ICRA 21

Quasi-hereditary orderings of Nakayama algebras

Xiaoqiu Zhong, Shanghai Jiao Tong University

A joint work on arXiv:2405.02860 with Yuehui Zhang 9th, August, 2024

Characterization of quasi-hereditary orderings

Characterization of quasi-hereditary algebras

Compute quasi-hereditary orderings

Quasi-hereditary Algebra

Edward Cline

Brian Parshall

Leonard Scott

The theory of quasi-hereditary algebras has been extensively studied since its introduction by E. Cline, B. Parshall, and L. Scott in their seminal paper [1] in 1988.

[1]E. Cline, B. Parshall, and L. Scott. Finite-dimensional algebras and highest weight categories. *J. Reine Angew. Math.*, 391:85–99, 1988.

The properties of a quasi-hereditary algebra A are heavily dependent on a specific ordering of the isomorphism classes of simple A -modules S .

This ordering ensures that every indecomposable projective module can be filtered by the Weyl modules, which are constructed through a special process related to the ordering. Such an ordering is termed a quasihereditary ordering on A.

Nakayama Algebra

Nakayama Algebra

Intro

Let Q be any finite quiver, and let $A = KQ/I$ be a finitedimensional algebra with I being an admissible ideal of KQ . For simplicity, we denote the simple A -module S_x corresponding to the vertex *x* (i.e., $S_x = A/AeA$ with $e =$ $1_A - x$) simply as x. Thus, the symbol x simultaneously represents a number, a vertex, and a simple module. Consequently, the weight poset of A can be chosen as the set S of all simple A -modules. This notation system prevents confusion when we use \leq (or its reverse order \geq) to denote the partial order of the weight poset Λ .

Definition

Consider $q \in I$ to be a path of length(= the number of arrows +1) $l_q \geq 3$ in KQ .

The origin vertex of q is referred to as the "hook" of q , denoted as $h(g)$, while the end vertex of g is termed the " denouement" of g, denoted as $d(g)$.

$$
h(g) = \{1\}
$$

$$
d(g) = \{3\}
$$

hood, internal

Definition

The ordered multiple set $\{h(g), h(g) + 1, ..., d(g)\}\$ of simple A-modules associated with q is called the " $hood$ " of q and denoted as $Hod(q)$. The multiple set $H \circ d(g) \setminus \{ h(g), d(g) \}$ of simple A-modules is denoted by $Int(g)$, where the elements of $Int(g)$ are referred to as interior simple modules of q . It is noteworthy that $|Hod(g)| = l_q$ and $|Int(g)| = l_q - 2$.

$$
Hod(g) = \{1,2,3\}
$$

\n
$$
h(g) = \{1\}
$$

\n
$$
d(g) = \{3\}
$$

\n
$$
Int(g) = \{2\}
$$

Characterization of quasi-hereditary orderings

Theroem 1

Let $A = KQ_n/I$ be a Nakayama algebra with $I = \lt$ $g_1, ..., g_k$ >. Let \leq be an ordering of A. Then \leq is quasi-hereditary if and only if $maxHod(g_i) \notin$ $Int(g_i), \forall i = 1, ..., k.$

Characterization of quasi-hereditary orderings

$$
A = KA_3 / \langle \alpha_2 \alpha_1 \rangle
$$

 $1 \geqslant 2 \geqslant 3$ \checkmark

 $1 \ge 3 \ge 2$ \checkmark

 $3 \geqslant 2 \geqslant 1$ \checkmark

 $3 \geq 1 \geq 2$ \checkmark

Defn of $q(A)$

 $q(A) \coloneqq$ the number of quasi – hereditary orderings of A

An example

 $A = K\tilde{A}_5 / \langle \alpha_2 \alpha_1, \alpha_3 \alpha_2 \rangle$

 $2 \neq \max\{1,2,3\}$ and $3 \neq \max\{2,3,4\}$

- $2 \geq 1 \geq 3 \geq 4 \geq 5$ x
- $1 \geqslant 3 \geqslant 2 \geqslant 4 \geqslant 5$ x
- $1 \ge 2 \ge 3 \ge 4 \ge 5$ \checkmark
- $5 \geq 4 \geq 3 \geq 2 \geq 1$ \checkmark
- $4 \geqslant 3 \geqslant 2 \geqslant 5 \geqslant 1$ \checkmark

$$
q(A) = \frac{1}{3} \times 5! = 40
$$

Green-Schroll set

For a Nakayama algebra $A = KQ_n/I$ with $I = $g_1, ..., g_k>$.$ The Green-Schroll set of A, denoted by \mathcal{X}_A or simply \mathcal{X} , is the set $S - \bigcup_{i=1}^{k} Int(g_i)$.

$$
1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} 4 \xrightarrow{\alpha_4} 5
$$

$$
\mathcal{X} = \{1,4,5\}
$$

The Green-Schroll set is the set of simple modules that

Characterization of quasi-hereditary algebras

Theroem 2

A Nakayama algebra A is quasi-hereditary if and only if $\mathcal{X}_A \neq \emptyset$.

$$
A = KA_n/I \quad \checkmark
$$

$$
A = K\tilde{A}_4 / \langle \alpha_2 \alpha_1, \alpha_3 \alpha_2 \rangle \ \checkmark
$$

$$
A = K\tilde{A}_4 / \langle \alpha_2 \alpha_1, \alpha_3 \alpha_2, \alpha_4 \alpha_3, \alpha_1 \alpha_4 \rangle \mathbf{x}
$$

$$
A = K\tilde{A}_4 / <\alpha_1 \alpha_4 \alpha_3 \alpha_2 \alpha_1 > \times
$$

Theorem

Let A be a Nakayama algebra. The following statements are equivalent:

 (1) A is quasi-hereditary.

(2) There is a simple module of projective dimension 2[2]. (3) There is a simple ordering of simple modules $v_1, ..., v_n$ such that for each *i*, the simple module v_i is not properly internal to $T_{v_1 + \dots + v_{i-1}}[3]$. (4) A is S –connected[4]. (5) $\mathcal{X}_A \neq \emptyset$

The beautiful condition (2), can be viewed as the analogy of the well-known fact that algebras of global dimension 2 are quasi-hereditary. Condition (3), is originally proved to be true for all monomial algebras, so it is a little complicated. Condition (4), is surprisingly smart, comparing to condition (2). Condition (5),the theorem introduced before, is a criterion not involving any algebraic concepts so far.

[2] Morio Uematsu and Kunio Yamagata. On serial quasihereditary rings. *Hokkaido Math. J.*, 19(1):165–174, 1990.

[3] Edward L. Green and Sibylle Schroll. On quasi-hereditary algebras. *Bull. Sci. Math.*, 157:102797, 14, 2019.

[4] Ren´e Marczinzik and Emre Sen. A new characterization of quasi-hereditary Nakayama algebras and applications. *Comm. Algebra*, 50(10):4481–4493, 2022.

 $q(KQ_n/ $g> = ?$$

Theorem[5]

Let A be a Nakayama algebra with one generator g and n simple modules. Then

$$
q(A) = \frac{2}{l_g} n!
$$

By Theorem 1,
$$
q(A) = 2 {l_g \choose 1} {n \choose l_g} (n - l_g)! = \frac{2}{l_g} n!
$$
.

[4] Yue Hui Zhang and Li Yu. Counting quasi-hereditary orderings of finite dimensional algebras. *J. MATH. TECH.*, 16(3):9–11, 2000.

\mathbf{x}^i

Let \mathcal{X}^0 , \mathcal{X}^1 , \mathcal{X}^2 , respectively, be the subset of $\mathcal X$ whose elements do not belong to any hood, are either hooks or denouements of some hoods but not both, and are both hooks and denouements of some hoods, respectively.

 $q(KQ_n) < g_1, ..., g_k >$ =?

Theroem 3

Let $A = KQ_n/I$ be a Nakayama algebra with Green-Schroll set X . Then

$$
q(A) = \frac{1}{n} \left[\sum_{x \in \mathcal{X}^0} q(A) + \sum_{x \in \mathcal{X}^1} q(KQ_n/I_{\hat{x}}) + \sum_{x \in \mathcal{X}^2} q(KQ_n/I_{\hat{x}}) \right]
$$

An example

 $A = K\tilde{A}_5 / \langle \alpha_2 \alpha_1, \alpha_3 \alpha_2 \rangle$

 $2 \neq \max\{1,2,3\}$ and $3 \neq \max\{2,3,4\}$

- $2 \geq 1 \geq 3 \geq 4 \geq 5$ x
- $1 \geqslant 3 \geqslant 2 \geqslant 4 \geqslant 5$ x
- $1 \ge 2 \ge 3 \ge 4 \ge 5$ \checkmark
- $5 \geq 4 \geq 3 \geq 2 \geq 1$ \checkmark
- $4 \geqslant 3 \geqslant 2 \geqslant 5 \geqslant 1$ \checkmark

$$
q(A) = \frac{1}{3} \times 5! = 40
$$

Thank you for your attention!

