A recollement approach to Han's conjecture

Xiaoxiao Xu(East China Normal University)

Shanghai Jiao Tong University August 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

This talk is based on joint work

● Ren Wang(汪任), Xiaoxiao Xu (徐校校), Jinbi Zhang (张金币)and Guodong Zhou (周国栋), A recollement approach to Han's conjecture, preprint in preparation.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- **•** Han's conjecture
- A reduction theorem and its proof
- Morita context algebras and Han's conjecture

K ロ X イロ X K ミ X K ミ X ミ → S V Q Q Q

• Applications

Part I: Happel's question

Let k be a field of arbitrary characteristic. Let A be a k -algebra.

Definition

Hochschild cohomology $HH^n(A) = Ext_{A \otimes A^{op}}^n(A, A), n \ge 0.$

Theorem (Happel 1987)

Let k be an algebraically closed field, A be a finite dimensional k-algebra. If $\mathrm{gldim}(A) < \infty$, then $\mathrm{HH}^n(A) = 0, \forall n >> 0$.

In 1987, D. Happel asked the following question:

Let A be a finite-dimensional algebra over a field k. If $\mathrm{HH}^n(A)=0, \forall n>>0, \text{ then is}\ \mathrm{gldim}(A)<\infty$?

D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Springer Lecture Notes in Mathematics, vol. 1404, 1989, pp.

Part I: Happel's question

Let k be a field of arbitrary characteristic. Let A be a k -algebra.

Definition

Hochschild cohomology $HH^n(A) = Ext_{A \otimes A^{op}}^n(A, A), n \ge 0.$

Theorem (Happel 1987)

Let k be an algebraically closed field, A be a finite dimensional k-algebra. If $\mathrm{gldim}(A) < \infty$, then $\mathrm{HH}^n(A) = 0, \forall n >> 0$.

In 1987, D. Happel asked the following question:

Question (Happel 1987)

Let A be a finite-dimensional algebra over a field k. If $\mathrm{HH}^n(A)=0, \forall n>>0$, then is $\mathrm{gldim}(A)<\infty$?

D. Happel, Hochschild cohomology of finite-dimensional algebras, in: Springer Lecture Notes in Mathematics, vol. 1404, 1989, pp. $108 - 126$

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

Example (Buchweitz-Green-Madsen-Solberg 2005)

Let k be a field and $q \in k$. Let $A = k\langle x, y \rangle / (x^2, y^2, xy + qyx)$ with q not a root of unity. Then

$$
\dim_k \mathrm{HH}^i(A) = \left\{ \begin{array}{ll} 2 & i = 0, 1, \\ 1 & i = 2, \\ 0 & \text{otherwise.} \end{array} \right.
$$

- R.-O. Buchweitz, E.L. Green, D. Madsen, Ø. Solberg, Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005) 805 - 816.
- \Box Schulz, R., A nonprojective module without self-extensions, Arch. Math. (Basel) 62 (1994) 497 - 500.

Part I: Han's conjecture

Definition

Hochschild homology $\mathrm{HH}_n(A)=\mathrm{Tor}_n^{A\otimes A^{op}}$ $\bigcap_{n}^{A\otimes A} (A, A), n \geq 0.$

 $Yang$ Han (韩阳) asked the following question:

Conjecture (Han 2006)

Let A be a finite-dimensional algebra over a field k. if $\text{HH}_n(A) = 0, \forall n >> 0$, then $\text{gldim}(A) < \infty$.

Assume that k is a perfect field, A is a finite dimensional algebra. If $\text{gldim}(A) < \infty$, then $\text{HH}_n(A) = 0, \forall n > 0$.

Math. Soc. (2) 73 (2006), no. 3, 657 - 668.

B. Keller, Invariance and Localization for Cyclic Homology of DG algebras, J. Pure Appl. Algebra 123 (1998), 223-273.

Part I: Han's conjecture

Definition

Hochschild homology $\mathrm{HH}_n(A)=\mathrm{Tor}_n^{A\otimes A^{op}}$ $\bigcap_{n}^{A\otimes A} (A, A), n \geq 0.$

 $Yang$ Han (韩阳) asked the following question:

Conjecture (Han 2006)

Let A be a finite-dimensional algebra over a field k. if $\text{HH}_n(A) = 0, \forall n >> 0$, then $\text{gldim}(A) < \infty$.

Theorem (Han 2006, Keller 98)

Assume that k is a perfect field, A is a finite dimensional algebra. If $\text{gldim}(A) < \infty$, then $\text{HH}_n(A) = 0, \forall n > 0$.

譶 Yang Han (韩阳), Hochschild (co)homology dimension. J. London Math. Soc. (2) 73 (2006) , no. 3, 657 - 668.

B. Keller, Invariance and Localization for Cyclic Homology of DG algebras, J. Pure Appl. Algebra 123 (1998), 223-273..
K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 시 할 → 10 Q Q Han's conjecture is known to be true for

- monomial algebras, and truncated quiver algebras,
- **•** commutative algebras,
- **•** generalised Weyl algebras
- graded local algebras, Koszul algebras and graded cellular algebras under the condition that the ground field has characteristic 0

KORK STRATER STRAKER

 e etc.

Part II: Our first result: A reduction theorem for Han's conjecture

Theorem (X.-Wang-Zhang-Zhou.2024)

Given a ladder of height two of unbounded derived categories of finite dimensional algebras

then Han's conjecture holds for A iff it holds for B and C. So Han's conjecture is reduced to derived 2-simple algebras.

Ren Wang (汪任), Xiaoxiao Xu (徐校校), Jinbi Zhang (张金币)and Guodong Zhou (周国栋), A recollement approach to Han's conjecture, preprint in preparation.

Let A be a finite dimensional algebra defined over a field k .

Notation

- Mod A the category of all right A-modules,
- mod A the category of finitely generated right A-modules,
- $\mathbf{D}^{\mathrm{b}}(\text{mod }A)$ the bounded derived category of $\text{mod }A$
- \bullet $\mathbf{D}(A) = \mathbf{D}(\text{Mod } A)$ the unbounded derived category of Mod A

A sequence of triangle functors

$$
\mathcal{T}'\xrightarrow{i_*}\mathcal{T}\xrightarrow{j^*}\mathcal{T}''
$$

is called a short exact sequence up to direct summands if i_{*} is fully faithful, $j^* \circ i_* = 0$ and the induced functor $\overline{j^*} : \mathcal{T} / \mathcal{T}' \to \mathcal{T}''$ is also fully faithful, moreover, $\overline{j^*}$ is dense up to direct summands (i.e. for each object Y of \mathcal{T}'' , there exists $X \in \mathcal{T}$ such that Y is a direct summand of $\overline{f^*}(X)$).

A short exact sequence up to direct summands is a **short exact** ${\sf sequence}$ if furthermore, \mathcal{T}' is a thick subcategory of $\mathcal T$ and the induced functor $\overline{j^*}:\mathcal{T}/\mathcal{T}'\to \mathcal{T}''$ is an equivalence.

KORKAR KERKER EL VOLO

Part II: Left/right recollements

Given a short exact sequence of triangulated categories

$$
\mathcal{T}'\stackrel{i_*}{\to} \mathcal{T}\stackrel{j^*}{\to} \mathcal{T}/\mathcal{T}',
$$

if i_* and/or j^* have a left adjoint, denoted by i^* and $j_!$ respectively, then the diagram

is called a colocalisation sequence (or a left recollement) of triangulated categories.

Dually, given a short exact sequence of triangulated categories

$$
\mathcal{T}'\stackrel{i_*}{\rightarrow}\mathcal{T}\stackrel{j^*}{\rightarrow}\mathcal{T}/\mathcal{T}',
$$

if i_* and/or j^* have a right adjoint, denoted by $i^!$ and j_* respectively, then the diagram

is called a localisation sequence (or a right recollement) of triangulated categories.**K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O**

Part II: Left/right recollements

Given a short exact sequence of triangulated categories

$$
\mathcal{T}'\stackrel{i_*}{\to} \mathcal{T}\stackrel{j^*}{\to} \mathcal{T}/\mathcal{T}',
$$

if i_* and/or j^* have a left adjoint, denoted by i^* and $j_!$ respectively, then the diagram

is called a colocalisation sequence (or a left recollement) of triangulated categories.

Dually, given a short exact sequence of triangulated categories

$$
\mathcal{T}'\stackrel{i_*}{\rightarrow} \mathcal{T}\stackrel{j^*}{\rightarrow} \mathcal{T}/\mathcal{T}',
$$

if i_* and/or j^* have a right adjoint, denoted by $i^!$ and j_* respectively, then the diagram

is called a localisation sequence (or a right recollement) of triangulated categories.**K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O** When i_\ast and/or j^\ast have a left adjoint and a right adjoint, the diagram

is called a recollement of triangulated categories. More precisely, it's called a recollement of $\mathcal T$ relative to $\mathcal T^{'}$ and $\mathcal T^{''}.$

A. A. Beilinson, J. N. Bernstein and P. Deligne, Faisceaux pervers, Astérisque 100, Soc. Math. France, Paris, 1982.

KORKARYKERKE POLO

A ladder is a finite or an infinite diagram of triangle functors:

$$
\begin{array}{ccc}\n&\vdots&\vdots&\n\\
&\frac{j-2}{\sqrt{1-1}}&\frac{j-2}{\sqrt{1-1}}&\n\\
&\frac{j}{\sqrt{1-1}}&\mathcal{C}&\frac{j_0}{\sqrt{1-1}}&\mathcal{C}''\\
&\frac{j_2}{\sqrt{1-1}}&\frac{j_2}{\sqrt{1-1}}&\frac{j_2}{\sqrt{1-1}}&\n\end{array}
$$

such that any two consecutive rows form a left or right recollement of $\mathcal C$ relative to C' and C'' .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Its height is the number of rows minus 2.

Part II: Derived 2-simple algebras

Definition

A finite dimensional algebra A is called a derived 2-simple algebra if it DOES not admit any ladder of height two

with B, C finite dimensional algebras.

A finite dimensional algebra A is derived 2-simple iff it DOES not admit any right recollement

イロト イ押 トイヨト イヨト

 \Rightarrow

 QQ

with B, C finite dimensional algebras.

Part II: Derived 2-simple algebras

Definition

A finite dimensional algebra A is called a derived 2-simple algebra if it DOES not admit any ladder of height two

with B, C finite dimensional algebras.

Remark

A finite dimensional algebra A is derived 2-simple iff it DOES not admit any right recollement

$$
D^{\mathrm{b}}(\text{mod }B) \xrightarrow{\hspace{0.5cm}-2 \longrightarrow} D^{\mathrm{b}}(\text{mod }A) \xrightarrow{\hspace{0.5cm}-2 \longrightarrow} D^{\mathrm{b}}(\text{mod }C)
$$

with B, C finite dimensional algebras.

Theorem (X.-Wang-Zhang-Zhou.2024)

Given a ladder of height two of unbounded derived categories of finite dimensional algebras

then Han's conjecture holds for A iff it holds for B and C. So Han's conjecture is reduced to derived 2-simple algebras.

Ren Wang (汪任), Xiaoxiao Xu (徐校校), Jinbi Zhang (张金币)and Guodong Zhou (周国栋), A recollement approach to Han's conjecture, preprint in preparation.

Theorem (Angeleri Hügel-Koenig-Liu-Yang 2017)

Assume that we are given a recollement of unbounded derived categories of finite dimensional algebras

$$
\mathbf{D}(B) \xrightarrow{} \mathbf{D}(A) \xrightarrow{} \mathbf{D}(C) \ .
$$

Then $\text{gldim}(A) < \infty \Leftrightarrow \text{gldim}(B) < \infty$ and $\text{gldim}(C) < \infty$.

Given a ladder of height two of unbounded derived categories of rings

$$
D(S) \xrightarrow{\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c
$$

then

 $HH_n(R) \cong HH_n(S) \oplus HH_n(T), \forall n \in \mathbb{N}.$

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$

 \Rightarrow

 299

Theorem (Angeleri H¨ugel-Koenig-Liu-Yang 2017)

Assume that we are given a recollement of unbounded derived categories of finite dimensional algebras

$$
\mathbf{D}(B) \xrightarrow{} \mathbf{D}(A) \xrightarrow{} \mathbf{D}(C) \ .
$$

Then gldim(A) $<\infty \Leftrightarrow$ gldim(B) $<\infty$ and gldim(C) $<\infty$.

Theorem (Keller, private communication)

Given a ladder of height two of unbounded derived categories of rings

$$
\mathsf{D}(S) \xrightarrow{\begin{array}{c}\mathsf{s}\longrightarrow-\mathsf{1}\longrightarrow\\ \mathsf{2}\longrightarrow\\\longrightarrow\\ \hline \mathsf{3}\longrightarrow\\\longrightarrow\\ \hline \mathsf{4}\longrightarrow\\\end{array}} \mathsf{D}(R) \xrightarrow{\begin{array}{c}\mathsf{s}\longrightarrow\mathsf{1}\longrightarrow\\\longrightarrow\\ \hline \mathsf{2}\longrightarrow\\\longrightarrow\\ \hline \mathsf{4}\longrightarrow\\\longrightarrow\\ \hline \mathsf{4}\longrightarrow\\\end{array}} \mathsf{D}(T) ,
$$

then

 $HH_n(R) \cong HH_n(S) \oplus HH_n(T), \forall n \in \mathbb{N}.$

 4 ロ) 4 \overline{P}) 4 \overline{E}) 4 \overline{E}) Þ QQ

Part II: They go together

Theorem (X.-Wang-Zhang-Zhou. 2024)

Given a ladder of height two of derived categories of rings

then Han's conjecture holds for A iff it holds for B and C.

Proof.

By Angeleri Hügel-Koenig-Liu-Yang 2017,

```
\text{gldim}(A) < \infty \Leftrightarrow \text{gldim}(B) < \infty and \text{gldim}(C) < \infty.
```
By Keller,

$$
\sum_{i=0}^{\infty} \dim_k \mathrm{HH}_i(A) < \infty \Longleftrightarrow \sum_{i=0}^{\infty} \dim_k \mathrm{HH}_i(B) < \infty \text{ and } \sum_{i=0}^{\infty} \dim_k \mathrm{HH}_i(C) < \infty
$$

Part II: Localisation theorem for Hochschild homology

Theorem (Keller 1998)

Given a recollement of unbounded derived categories of rings

$$
\mathsf{D}(S) \xrightarrow[{-3}]{\underbrace{-1}{-2} \longrightarrow} \mathsf{D}(R) \xrightarrow[{-2}]{\underbrace{-1}{-2} \longrightarrow} \mathsf{D}(T) ,
$$

then there exists two long exact sequences

$$
\cdots \to HH_n(T) \to HH_n(R) \to HH_n(S) \to HH_{n-1}(T) \to \cdots
$$

$$
\cdots \to H\!H_0(T) \to H\!H_0(R) \to H\!H_0(S) \to 0;
$$

$$
\cdots \to HC_n(T) \to HC_n(R) \to HC_n(S) \to HC_{n-1}(T) \to \cdots
$$

$$
\cdots \to HC_0(T) \to HC_0(R) \to HC_0(S) \to 0.
$$

KOD KAR KED KED E YORA

Part II: A splitting theorem for Hochschild homology and cyclic homology

Theorem (Keller, private communication)

Given a ladder of height two of derived categories of rings

$$
\mathbf{D}(S) \xrightarrow{\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\begin{array}{c}\begin{array}{c}\end{array}\\ \hline \end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array}\\ \hline \end{array}\\ \begin{array}{c}\end{array}\\ \begin{array}{c}\end{array
$$

then

$$
HH_n(R) \cong HH_n(S) \oplus HH_n(T), \forall n \in \mathbb{N}
$$

and

$$
HC_n(R) \cong HC_n(S) \oplus HC_n(T), \forall n \in \mathbb{N}.
$$

B. Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), 1-56.

Part III: Stratifying ideals

Definition

Let $e = e^2 \in A$ be an idempotent in an algebra A. Denote $f = 1 - e$. Then the idempotent e (resp. the ideal AeA) is a stratifying idempotent (resp. ideal) if

- $Tor_n^{eAe}(Ae, eA) = 0, n > 0;$
- the natural map fAe $\otimes_{eAe} eA f \rightarrow fA f$ is injective.

Let $e = e^2 \in A$ be a stratifying idempotent in an algebra A. Then there exists a recollement

$$
D(A/AeA) \xrightarrow{ < -1 \quad \text{---} \\ \underbrace{ -1 \quad \text{---} \\ \underbrace{ -1 \quad \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \underbrace{ -1 \quad \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \underbrace{ -1 \quad \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \text{---} \\ \underbrace{ -1 \quad \text{---} \\ \text{---} \\
$$

-
- Applications to Representations and Sheaves, J. Algebra 14 (1991),

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Part III: Stratifying ideals

Definition

Let $e = e^2 \in A$ be an idempotent in an algebra A. Denote $f = 1 - e$. Then the idempotent e (resp. the ideal AeA) is a stratifying idempotent (resp. ideal) if

- $Tor_n^{eAe}(Ae, eA) = 0, n > 0;$
- the natural map fAe $\otimes_{eAe} eA f \rightarrow fA f$ is injective.

Theorem (Geigle-Lenzing 1991)

Let $e = e^2 \in A$ be a stratifying idempotent in an algebra A. Then there exists a recollement

$$
\mathbf{D}(A/AeA) \xrightarrow[{-3}]{\leftarrow 1} \mathbf{D}(A) \xrightarrow[{-3}]{\leftarrow 1} \mathbf{D}(Ae).
$$

W. Geigle and H. Lenzing, Perpendicular Categories with Applications to Representations and Sheaves, J. Algebra 14 (1991), 273-343.

KORKAR KERKER EL VOLO

Part III: Triangular matrix algebras as examples

Let

$$
A = \left(\begin{array}{cc} B & 0 \\ cM_B & C \end{array}\right)
$$

be a finite dimensional lower triangular matrix algebra.

E. Cline, B. Parshall, L. Scott, Stratifying endomorphism algebras, 譶 Mem. Amer. Math. Soc. 591 (1996) 1-119.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Part III: Han's conjecture for triangular algebras

Theorem (Cibils-Lanzilotta-Marcos-Solotar 2021; X.-Wang-Zhang-Zhou.2024)

 let

$$
A = \left(\begin{array}{cc} B & 0 \\ cM_B & C \end{array}\right)
$$

be a finite dimensional lower triangular matrix algebra. Han's conjecture holds for A iff it holds for B and C.

- C. Cibils, E. N. Marcos, A. Solotar, Han's conjecture and Hochschild homology for null-square projective algebras. Indiana Univ. Math. J. 70 (2021), no. 2, 639-668.
- Ren Wang (汪任), Xiaoxiao Xu (徐校校), Jinbi Zhang (张金币)and 暈 Guodong Zhou $(H1\mathbb{E}H\ddot{\mathcal{R}})$, A recollement approach to Han's conjecture, preprint in preparation.

Definition

A Morita context algebra is an algebra of the form $\begin{pmatrix} B & B N_C \ D M & D \end{pmatrix}$

where

- \bullet B, C are algebras, $\circ M_B$, $\circ N_C$ are bimodules;
- $\bullet \ \alpha : {}_B N \otimes_{\mathsf{C}} M_B \to {}_B B_B$ and $\beta : {}_C M \otimes_{\mathsf{B}} N_C \to {}_C C_C$ are bimodule maps such that

$$
\alpha(n\otimes m)n'=n\beta(m\otimes n'),\beta(m\otimes n)m'=m\alpha(n\otimes m')
$$

Fact

Morita context algebras are the same as algebras with an idempotent. More precisely, let $e = e^2 \in A$ be an idempotent in an algebra A. Then A can be written as a Morita context algebra

$$
A = \left(\begin{array}{cc} eAe & eAf \\ fAe & fAf \end{array}\right)
$$

 $_{C}M_{B}$ C

 \setminus

 (α,β)

Part III: Morita context algebras and stratifying idempotents

Proposition (Gao-Psaroudakis, 2017)

The idempotent
$$
\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$
 is stratifying iff

$$
\bullet \operatorname{Tor}^B_n(M,N)=0, n>0,
$$

• β : $M \otimes_B N \rightarrow C$ is injective,

and in this case, there is a recollement

$$
D(\mathcal{C}/\mathrm{Im}(\beta)) \xrightarrow[d-3]{\leftarrow 1} D(A) \xrightarrow[d-3]{\leftarrow[1]} D(\beta).
$$

Nan Gan (高楠) and C. Psaroudakis, Gorenstein homological aspects F of monomorphism categories via Morita rings, Algebr. Represent. Theory 20 (2017), no. 2, 487-529.

Theorem (X.-Wang-Zhang-Zhou. 2024)

Given a Morita context algebra $A=\left(\begin{array}{cc} B & N \ M & C \end{array}\right)_{(\alpha,\beta)}$, assume that

 $\beta: \mathcal{M} \otimes_{\mathcal{B}} \mathcal{N} \to \mathcal{C}$ is injective, $\mathrm{Tor}_i^{\mathcal{B}}(\mathcal{M},\mathcal{N})=0, \forall i>0$ and that $\mathcal{M}_{\mathcal{B}}$ has finite projective dimension. Then Han's conjecture holds for A iff it holds for B and $C/\text{Im}(\beta)$.

In fact, by Gao-Psaroudakis, 2017, under the hypothesis of the above theorem, there is a ladder of height two

$$
D(\mathcal{C}/\mathrm{Im}(\beta)) \xrightarrow[d \rightarrow 0]{\leftarrow 1}]{\leftarrow 2} D(A) \xrightarrow[d \rightarrow 2]]{\leftarrow 1} D(B).
$$

Nan Gan (高楠) and C. Psaroudakis, Gorenstein homological aspects of monomorphism categories via Morita rings, Algebr. Represent. Theory 20 (2017), no. 2, 487-529.

Ren Wang (汪任), Xiaoxiao Xu (徐校校), Jinbi Zhang (张金币)and Guodong Zhou (周国栋), A recollement approach to Han's conjecture, preprint in preparation.**K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O**

Theorem (X.-Wang-Zhang-Zhou. 2024)

Given a Morita context algebra $A = \begin{pmatrix} B & B N_C \ B & D R \end{pmatrix}$ $_{C}M_{B}$ C \setminus (α,β) , assume that

 $\alpha: \mathsf{N}\otimes_{\mathsf{C}}\mathsf{M}\to \mathsf{B}$ is injective, $\mathrm{Tor}_{i}^{\mathsf{C}}(\mathsf{N},\mathsf{M})=0, \forall i>0$ and that N_{C} has finite projective dimension. Then Han's conjecture holds for A iff it holds for C and $B/\text{Im}(\alpha)$.

In fact, by Gao-Psaroudakis, 2017, under the hypothesis of the above theorem, there is a ladder of height two

D(B/Im(α)) ² / ⁴ / D(A) ⁴ / o ¹ o ³ ² / D(C) o ¹ o ³ .

Nan Gan (高楠) and C. Psaroudakis, Gorenstein homological aspects of monomorphism categories via Morita rings, Algebr. Represent. Theory 20 (2017), no. 2, 487-529.

Ren Wang (汪任), Xiaoxiao Xu (徐校校), Jinbi Zhang (张金币)and Guodong Zhou (周国栋), A recollement approach to Han's conjecture, preprint in preparation.

Example (Cibils-Marcos-Solotar 2021)

Given a Morita context algebra $A = \begin{pmatrix} B & B N_C \ B & D R \end{pmatrix}$ $_{C}M_{B}$ C \setminus (α,β) , assume that M and N are projective bimodules and α , β vanish. Then Han's conjecture holds for A iff it holds for B and C.

C. Cibils, M. J. Redondo and A. Solotar, Han's conjecture and Hochschild homology for null-square projective algebras. Indiana Univ. Math. J. 70 (2021), no. 2, 639-668.

Part $IV:$ Gentle algebras

Definition

Let $Q = (Q_0, Q_1, s, t)$ be a finite quiver and I be an admissible ideal. $A(Q, I)$ is called a gentle algebra if (Q, I) is a gentle pair i.e. it satisfies: (1) Each vertex of Q is start point of at most two arrows, and end point of at most two arrows. (2) For each arrow α in Q, there is at most one arrow β with $t(\alpha) = s(\beta)$ such that $\alpha\beta \notin I$, and at most one arrow γ with $t(\gamma) = s(\alpha)$ such that $\gamma \alpha \notin I$. (3) For each arrow α in Q, there is at most one arrow β with $t(\alpha) = s(\beta)$ such that $\alpha\beta \in I$, and at most one arrow γ with $t(\gamma) = s(\alpha)$ such that $\gamma \alpha \in I$. (4) The algebra $A(Q, I)$ is finite dimensional.

Definition

Let (Q, I) be a gentle pair. We add some special loops in Q , and denote the set of special loops by S_p . We call (Q, I, S_p) the skew-gentle triple if $(Q', I \cup \{ \alpha^2 | \alpha \in S_p \})$ is a gentle pair where Q' is the quiver by adding the special loops to Q. The finite dimensional algebra $A(Q,I,S_p)=kQ'/\langle I\cup\{\alpha^2-\alpha|\alpha\in S_p\}\rangle$ is called a skew-gentle algebra .

C. Geiss and J. A. De La Peña, Auslander-Reiten components for clans, Bol. Soc. Mat. Mexicana 5 (1999), no. 2, 307-326.

A O A G A 4 O A C A G A G A 4 O A C A

Theorem (X.-Wang-Zhang-Zhou. 2024)

Han's conjecture holds for skew-gentle algebras.

Proof.

Let $A = A(Q, I, S_p)$ be a skew-gentle algebra with $S_p \neq \emptyset$. Denote $B = A(Q, I)$ as the gentle algebra corresponding to A. By a result of Yiping Chen, there is a recollement of unbounded derived categories:

KORK ERKER ADE YOUR

where C is a finite dimensional algebra with $\frac{g}{d}$ $\frac{g}{d}$ $\frac{f}{f}$ $\frac{f}{f}$

Y. P. Chen, A Characteristic free approach to skew-gentle algebras. arXiv:2212.06467.

Theorem (X.-Wang-Zhang-Zhou. 2024)

Han's conjecture holds for GLS algebras and finite EI category algebras.

- P. Webb, An introduction to the representations and cohomology of categories, Group representation theory, EPFL Press. Lausanne. (2007), 149-173.
-
- C. Geiss, B. Leclerc and J. Schroer, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math, 209 (2017), 61-158.

Thank you!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·