KOD KOD KED KED BOAR

G-dimensions for DG-modules over commutative DG-rings

joint with Jiangsheng Hu, Rongmin Zhu

ShangHai RCRA 21

2024.8.8

KID KARA KE KAEK LE YOKO

A: ring or DG-ring D(*A*): the der.cat. over *A*

 $D_f(A)$: the full tri.subcat.of objects *X* s.t. $H^n(X)$ is f.g.

 $D^+(A)$: the full tri.subcat.of objects *X* s.t. $H^n(X) = 0$ for $n \ll 0$, D_f^+ $f_f^+(A) = D^+(A) \cap D_f(A)$

 $D^{-}(A)$: the full tri.subcat.of objects *X* s.t. $H^{n}(X) = 0$ for $n \gg 0$, $D_f^$ $f_f^-(A) = D^-(A) \cap D_f(A)$

 $D^{b}(A) = D^{-}(A) \cap D^{+}(A), D_{f}^{b}(A) = D^{b}(A) \cap D_{f}(A)$

KORKAPRASKASK ST VOOR

4 O F 4 O F 4 O F 4 O F 4 O F

 000

The projective dimension is a most important invariant for modules; this is illustrated by the next two results.

• The local ring (*A*, m) is regular (the maximal ideal m can be • $k = A/m$ has finite projective dimension; • All f.g. *A*-modules has finite projective dimension;

KORK ERKERK ADAM

The projective dimension is a most important invariant for modules; this is illustrated by the next two results.

Regularity Theorem for modules

(Serre, Auslander, Buchsbaum) TFAE

- The local ring (A, m) is regular (the maximal ideal m can be generated by dim*A* elements);
- $k = A/m$ has finite projective dimension;
- All f.g. *A*-modules has finite projective dimension;

The projective dimension is a most important invariant for modules; this is illustrated by the next two results.

Regularity Theorem for modules

(Serre, Auslander, Buchsbaum) TFAE

- The local ring (A, m) is regular (the maximal ideal m can be generated by dim*A* elements);
- $k = A/m$ has finite projective dimension;
- All f.g. *A*-modules has finite projective dimension;

Auslander-Buchsbaum Formula

A: local ring, *M*: f.g. *A*-module. If $projdim_{A} M < \infty$, then

projdim_A $M =$ depth $A -$ depth_A M .

Regularity Theorem for complexes

TFAE

- The local ring (A, m) is regular;
- $k = A/m$ has finite projective dimension;
- \bullet All *A*-complexes in $D_f^b(A)$ has finite projective dimension;

[1] M. Auslander, D.A. Buchsbaum, Homological dimension in Noetherian rings, *Proc. Nat. Acad. Sci.* 42 (1956) 36–38.

[2] J.-P. Serre, *Surla dimension homologique des anneaux et des modules noethdriens*, Proceedings of the international symposium on algebraic number theory, Tokyo § Nikko, 1955 (Tokyo), Science Council of Japan, 1956,

175–189.

KORK ERKERK ADAM

KORK ERKERK ADAM

Regularity Theorem for complexes

TFAE

- The local ring (A, m) is regular;
- $k = A/m$ has finite projective dimension;
- \bullet All *A*-complexes in $D_f^b(A)$ has finite projective dimension;

Auslander-Buchsbaum Formula for complexes

A: local ring, $M \in \mathop{\rm{D}^b_f}\nolimits(A).$ If $\operatorname{projdim}_A\nolimits M < \infty,$ then

projdim_A $M =$ depth $A -$ depth_A M .

[1] M. Auslander, D.A. Buchsbaum, Homological dimension in Noetherian rings, *Proc. Nat. Acad. Sci.* 42 (1956) 36–38.

[2] J.-P. Serre, *Surla dimension homologique des anneaux et des modules noethdriens*, Proceedings of the inter-

national symposium on algebraic number theory, Tokyo § Nikko, 1955 (Tokyo), Science Council of Japan, 1956,

175–189.

KORK ERKERK ADAM

Regularity Theorem for complexes

TFAE

- The local ring (A, m) is regular;
- $k = A/m$ has finite projective dimension;
- \bullet All *A*-complexes in $D_f^b(A)$ has finite projective dimension;

Auslander-Buchsbaum Formula for complexes

A: local ring, $M \in \mathop{\rm{D}^b_f}\nolimits(A).$ If $\operatorname{projdim}_A\nolimits M < \infty,$ then

projdim_A $M =$ depth $A -$ depth_A M .

Homological methods found their way into commutative algebra.

[1] M. Auslander, D.A. Buchsbaum, Homological dimension in Noetherian rings, *Proc. Nat. Acad. Sci.* 42 (1956) 36–38.

[2] J.-P. Serre, *Surla dimension homologique des anneaux et des modules noethdriens*, Proceedings of the inter-

national symposium on algebraic number theory, Tokyo § Nikko, 1955 (Tokyo), Science Council of Japan, 1956,

175–189.

KORK ERKERK ADAM

The G-dimension for f.g. module over a commutative noetherian ring was introduced by Auslander in [3], and was developed deeply by Auslander and Bridger in [4].

[3] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'algèbre commutative dirigé par P. Samuel, Secrétariat mathématique, Paris, 1967.

[4] M. Auslander and M. Bridger, *Stable module theory*, Mem. Amer. Math. Soc. vol. 94, 1969.

The G-dimension for f.g. module over a commutative noetherian ring was introduced by Auslander in [3], and was developed deeply by Auslander and Bridger in [4].

A: comm. noetherian ring. A f.g. *A*-module *M* is in *G*(*A*) iff (i) $\text{Ext}_{A}^{m}(M, A) = 0$ for $m \neq 0$; (ii) $\text{Ext}_{A}^{m}(\text{Hom}_{A}(M, A), A) = 0$ for $m \neq 0$; (iii) The biduality map $\delta_M : M \to \text{Hom}_A(\text{Hom}_A(M, A), A)$ is an iso.

[3] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'algèbre commutative dirigé par P. Samuel, Secrétariat mathématique, Paris, 1967.

[4] M. Auslander and M. Bridger, *Stable module theory*, Mem. Amer. Math. Soc. vol. 94, 1969.

The G-dimension for f.g. module over a commutative noetherian ring was introduced by Auslander in [3], and was developed deeply by Auslander and Bridger in [4].

A: comm. noetherian ring. A f.g. *A*-module *M* is in *G*(*A*) iff (i) $\text{Ext}_{A}^{m}(M, A) = 0$ for $m \neq 0$; (ii) $\text{Ext}_{A}^{m}(\text{Hom}_{A}(M, A), A) = 0$ for $m \neq 0$; (iii) The biduality map $\delta_M : M \to \text{Hom}_A(\text{Hom}_A(M, A), A)$ is an iso.

All conditions in Definition are necessary.

[3] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'algèbre commutative dirigé par P. Samuel, Secrétariat mathématique, Paris, 1967.

[4] M. Auslander and M. Bridger, *Stable module theory*, Mem. Amer. Math. Soc. vol. 94, 1969.

 2990

{f.g. projective *A*-modules} $\subset G(A)$

 k : field, $A = k[[x]]/(x^2)$: local and self-injective (0-Gorenstein $ring) \Rightarrow k \in G(A)$, but *k* is not projective because *A* is not regular.

$$
0 \to G_n \to \cdots \to G_0 \to M \to 0
$$

KORK ERKERK ADAM

{f.g. projective *A*-modules} $\subset G(A)$

 k : field, $A = k[[x]]/(x^2)$: local and self-injective (0-Gorenstein $\mathsf{ring}) \Rightarrow k \in G(A)$, but *k* is not projective because *A* is not regular.

A f.g. *A*-module *M* is said to have finite G-dimension if it has a *G*(*A*)-resolution of finite length, i.e. ∃ exact sequence

$$
0\to G_n\to \cdots\to G_0\to M\to 0
$$

with each $G_i \in G(A)$. G-dimension is a refinement of projective dimension for f.g. modules.

The G-dimension shares many of the nice properties of the projective dimension.

- The local ring (A, m) is Gorenstein (injdim₄ $A < \infty$);
- $k = A/m$ has finite G-dimension;
- All f.g. *A*-modules has finite G-dimension.

[5] L.W. Christensen, *Gorenstein Dimensions*, Lecture Notes in Math., vol. 1747, Springer-Verlag, Berlin, 2000.

The G-dimension shares many of the nice properties of the projective dimension.

Gorenstein Theorem for modules

TFAE

- The local ring (A, \mathfrak{m}) is Gorenstein (injdim_A $A < \infty$);
- $k = A/m$ has finite G-dimension;
- All f.g. *A*-modules has finite G-dimension.

[5] L.W. Christensen, *Gorenstein Dimensions*, Lecture Notes in Math., vol. 1747, Springer-Verlag, Berlin, 2000.

G-dimension has played an important role in singularity theory, cohomology theory of commutative rings and representation theory of Artin algebras.

[6] M. Auslander and I. Reiten, *Applications of contravariantly finite subcategories*, Adv. Math. 86 (1991) 111–152.

[7] L.L. Avramov and A. Martsinkovsky, *Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension*, Proc. London Math. Soc. 85 (2002) 393–440.

[8] R.-O. Buchweitz, *Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings*, with appendices by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar, and Janina C. Letz, Math. Surveys and Monographs 262, Amer. Math. Soc. 2021.

[9] C.M. Ringel and P. Zhang, *Representations of quivers over the algebra of dual numbers*, J. Algebra 475 (2017) 327–360.

[10] Y. Yoshino, *Cohen-Macaulay Modules Over Cohen-Macaulay Rings*, London Math. Soc. Lecture Note Ser., vol.

146, Cambridge Univ. Press, Cambridge, 1990.

KORK ERKERK ADAM

KORK ERKERK ADAM

Yassemi [11] studied G-dimension for complexes through a consistent use of the RHom-functor of complexes and the related category of reflexive complexes.

A: comm. noetherian local ring. An *A*-complex *X* is said to be reflexive iff

- $X \in D_f^b(A);$
- RHom_{*A*} $(X, A) \in D_f^b(A)$;
- *X* represents $\text{RHom}_{A}(\text{RHom}_{A}(X, A), A)$ canonically.

[11] S. Yassemi, *G-dimension*, Math. Scand. 77 (1995) 161–174.

Christensen [5] gave the definition of G-dimension for complexes in terms of resolutions.

$$
G\text{-dim}_{A} X = \inf \{ \sup \{ l \in \mathbb{Z} \mid G^{-l} \neq 0 \} | X \simeq G \in C_{(1)}^{G(A)}(A) \}.
$$

The two definitions are equivalent, and they are both rooted in a result — due to Foxby.

An *A*-complex *X* is reflexive iff *X* has finite G-dimension and

 G -dim_{*A}* $X = \text{supRHom}_{A}(X, A)$.</sub>

^[5] L.W. Christensen, *Gorenstein Dimensions*, Lecture Notes in Math., vol. 1747, Springer-Verlag, Berlin, 2000.

KORK ERKERK ADAM

Gorenstein Theorem for complexes

TFAE

- The local ring (A, \mathfrak{m}) is Gorenstein;
- $k = A/m$ has finite G-dimension;
- All A -complexes in $D_f^b(A)$ has finite G-dimension.

Despite the great success of the G-dimension in comm. noetherian rings, until now it was completely missing from higher alge**bra.** For example, non-positive comm. DG-rings.

Despite the great success of the G-dimension in comm. noetherian rings, until now it was completely missing from higher algebra. For example, non-positive comm. DG-rings.

DG-ring $A = \bigoplus_{i \in \mathbb{Z}} A^i$: Z-graded ring with map $d_A : A \to A$ s.t. $d_A \circ d_A = 0$, and satisfies the Leibniz rule

 $d_A(a \cdot b) = d_A(a) \cdot b + (-1)^{|a|} a \cdot d_A(b), \forall a, b \in A.$

Despite the great success of the G-dimension in comm. noetherian rings, until now it was completely missing from higher algebra. For example, non-positive comm. DG-rings.

DG-ring $A = \bigoplus_{i \in \mathbb{Z}} A^i$: Z-graded ring with map $d_A : A \to A$ s.t. $d_A \circ d_A = 0$, and satisfies the Leibniz rule

 $d_A(a \cdot b) = d_A(a) \cdot b + (-1)^{|a|} a \cdot d_A(b), \forall a, b \in A.$

commutative DG-ring A : $b \cdot a = (-1)^{|a| \cdot |b|} a \cdot b$, $\forall a,b \in A$, and $a^2 = 0$ if $|a|$ is odd. non-positive DG-ring A : $A^i = 0$ for all $i > 0$. noetherian DG-ring $A\colon \mathrm{H}^0(A)$ is noetherian, $\mathrm{H}^i(A)$ is a f.g. $\mathrm{H}^0(A)\text{-}$ module for $i < 0$. local noetherian DG-ring $(A, \bar{\mathfrak{m}}, \bar{\kappa})$: $(\mathrm{H}^0(A), \bar{\mathfrak{m}}, \bar{\kappa})$ is local and A is noetherian.

KORK ERKERK ADAM

DG-module: a graded A-module (X, d_X) with the differential d_X : $X \rightarrow X$ satisfies the Leibniz rule

$$
d_X(ax) = d_A(a)x + (-1)^{|a|}a \cdot d_X(x), \forall a \in A, x \in X.
$$

[12] A. Yekutieli, *Derived Categories*, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press, 2019.

DG-module: a graded A-module (X, d_X) with the differential d_X : $X \rightarrow X$ satisfies the Leibniz rule $d_X(ax) = d_A(a)x + (-1)^{|a|}a \cdot d_X(x), \forall a \in A, x \in X.$

The infimum, supremum and amplitude of a DG-module *X* $\inf X := \inf \{ n \in \mathbb{Z} | H^n(X) \neq 0 \},$ $\sup X := \sup\{n \in \mathbb{Z} | H^n(X) \neq 0\},\$ $ampX := supX - infX$.

[12] A. Yekutieli, *Derived Categories*, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press, 2019.

KORK ERKERK ADAM

[Outline](#page-1-0) [Backgroud](#page-2-0) [Main results](#page-29-0) [Three applications](#page-41-0) DG-module: a graded A-module (X, d_X) with the differential d_X : $X \rightarrow X$ satisfies the Leibniz rule

 $d_X(ax) = d_A(a)x + (-1)^{|a|}a \cdot d_X(x), \forall a \in A, x \in X.$

The infimum, supremum and amplitude of a DG-module *X* $\inf X := \inf \{ n \in \mathbb{Z} | H^n(X) \neq 0 \},$ $\sup X := \sup\{n \in \mathbb{Z} | H^n(X) \neq 0\},\$ $ampX := supX - infX$.

We refer the reader to [12] for more details about DG rings and their derived categories.

[12] A. Yekutieli, *Derived Categories*, Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge University Press, 2019.

KORK ERKERK ADAM

 000

Example

-
-

KORKARRICH ET VOOR

Example

- **1** *k*: field, *A*: the ring $A = k[y, z]/(y^2, yz, z^2)$ with $d_A = 0$, where *y* and *z* are indeterminates over *k*. If $|y| = -1 = |z|$, then *A* concentrates in 0,-1 with $0 < \text{ampA} < \infty$.
-

KOD KOD KED KED E VOOR

Example

- **1** *k*: field, *A*: the ring $A = k[y, z]/(y^2, yz, z^2)$ with $d_A = 0$, where *y* and *z* are indeterminates over *k*. If $|y| = -1 = |z|$, then *A* concentrates in 0,-1 with $0 < \text{ampA} < \infty$.
- **2** *A*: graded ring over $k = \mathbb{Z}/(4)$ with A^i a free *k*-module on a basis element x^i for $i \in \mathbb{Z}$, and $x^ix^j = x^{i+j}$ for $i, j \in \mathbb{Z}$. Then A is a DG-ring with amp $A = \infty$.

 \bullet 00000

[Outline](#page-1-0) [Backgroud](#page-2-0) [Main results](#page-29-0) [Three applications](#page-41-0)

G-dimension for DG-modules

Let *A* be a noetherian DG-ring with amp $A < \infty$.

- **1** $X \in D_f^b(A)$ is said to be *reflexive* if $RHom_A(X, A) \in D_f^b(A)$ and the map $X \to \text{RHom}_{A}(\text{RHom}_{A}(X, A), A)$ is isomorphic in $D_f^b(A)$. We denote by $\mathcal{R}(A)$ for the full subcategory of $D(A)$ consisting of reflexive DG-modules.
- **2** For $X \in \mathcal{R}(A)$, define the *G-dimension* of *X* by the formula

 G -dim_{*A}* $X = \text{supRHom}_{A}(X, A)$.</sub>

If *X* is not reflexive, we say that G-dim_{*A*} $X = \infty$.

3 $X \in \mathcal{R}(A)$ is said to be in the *G-class G* if either G-dim_A $X =$ $-\sup X$, or $X \simeq 0$, and denote by \mathcal{G}_0 the full subcategory of \mathcal{G} consisting of objects *G* such that either amp $G \ge \text{ampA}$ and G -dim_{*A*} $G = -\sup G = 0$, or $G \simeq 0$.

- **1** *A*: ordinary ring, *X*: *A*-module \implies G-dim_{*A}X* coincides with</sub> the usual definition of the G-dimension for modules, and $G = G₀$ is exactly the class $G(A)$.
- **2** *A*: ordinary ring, *X*: *A*-complex \implies G-dim_{*A}X* is just the def-</sub> inition of the G-dimension for complexes, and G -dim_A $X \geq$ −sup*X*.
- **³** One major difference from the case of rings is that $G\text{-dim}_AX$ > $-\text{sup}X$ need not hold in the DG-setting.

Example (Dong Yang)

 k : field, $A = k[x]/(x^2)$: DG k -algebra with deg $(x) = -1$, $S = A/(x)$. Then *S* has a resolution

$$
\cdots \to A[2] \stackrel{x}{\to} A[1] \stackrel{x}{\to} A \to S \to 0.
$$

Its total complex *F* is a minimal semi-free resolution of *S*, the DG-module Hom(*F*, *A*) is the total complex of

$$
0 \to A \stackrel{x}{\to} A[-1] \stackrel{x}{\to} A[-2] \to \cdots.
$$

Then RHom(*S*, *A*) \simeq Hom(*F*, *A*) \simeq *S*[1] and *S* \in *R*(*A*). So in this case, $\text{supS} = 0$, but G-dim_{*A*} $S = \text{sup} \text{RHom}(S, A) = -1$.

KORKAPRASKASK ST VOOR

sppj resolution (Minamoto, 2021)

For any $0 \not\approx X \in D^+(A)$,

- *sppi morphism* $f : P \to X$ is a morphism in $D(A)$ such that $P \in \text{Add}A[-\text{sup}X]$ and the morphism $\text{H}^{\text{sup}X}(f)$ is surjective.
- *sppj resolution P* of *X* is a sequence of exact triangles

$$
X_{i+1} \xrightarrow{g_{i+1}} P_i \xrightarrow{f_i} X_i \rightsquigarrow
$$

s.t. f_i is a sppj morphism for $i\geq 0$ with $X_0:=X.$

- *A*: noetherian, $X \in D_f^b(A) \Rightarrow P_i \in \mathcal{P} := \text{add}A$.
- • For full subcategories $\mathcal{X}, \mathcal{Y} \subseteq D(A)$,

 $\mathcal{X} * \mathcal{Y} = \{ Z \in D(A) | \exists X \to Z \to Y \leadsto, X \in \mathcal{X}, Y \in \mathcal{Y} \}.$

Theorem (HYZ)

 (A, \bar{m}, \bar{k}) : comm. noetherian local DG-ring with amp $A < \infty$.

- - (ii) *A* has a sppj resolution *P* of *X* such that $X_n \in \mathcal{G}_0[-\sup X_n]$;
		-
- -

-
-

Theorem (HYZ)

 (A, \bar{m}, \bar{k}) : comm. noetherian local DG-ring with amp $A < \infty$.

(1) If $0 \neq X \in D_f^b(A)$ with amp $X \geq \text{ampA}$ and $n \geq 0$, TFAE: (i) G-dim_A $X \leq n - \sup X$;

(ii) *A* has a sppj resolution P_{\bullet} of *X* such that $X_n \in \mathcal{G}_0[-\sup X_n]$; (iii) $X \in \mathcal{P}[-\sup X] * \cdots * \mathcal{P}[-\sup X + n - 1] * \mathcal{G}_0[-\sup X + n];$ (iv) $X \in \mathcal{G}_0[-\text{sup}X] * \mathcal{P}[-\text{sup}X + 1] * \cdots * \mathcal{P}[-\text{sup}X + n].$

-
-

Theorem (HYZ)

 (A, \bar{m}, \bar{k}) : comm. noetherian local DG-ring with amp $A < \infty$.

(1) If
$$
0 \neq X \in D_f^b(A)
$$
 with $ampX \geq \text{ampA}$ and $n \geq 0$, TFAE:
\n(i) G-dim_AX $\leq n - \text{supX}$;
\n(ii) A has a **sppj resolution** P_{\bullet} of X such that $X_n \in \mathcal{G}_0[-\text{sup}X_n]$;
\n(iii) $X \in \mathcal{P}[-\text{sup}X] * \cdots * \mathcal{P}[-\text{sup}X + n - 1] * \mathcal{G}_0[-\text{sup}X + n]$;
\n(iv) $X \in \mathcal{G}_1$ and $X \in \mathcal{G}_2$

$$
(iv) X \in \mathcal{G}_0[-\mathrm{sup}X] * \mathcal{P}[-\mathrm{sup}X + 1] * \cdots * \mathcal{P}[-\mathrm{sup}X + n].
$$

(2) If
$$
0 \neq X \in D_f^b(A)
$$
 with $ampX < ampA$ and $n \geq 0$, TFAE:
\n(i) $G\text{-dim}_A X \leq n + \inf A - \inf X$;
\n(ii) $X \oplus X[ampA - ampX] \in \mathcal{P}[-sup X] * \cdots * \mathcal{P}[-sup X + n - p]$

 $1 \times \mathcal{G}_0$ | $-\sup X + n$ |.

-
-

Theorem (HYZ)

 (A, \bar{m}, \bar{k}) : comm. noetherian local DG-ring with amp $A < \infty$.

(1) If
$$
0 \neq X \in D_f^b(A)
$$
 with $ampX \geq ampA$ and $n \geq 0$, TFAE:
(i) $G\text{-dim}_AX \leq n - supX$;

(ii) *A* has a sppj resolution P_{\bullet} of *X* such that $X_n \in \mathcal{G}_0[-\sup X_n]$; (iii) $X \in \mathcal{P}[-\sup X] * \cdots * \mathcal{P}[-\sup X + n - 1] * \mathcal{G}_0[-\sup X + n];$ (iv) $X \in \mathcal{G}_0[-\text{sup}X] * \mathcal{P}[-\text{sup}X + 1] * \cdots * \mathcal{P}[-\text{sup}X + n].$

(2) If $0 \neq X \in D_f^b(A)$ with amp $X <$ amp*A* and $n \geq 0$, TFAE: (i) G-dim_A $X \leq n + \inf A - \inf X$; (ii) $X \oplus X$ [amp*A* – amp*X*] $\in \mathcal{P}$ [-sup*X*] * \cdots * \mathcal{P} [-sup*X* + *n* –

 $1] * G_0[-\sup X + n]$.

(3) TFAE:

(i) *A* is local Gorenstein (amp*A* $< \infty$ and injdim_{*A}A* $< \infty$);</sub> (ii) G-dim_{*A*} $\bar{k} < \infty$;

(iii) G-dim_{*A*} $X < \infty$ for any $X \in D_f^b(A)$.

 299

-
-
-

 2990

- **1** The inequality amp $X <$ amp*A* is very often met. For instance, assume that (A, \bar{m}, \bar{k}) is a comm. noetherian local DG-ring with $0 < \text{ampA} < \infty$. Set $X = \overline{k}$. Then $\text{ampX} = 0 < \text{ampA}$.
-
-

- **1** The inequality amp $X <$ ampA is very often met. For instance, assume that (A, \bar{m}, \bar{k}) is a comm. noetherian local DG-ring with $0 < \text{ampA} < \infty$. Set $X = \overline{k}$. Then $\text{ampX} = 0 < \text{ampA}$.
- **2** If $(A, \bar{\mathfrak{m}}, \bar{k})$ is a local Gorenstein DG-ring with $0 < \mathrm{amp}A < \infty$, then \bar{k} has finite G-dimension by Theorem, but \bar{k} never has finite projective dimension.
-

- **1** The inequality amp $X <$ amp*A* is very often met. For instance, assume that (A, \bar{m}, \bar{k}) is a comm. noetherian local DG-ring with $0 < \text{ampA} < \infty$. Set $X = \overline{k}$. Then $\text{ampX} = 0 < \text{ampA}$.
- **2** If $(A, \bar{\mathfrak{m}}, \bar{k})$ is a local Gorenstein DG-ring with $0 < \mathrm{amp}A < \infty$, then \bar{k} has finite G-dimension by Theorem, but k never has finite projective dimension.
- **³** G-dmension is a finer invariant than projective dimension for DG-modules.

KOD KOD KED KED E VOOR

Bass, Finitistic Dimension Conjecture

fpd*A* = $\sup{\text{projdim}_A M | M \leq g}$, with $\text{projdim}_A M < \infty$ < ∞ holds for a Artin algebra *A*.

[14] H. Bass, *Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. 95 (1960) 466–488.

KORKARRICH ET VOOR

Bass, Finitistic Dimension Conjecture

 $f \text{pd}A = \sup \{ \text{projdim}_{A} M | M \text{ f.g. with } \text{projdim}_{A} M < \infty \} < \infty$ holds for a Artin algebra *A*.

Bird, Shaul, Sridhar and Williamson

Let *A* be a comm. noetherian DG-rings with bounded cohomology. The *little finitistic dimension* of *A*,

 $fpdA = \sup\{projdim_A M + \inf M | M \in D_f^b(A) \text{with } projdim_A M < \infty \}.$

[14] H. Bass, *Finitistic dimension and a homological generalization of semi-primary rings*, Trans. Amer. Math. Soc. 95 (1960) 466–488.

KOD KOD KED KED E VOOR

Xi, 2008

The little finitistic dimensions of an algebra can alternatively be computed by G-dimension, that is,

 $f \text{p} dA = \sup \{ G \text{-dim}_A M | M \text{ f.g. with } G \text{-dim}_A M < \infty \}.$

[15] C.C. Xi, *On the finitistic dimension conjecture, III: Related to the pair eAe* ⊆ *A*, J. Algebra 319 (2008) 3666–3688. [16] I. Bird, L. Shaul, P. Sridhar and J. Williamson, *Finitistic dimensions over commutative DG-rings*, arXiv:2204.06865v2, 2022.

KORK ERKERK ADAM

Xi, 2008

The little finitistic dimensions of an algebra can alternatively be computed by G-dimension, that is,

 $f \text{p} dA = \sup \{ G \text{-dim}_A M | M \text{ f.g. with } G \text{-dim}_A M < \infty \}.$

Corollary 1

If *A* is a comm. noetherian local DG-ring with $ampA < \infty$, then

 $fpdA = \sup\{G\text{-dim}_AX + \inf X \mid X \in D_f^b(A) \text{ with } G\text{-dim}_AX < \infty\}.$

[15] C.C. Xi, *On the finitistic dimension conjecture, III: Related to the pair eAe* ⊆ *A*, J. Algebra 319 (2008) 3666–3688. [16] I. Bird, L. Shaul, P. Sridhar and J. Williamson, *Finitistic dimensions over commutative DG-rings*, arXiv:2204.06865v2, 2022.

Let *A* be a comm. noetherian local ring (not a DG-ring). A close relation between the class of maximal Cohen-Macaulay modules

$$
\mathcal{M} = \{ M \in \mathsf{Mod}A | \mathsf{depth}_A M = \mathsf{dim}A \}
$$

and the class $G = G_0$ of modules of G-dimension zero over A can be shown in the following fact.

Let *A* be a comm. noetherian local ring (not a DG-ring). A close relation between the class of maximal Cohen-Macaulay modules

$$
\mathcal{M} = \{ M \in \mathsf{Mod}A | \mathsf{depth}_A M = \dim A \}
$$

and the class $G = G₀$ of modules of G-dimension zero over A can be shown in the following fact.

Let *A* be a comm. noetherian local ring (not a DG-ring). A close relation between the class of maximal Cohen-Macaulay modules

$$
\mathcal{M} = \{ M \in \mathsf{Mod}A | \mathsf{depth}_A M = \dim A \}
$$

and the class $G = G_0$ of modules of G-dimension zero over A can be shown in the following fact.

1 *A* is Cohen-Macaulay iff $G \subseteq M$.

KORK ERKER AD A BOACH

Let *A* be a comm. noetherian local ring (not a DG-ring). A close relation between the class of maximal Cohen-Macaulay modules

$$
\mathcal{M} = \{ M \in \mathsf{Mod}A | \mathsf{depth}_A M = \dim A \}
$$

and the class $G = G_0$ of modules of G-dimension zero over A can be shown in the following fact.

1 *A* is Cohen-Macaulay iff $G \subseteq M$.

2 *A* is Gorenstein iff $G = M$.

For a comm. noetherian DG-ring A and $X \in D^{-}(A)$, denote

$$
lclim_{A}X := \sup_{l \in \mathbb{Z}} \{ \dim(\mathrm{H}^{l}(M)) + l \}.
$$

We can generalize the above fact to the setting of comm. noetherian local DG-rings.

Corollary 2

Let (A, \bar{m}) be a comm. noetherian local DG-ring with amp $A < \infty$. Set $\mathcal{H} = \{X \in \mathcal{G} \mid \text{lc.dim}_A X - \text{depth}_A X \ge \text{ampX} = \text{ampA}\}.$ Then

- **1** *A* is local CM iff $H \subseteq M = \{X \in \mathcal{G} \mid \text{lc.dim}_A X \text{depth}_A X = \emptyset\}$
-

For a comm. noetherian DG-ring A and $X \in D^{-}(A)$, denote

$$
lclim_{A}X := \sup_{l \in \mathbb{Z}} \{ \dim(\mathrm{H}^{l}(M)) + l \}.
$$

We can generalize the above fact to the setting of comm. noetherian local DG-rings.

Corollary 2

Let (A, \bar{m}) be a comm. noetherian local DG-ring with amp $A < \infty$. Set $\mathcal{H} = \{X \in \mathcal{G} \mid \text{lc.dim}_A X - \text{depth}_A X \ge \text{ampX} = \text{ampA}\}.$ Then

1 *A* is local CM iff $H \subset \mathcal{M} = \{X \in \mathcal{G} \mid \text{lc.dim}_A X - \text{depth}_A X = \emptyset\}$ $ampX = ampA, lc.dim_AX - supX = dimH⁰(A)$ } the class of maximal Cohen-Macaulay DG-modules.

For a comm. noetherian DG-ring A and $X \in D^{-}(A)$, denote

$$
lclim_{A}X := \sup_{l \in \mathbb{Z}} \{ \dim(\mathrm{H}^{l}(M)) + l \}.
$$

We can generalize the above fact to the setting of comm. noetherian local DG-rings.

Corollary 2

Let (A, \bar{m}) be a comm. noetherian local DG-ring with amp $A < \infty$. Set $\mathcal{H} = \{X \in \mathcal{G} \mid \text{lc.dim}_A X - \text{depth}_A X \ge \text{ampX} = \text{ampA}\}.$ Then

1 *A* is local CM iff $H \subset \mathcal{M} = \{X \in \mathcal{G} \mid \text{lc.dim}_A X - \text{depth}_A X = \emptyset\}$ $ampX = ampA, lc.dim_AX - supX = dimH⁰(A)$ } the class of maximal Cohen-Macaulay DG-modules.

2 A is Gorentein iff
$$
\mathcal{H} = \mathcal{M}
$$
.

Buchweitz introduced the *singularity category*,

$$
D_{sg}(A) := D^{b}(A)/\text{per}(A).
$$

It measures the homological singularity of the category of f.g. left *A*-modules in sense that $D_{sg}(A) = 0$ iff gldim $A < \infty$.

Buchweitz-Happel Theorem

 \exists a fully faithful triangle functor $F : \mathcal{M} \to D_{sg}(A)$ provided that A is a comm. local Gorenstein ring.

[19] P.A. Bergh, D.A. Jørgensen, S. Oppermann, *The Gorenstein defect category*, Quart. J. Math. 66(2) (2015) 459–471.

[20] D. Happel, *On Gorenstein Algebras*, in: Representation theory of finite groups and finite-dimensional algebras

(Proc. Conf. at Bielefeld, 1991), Progress in Math. 95, Birkhäuser, Basel, 199[1, p](#page-51-0)p.[38](#page-53-0)[9–](#page-51-0)[40](#page-52-0)[4](#page-53-0)[.](#page-54-0) a a s a s a s s a s

Buchweitz introduced the *singularity category*,

$$
D_{sg}(A) := D^{b}(A)/\text{per}(A).
$$

It measures the homological singularity of the category of f.g. left *A*-modules in sense that $D_{sg}(A) = 0$ iff gldim $A < \infty$.

Buchweitz-Happel Theorem

 \exists a fully faithful triangle functor $F : \mathcal{M} \to D_{sg}(A)$ provided that A is a comm. local Gorenstein ring.

Bergh, Jørgensen, Oppermann

 \exists a fully faithful triangle functor $F : \mathcal{M} \to D_{sg}(A)$ iff A is a comm. local Gorenstein ring.

[19] P.A. Bergh, D.A. Jørgensen, S. Oppermann, *The Gorenstein defect category*, Quart. J. Math. 66(2) (2015) 459–471.

[20] D. Happel, *On Gorenstein Algebras*, in: Representation theory of finite groups and finite-dimensional algebras

(Proc. Conf. at Bielefeld, 1991), Progress in Math. 95, Birkhäuser, Basel, 199[1, p](#page-52-0)p.[38](#page-54-0)[9–](#page-51-0)[40](#page-52-0)[4](#page-53-0)[.](#page-54-0) a a > a B > a B + B + O Q O

Buchweitz-Happel Theorem has been generalized by Jin to a proper noncommutative Gorenstein DG-algebra over a field *k*.

Jin, [21, Theorem 0.3 and Assumption 0.1]

A: Gorenstein DG-algebra over a field ⇒ ∃ triangle equivalence

$$
F: \underline{\mathbf{CM}}(A) \to \mathbf{D}_{sg}(A) := \mathbf{D}_f^b(A)/\langle \mathcal{P} \rangle.
$$

[21] H.B. Jin, *Cohen-Macaulay differential graded modules and negative Calabi-Yau configurations*, Adv. Math. 374 (2020) 107338.**KORK ERKERK ADAM**

Buchweitz-Happel Theorem has been generalized by Jin to a proper noncommutative Gorenstein DG-algebra over a field *k*.

Jin, [21, Theorem 0.3 and Assumption 0.1]

A: Gorenstein DG-algebra over a field ⇒ ∃ triangle equivalence

$$
F: \underline{\mathrm{CM}}(A) \to \mathrm{D}_{sg}(A) := \mathrm{D}^{\mathrm{b}}_{\mathrm{f}}(A)/\langle \mathcal{P} \rangle.
$$

Corollary 3

A: comm. noetherian local DG-ring with ampA $< \infty$. Let $\mathcal{A} =$ ${X \in \mathcal{R}(A) \mid \sup X \leq 0}$ and G-dim_{*A*} $X \leq 0$. Then the functor

$$
F:\underline{\mathcal{A}}\to \mathrm{D}_{sg}(A)
$$

is a triangle equivalence iff *A* is a local Gorenstein DG-ring.

^[21] H.B. Jin, *Cohen-Macaulay differential graded modules and negative Calabi-Yau configurations*, Adv. Math. 374 (2020) 107338.**KORK ERKER AD A BOACH**

Thank you!

KID KARA KE KAEK LE YOKO