ICRA 21

Quasi-hereditary orderings of Nakayama algebras

Xiaoqiu Zhong, Shanghai Jiao Tong University

A joint work on arXiv:2405.02860 with Yuehui Zhang 9th, August, 2024

• Characterization of quasi-hereditary orderings

• Characterization of quasi-hereditary algebras

• Compute quasi-hereditary orderings

Quasi-hereditary Algebra

Edward Cline

Brian Parshall

Leonard Scott

The theory of quasi-hereditary algebras has been extensively studied since its introduction by E. Cline, B. Parshall, and L. Scott in their seminal paper [1] in 1988.

[1]E. Cline, B. Parshall, and L. Scott. Finite-dimensional algebras and highest weight categories. *J. Reine Angew. Math.*, 391:85–99, 1988.

The properties of a quasi-hereditary algebra A are heavily dependent on a specific ordering of the isomorphism classes of simple A -modules S.

This ordering ensures that every indecomposable projective module can be filtered by the Weyl modules, which are constructed through a special process related to the ordering. Such an ordering is termed a quasi-hereditary ordering on *A*.

Nakayama Algebra

5

Nakayama Algebra

Intro

Let Q be any finite quiver, and let A = KQ/I be a finitedimensional algebra with *I* being an admissible ideal of *KQ*. For simplicity, we denote the simple A -module S_x corresponding to the vertex x (i.e., $S_x = A/AeA$ with e = $1_A - x$) simply as x. Thus, the symbol x simultaneously represents a number, a vertex, and a simple module. Consequently, the weight poset of A can be chosen as the set S of all simple A -modules. This notation system prevents confusion when we use \leq (or its reverse order \geq) to denote the partial order of the weight poset Λ .

Definition

Consider $g \in I$ to be a path of length(= the number of arrows +1) $l_g \ge 3$ in KQ.

The origin vertex of g is referred to as the "hook" of g, denoted as h(g), while the end vertex of g is termed the "denouement" of g, denoted as d(g).

$$h(g) = \{1\}$$

 $d(g) = \{3\}$

hood, internal

Definition

The ordered multiple set $\{h(g), h(g) + 1, ..., d(g)\}$ of simple *A*-modules associated with *g* is called the "*hood*" of *g* and denoted as Hod(g). The multiple set $Hod(g) \setminus \{h(g), d(g)\}$ of simple *A*-modules is denoted by Int(g), where the elements of Int(g) are referred to as interior simple modules of *g*. It is noteworthy that $|Hod(g)| = l_g$ and $|Int(g)| = l_g - 2$.

$$Hod(g) = \{1,2,3\}$$

 $h(g) = \{1\}$
 $d(g) = \{3\}$
 $Int(g) = \{2\}$

Characterization of quasi-hereditary orderings

Theroem 1

Let $A = KQ_n/I$ be a Nakayama algebra with $I = \langle g_1, \dots, g_k \rangle$. Let \leq be an ordering of A. Then \leq is quasi-hereditary if and only if $maxHod(g_i) \notin Int(g_i), \forall i = 1, \dots, k$.

Characterization of quasi-hereditary orderings

$$A = KA_3 / <\alpha_2 \alpha_1 >$$

 $1 \ge 2 \ge 3$ \checkmark

 $1 \ge 3 \ge 2$ \checkmark

 $3 \ge 2 \ge 1$ \checkmark

 $3 \ge 1 \ge 2$ \checkmark

Defn of q(A)

 $q(A) \coloneqq the number of quasi - hereditary orderings of A$

An example

 $A = K\tilde{A}_5 / < \alpha_2 \alpha_1, \alpha_3 \alpha_2 >$

 $2 \neq \max\{1,2,3\}$ and $3 \neq \max\{2,3,4\}$

- $2 \ge 1 \ge 3 \ge 4 \ge 5 \quad \mathbf{*}$
- $1 \ge 3 \ge 2 \ge 4 \ge 5$ *
- $1 \ge 2 \ge 3 \ge 4 \ge 5 \quad \checkmark$
- $5 \ge 4 \ge 3 \ge 2 \ge 1$ \checkmark
- $4 \ge 3 \ge 2 \ge 5 \ge 1 \quad \checkmark$

$$q(A) = \frac{1}{3} \times 5! = 40$$

Green-Schroll set \mathcal{X}

Defn of ${\mathcal X}$

For a Nakayama algebra $A = KQ_n/I$ with $I = \langle g_1, ..., g_k \rangle$. The Green-Schroll set of A, denoted by \mathcal{X}_A or simply \mathcal{X} , is the set $S - \bigcup_{i=1}^k Int(g_i)$.

$$1 \xrightarrow[\alpha_1]{\alpha_1} 2 \xrightarrow[\alpha_2]{\alpha_2} 3 \xrightarrow[\alpha_3]{\alpha_3} 4 \xrightarrow[\alpha_4]{\alpha_4} 5$$

$$\mathcal{X} = \{1, 4, 5\}$$

The Green-Schroll set is the set of simple modules that

Characterization of quasi-hereditary algebras

Theroem 2

A Nakayama algebra A is quasi-hereditary if and only if $X_A \neq \emptyset$.

$$A = KA_n/I \quad \checkmark$$

$$A = K\tilde{A}_4 / < \alpha_2 \alpha_1, \alpha_3 \alpha_2 > \checkmark$$

$$A = K\tilde{A}_4 / < \alpha_2 \alpha_1, \alpha_3 \alpha_2, \alpha_4 \alpha_3, \alpha_1 \alpha_4 >$$

$$A = K\tilde{A}_4 / < \alpha_1 \alpha_4 \alpha_3 \alpha_2 \alpha_1 > \quad \mathbf{x}$$

Theorem

Let *A* be a Nakayama algebra. The following statements are equivalent:

(1) A is quasi-hereditary.

(2) There is a simple module of projective dimension 2[2].
(3) There is a simple ordering of simple modules v₁, ..., v_n such that for each *i*, the simple module v_i is not properly internal to T_{v1+···+vi-1}[3].
(4) A is S -connected[4].
(5) X_A ≠ Ø

The beautiful condition (2), can be viewed as the analogy of the well-known fact that algebras of global dimension 2 are quasi-hereditary. Condition (3), is originally proved to be true for all monomial algebras, so it is a little complicated. Condition (4), is surprisingly smart, comparing to condition (2). Condition (5), the theorem introduced before, is a criterion not involving any algebraic concepts so far.

[2] Morio Uematsu and Kunio Yamagata. On serial quasihereditary rings. *Hokkaido Math. J.*, 19(1):165–174, 1990.

[3] Edward L. Green and Sibylle Schroll. On quasi-hereditary algebras. *Bull. Sci. Math.*, 157:102797, 14, 2019.

[4] Ren'e Marczinzik and Emre Sen. A new characterization of quasi-hereditary Nakayama algebras and applications. *Comm. Algebra*, 50(10):4481–4493, 2022.

 $q(KQ_n / < g >) =?$

Theorem[5]

Let A be a Nakayama algebra with one generator g and n simple modules. Then

$$q(A) = \frac{2}{l_g} n!$$

By Theorem 1,
$$q(A) = 2 \binom{l_g}{1} \binom{n}{l_g} (n - l_g)! = \frac{2}{l_g} n!$$

[4] Yue Hui Zhang and Li Yu. Counting quasi-hereditary orderings of finite dimensional algebras. *J. MATH. TECH.*, 16(3):9–11, 2000.

\mathcal{X}^{i}

Let \mathcal{X}^0 , \mathcal{X}^1 , \mathcal{X}^2 , respectively, be the subset of \mathcal{X} whose elements do not belong to any hood, are either hooks or denouements of some hoods but not both, and are both hooks and denouements of some hoods, respectively.

 $q(KQ_n / < g_1, ..., g_k >) =?$

Theroem 3

Let $A = KQ_n/I$ be a Nakayama algebra with Green-Schroll set \mathcal{X} . Then

$$q(A) = \frac{1}{n} \left[\sum_{x \in \mathcal{X}^0} q(A) + \sum_{x \in \mathcal{X}^1} q(KQ_n/I_{\hat{x}}) + \sum_{x \in \mathcal{X}^2} q(KQ_n/I_{\hat{x}}) \right]$$

An example

 $A = K\tilde{A}_5 / <\alpha_2 \alpha_1, \alpha_3 \alpha_2 >$

$$2 \neq \max\{1,2,3\}$$
 and $3 \neq \max\{2,3,4\}$

- $2 \ge 1 \ge 3 \ge 4 \ge 5 \quad \mathbf{*}$
- $1 \ge 3 \ge 2 \ge 4 \ge 5$ *
- $1 \ge 2 \ge 3 \ge 4 \ge 5 \quad \checkmark$
- $5 \ge 4 \ge 3 \ge 2 \ge 1$ \checkmark
- $4 \ge 3 \ge 2 \ge 5 \ge 1 \quad \checkmark$

$$q(A) = \frac{1}{3} \times 5! = 40$$

Thank you for your attention!

