)}.

The two definitions are equivalent, and they are both rooted in a
result — due to Foxby.
An A-complex X is reflexive iff X has finite G-dimension and

G-dimAX = supRHomA(X,A).

[5] L.W. Christensen, Gorenstein Dimensions, Lecture Notes in Math., vol. 1747, Springer-Verlag, Berlin, 2000.
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Gorenstein Theorem for complexes
TFAE
• The local ring (A,m) is Gorenstein;
• k = A/m has finite G-dimension;
• All A-complexes in Db

f (A) has finite G-dimension.
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Despite the great success of the G-dimension in comm. noethe-
rian rings, until now it was completely missing from higher alge-
bra. For example, non-positive comm. DG-rings.

DG-ring A =
⊕

i∈Z Ai: Z-graded ring with map dA : A → A s.t.
dA ◦ dA = 0, and satisfies the Leibniz rule

dA(a · b) = dA(a) · b + (−1)|a|a · dA(b), ∀ a, b ∈ A.

commutative DG-ring A: b · a = (−1)|a|·|b|a · b, ∀ a, b ∈ A, and
a2 = 0 if |a| is odd.
non-positive DG-ring A: Ai = 0 for all i > 0.
noetherian DG-ring A: H0(A) is noetherian, Hi(A) is a f.g. H0(A)-
module for i < 0.
local noetherian DG-ring (A, m̄, κ̄): (H0(A), m̄, κ̄) is local and A is
noetherian.
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DG-module: a graded A-module (X, dX) with the differential dX :
X → X satisfies the Leibniz rule

dX(ax) = dA(a)x + (−1)|a|a · dX(x), ∀ a ∈ A, x ∈ X.

The infimum, supremum and amplitude of a DG-module X
infX := inf{n ∈ Z|Hn(X) 6= 0},

supX := sup{n ∈ Z|Hn(X) 6= 0},
ampX := supX − infX.

We refer the reader to [12] for more details about DG rings and
their derived categories.

[12] A. Yekutieli, Derived Categories, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge Univer-

sity Press, 2019.
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Example
1 k: field, A: the ring A = k[y, z]/(y2, yz, z2) with dA = 0, where

y and z are indeterminates over k. If |y| = −1 = |z|, then A
concentrates in 0,-1 with 0 < ampA <∞.

2 A: graded ring over k = Z/(4) with Ai a free k-module on a
basis element xi for i ∈ Z, and xixj = xi+j for i, j ∈ Z. Then A
is a DG-ring with ampA =∞.
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G-dimension for DG-modules
Let A be a noetherian DG-ring with ampA <∞.

1 X ∈ Db
f (A) is said to be reflexive if RHomA(X,A) ∈ Db

f (A)
and the map X → RHomA(RHomA(X,A),A) is isomorphic in
Db

f (A). We denote by R(A) for the full subcategory of D(A)
consisting of reflexive DG-modules.

2 For X ∈ R(A), define the G-dimension of X by the formula

G-dimAX = supRHomA(X,A).

If X is not reflexive, we say that G-dimAX =∞.
3 X ∈ R(A) is said to be in the G-class G if either G-dimAX =
−supX, or X ' 0, and denote by G0 the full subcategory of G
consisting of objects G such that either ampG ≥ ampA and
G-dimAG = −supG = 0, or G ' 0.
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Remark
1 A: ordinary ring, X: A-module =⇒ G-dimAX coincides with

the usual definition of the G-dimension for modules, and
G = G0 is exactly the class G(A).

2 A: ordinary ring, X: A-complex =⇒ G-dimAX is just the def-
inition of the G-dimension for complexes, and G-dimAX ≥
−supX.

3 One major difference from the case of rings is that
G-dimAX ≥ −supX need not hold in the DG-setting.
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Example (Dong Yang)

k: field, A = k[x]/(x2): DG k-algebra with deg(x) = −1, S = A/(x).
Then S has a resolution

· · · → A[2]
x→ A[1]

x→ A→ S→ 0.

Its total complex F is a minimal semi-free resolution of S, the
DG-module Hom(F,A) is the total complex of

0→ A x→ A[−1]
x→ A[−2]→ · · · .

Then RHom(S,A) ' Hom(F,A) ' S[1] and S ∈ R(A). So in this
case, supS = 0, but G-dimAS = sup RHom(S,A) = −1.
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sppj resolution (Minamoto, 2021)

For any 0 6' X ∈ D+(A),

• sppj morphism f : P → X is a morphism in D(A) such that
P ∈ AddA[−supX] and the morphism HsupX(f ) is surjective.

• sppj resolution P• of X is a sequence of exact triangles

Xi+1
gi+1−→ Pi

fi−→ Xi  

s.t. fi is a sppj morphism for i ≥ 0 with X0 := X.

• A: noetherian, X ∈ Db
f (A)⇒ Pi ∈ P := addA.

• For full subcategories X ,Y ⊆ D(A),

X ∗ Y = {Z ∈ D(A)|∃ X → Z → Y  , X ∈ X ,Y ∈ Y}.

[13] H. Minamoto, Resolutions and homological dimensions of DG-modules, Israel J. Math. 245 (2021) 409–454.
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Theorem (HYZ)

(A, m̄, k̄): comm. noetherian local DG-ring with ampA <∞.
(1) If 0 6' X ∈ Db

f (A) with ampX ≥ ampA and n ≥ 0, TFAE:
(i) G-dimAX ≤ n− supX;
(ii) A has a sppj resolution P• of X such that Xn ∈ G0[−supXn];
(iii) X ∈ P[−supX] ∗ · · · ∗ P[−supX + n− 1] ∗ G0[−supX + n];
(iv) X ∈ G0[−supX] ∗ P[−supX + 1] ∗ · · · ∗ P[−supX + n].

(2) If 0 6' X ∈ Db
f (A) with ampX < ampA and n ≥ 0, TFAE:

(i) G-dimAX ≤ n + infA− infX;
(ii) X ⊕ X[ampA − ampX] ∈ P[−supX] ∗ · · · ∗ P[−supX + n −
1] ∗ G0[−supX + n].

(3) TFAE:
(i) A is local Gorenstein (ampA <∞ and injdimAA <∞);
(ii) G-dimAk̄ <∞;
(iii) G-dimAX <∞ for any X ∈ Db

f (A).
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Remark
1 The inequality ampX < ampA is very often met. For instance,

assume that (A, m̄, k̄) is a comm. noetherian local DG-ring
with 0 < ampA <∞. Set X = k̄. Then ampX = 0 < ampA.

2 If (A, m̄, k̄) is a local Gorenstein DG-ring with 0 < ampA <∞,
then k̄ has finite G-dimension by Theorem, but k̄ never has
finite projective dimension.

3 G-dmension is a finer invariant than projective dimension
for DG-modules.
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Bass, Finitistic Dimension Conjecture
fpdA = sup{projdimAM |M f.g. with projdimAM < ∞} < ∞ holds
for a Artin algebra A.

Bird, Shaul, Sridhar and Williamson
Let A be a comm. noetherian DG-rings with bounded cohomol-
ogy. The little finitistic dimension of A,

fpdA = sup{projdimAM + infM|M ∈ Db
f (A)with projdimAM <∞}.

[14] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc.

95 (1960) 466–488.
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Xi, 2008
The little finitistic dimensions of an algebra can alternatively be
computed by G-dimension, that is,

fpdA = sup{G-dimAM |M f.g. with G-dimAM <∞}.

Corollary 1
If A is a comm. noetherian local DG-ring with ampA <∞, then

fpdA = sup{G-dimAX + inf X | X ∈ Db
f (A) with G-dimAX <∞}.

[15] C.C. Xi, On the finitistic dimension conjecture, III: Related to the pair eAe ⊆ A, J. Algebra 319 (2008) 3666–3688.

[16] I. Bird, L. Shaul, P. Sridhar and J. Williamson, Finitistic dimensions over commutative DG-rings, arXiv:2204.06865v2,

2022.
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Let A be a comm. noetherian local ring (not a DG-ring). A close
relation between the class of maximal Cohen-Macaulay mod-
ules

M = {M ∈ ModA|depthAM = dimA}

and the class G = G0 of modules of G-dimension zero over A
can be shown in the following fact.

1 A is Cohen-Macaulay iff G ⊆M.
2 A is Gorenstein iff G =M.

[17] L.W. Christensen, G. Piepmeyer, J. Striuli and R. Takahashi, Finite Gorenstein representation type implies simple

singularity, Adv. Math. 218 (2008) 1012–1026.
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For a comm. noetherian DG-ring A and X ∈ D−(A), denote

lc.dimAX := sup
l∈Z
{dim(Hl(M)) + l}.

We can generalize the above fact to the setting of comm. noethe-
rian local DG-rings.

Corollary 2
Let (A, m̄) be a comm. noetherian local DG-ring with ampA <∞.
Set H = {X ∈ G | lc.dimAX − depthAX ≥ ampX = ampA}. Then

1 A is local CM iff H ⊆ M = {X ∈ G | lc.dimAX − depthAX =
ampX = ampA, lc.dimAX − supX = dimH0(A)} the class of
maximal Cohen-Macaulay DG-modules.

2 A is Gorentein iff H =M.
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Buchweitz introduced the singularity category,

Dsg(A) := Db(A)/per(A).

It measures the homological singularity of the category of f.g.
left A-modules in sense that Dsg(A) = 0 iff gldimA <∞.

Buchweitz-Happel Theorem
∃ a fully faithful triangle functor F :M→ Dsg(A) provided that A
is a comm. local Gorenstein ring.

Bergh, Jørgensen, Oppermann
∃ a fully faithful triangle functor F :M→ Dsg(A) iff A is a comm.
local Gorenstein ring.

[19] P.A. Bergh, D.A. Jørgensen, S. Oppermann, The Gorenstein defect category, Quart. J. Math. 66(2) (2015)
459–471.

[20] D. Happel, On Gorenstein Algebras, in: Representation theory of finite groups and finite-dimensional algebras

(Proc. Conf. at Bielefeld, 1991), Progress in Math. 95, Birkhäuser, Basel, 1991, pp.389–404.
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Buchweitz-Happel Theorem has been generalized by Jin to a
proper noncommutative Gorenstein DG-algebra over a field k.

Jin, [21, Theorem 0.3 and Assumption 0.1]
A: Gorenstein DG-algebra over a field⇒ ∃ triangle equivalence

F : CM(A)→ Dsg(A) := Db
f (A)/〈P〉.

Corollary 3
A: comm. noetherian local DG-ring with ampA < ∞. Let A =
{X ∈ R(A) | sup X ≤ 0 and G-dimAX ≤ 0}. Then the functor

F : A → Dsg(A)

is a triangle equivalence iff A is a local Gorenstein DG-ring.

[21] H.B. Jin, Cohen-Macaulay differential graded modules and negative Calabi-Yau configurations, Adv. Math. 374

(2020) 107338.
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