Self-orthogonal τ -tilting modules and tilting modules

Xiaojin Zhang (Jiangsu Normal University)

ICRA 21, Shanghai Jiaotong University

August 8, 2024

Background.

- Preliminaries.
- Main results.
- Main references.

- All algebras are finite-dimensional algebras over a field K, and all modules are finitely generated right modules.
- All tilting modules are classical tilting modules.
- $\blacksquare \mathbb{D} \text{ is the ordinary dual and } \tau = \mathbb{D} \text{Tr.}$

Tilting modules have been central in the representation theory of finite-dimensional algebras since 1970s. The recent definition of tilting modules is due to Happel and Ringel, see [HR] for details.

Definition 1.1 Let Λ be an algebra and $T \in \text{mod}\Lambda$. T is called a tilting module if the following are satisfied:

 $\blacksquare \operatorname{Pd} T \leq 1,$

$$\mathbf{Ext}^1_{\Lambda}(T,T) = 0,$$

 $\ \ \, |T|=|\Lambda|.$

The third item is equivalent to

There is an exact sequence $0 \to \Lambda \to T_0 \to T_1 \to 0$ with $T_i \in addT$.

Although tilting theorem and tilted algebras made the tilting theory fruitful, we want to emphasize the following two easy facts:

Facts 1.2 Let Λ be an algebra and $T \in \text{mod}\Lambda$ a tilting module.

If
$$M \in \operatorname{Fac} T = T^{\perp}$$
 and $\operatorname{Hom}_{\Lambda}(T, M) = 0$, then $M = 0$.

If $M \in \operatorname{Fac} T = T^{\perp}$, then $\operatorname{PdHom}_{\Lambda}(T, M) \leq \operatorname{Pd} M$.

Tilting modules are generalized to τ -tilting modules by Adachi, Iyama and Reiten in 2014 from the viewpoint of mutations. From then on, we get a method in computing tilting modules for algebras of finite representation type in theory. It is showed that τ -tilting theory is closely related to cluster-tilting theory and silting theory, see[AIR] for details. **Definition 1.3** Let Λ be an algebra and $T \in \text{mod}\Lambda$.

- We call T a τ -rigid module if $\text{Hom}(T, \tau T)=0$,
- We call T a τ -tilting module if it is τ -rigid and $|T| = |\Lambda|$,
- We call T a support τ -tilting module if it is a τ -tilting module over $\Lambda/(e)$, where e is an idempotent.

It is showed in [AIR] that tilting modules are faithful support τ -tilting modules and τ -tilting modules are sincere support τ -tilting modules.

Example 1.4 Let Λ be the finite dimensional algebra given by the quiver $Q: 1 \xrightarrow{a_1} 2 \xrightarrow{a_2} 3$ with the relation $a_1a_2 = 0$. Then

- There are only two tilting modules $P(1) \oplus P(2) \oplus S(3)$, $P(1) \oplus P(2) \oplus S(2)$.
 - There is a unique 2-tilting $P(1) \oplus P(2) \oplus S(1)$.
 - There is a unique non-tilting τ -tilting module $P(1) \oplus S(1) \oplus S(3)$.

- Classify τ -tilting modules over a given algebra, see [Mi] for preprojective algebras of Dynkin type, see [A] for Nakayama algebras, see [IZ] for the Auslander algebra of $k[x]/(x^n)$.
- Characterize algebras in terms of τ -tilting modules, see[DIJ].

In [XZZ], we showed that self-orthogonal τ -tilting modules admit very similar properties with tilting modules.

Proposition 1.6 Let A be an algebra and T a self-orthogonal τ -tilting module in modA with $B = \operatorname{End}_A T$. If $M \in \operatorname{Fac} T \cap T^{\perp}$, then $\operatorname{Pd}_B\operatorname{Hom}_A(T, M) \leq \operatorname{Pd}_A M$ holds.

Question 1.7 Is a self-orthogonal τ -tilting module a tilting module?

We should remark that the question is a special case of the Auslander-Reiten conjecture [AuR] as well as the Tachikawa's second conjecture [T] whenever the algebra is self-injective. Recently Wei also study this question in terms of Wakamatsu tilting modules. **Auslander-Reiten Conjecture**: Let Λ be an algebra and $M \in \text{mod}\Lambda$. If $\text{Ext}^{i}_{\Lambda}(M \oplus \Lambda, M \oplus \Lambda) = 0$ for $i \geq 1$, then M is projective.

Tachikawa's second Conjecture: Let Λ be a self-injective algebra and $M \in \text{mod}\Lambda$. If $\text{Ext}^{i}_{\Lambda}(M, M) = 0$ for $i \geq 1$, then M is projective. **Lemma 2.1** Let $0 \to Y \to T_0 \xrightarrow{f} X$ be an exact sequence in mod Λ , where T is τ -rigid, and $f: T_0 \to X$ is a minimal right addT-approximation of X. Then $\operatorname{Hom}_{\Lambda}(Y, \tau T) = 0$.

Lemma 2.2 Let $T \in \text{mod}\Lambda$ be a τ -rigid module. Then the following are equivalent.

- $\blacksquare T \text{ is a } \tau \text{-tilting module.}$
- (FacT, $\operatorname{Sub}\tau T$) is a torsion pair.

Proposition 2.3 Let $T \in \text{mod}\Lambda$ be a τ -tilting module. For any $M \in \text{Fac}T$, there is an exact sequence $\cdots \to T_1 \xrightarrow{f_1} T_0 \xrightarrow{f_0} M \to 0$ with $T_i \in \text{add}T$ and $\text{Ker} f_i \in \text{Fac}T$.

Theorem 2.4 For any $M, N \in \text{mod}\Lambda$, $\text{Ext}^1_{\Lambda}(M, N) \simeq \mathbb{D}\overline{\text{Hom}}_{\Lambda}(N, \tau M)$ holds.

Proposition 3.1 Let $T \in \text{mod}\Lambda$ be a τ -tilting module and let $M \in \text{mod}\Lambda$ satisfy $\text{Ext}^1_{\Lambda}(T, M) = 0$. Then $\text{Hom}_{\Lambda}(T, M) = 0$ holds if and only if M = 0.

Proof \Rightarrow On the contrary, suppose that $M \neq 0$. Then the injective envelope $I^0(M)$ is not 0. Since T is a τ -tilting module, one gets a torsion pair (FacT, Sub τT) by Theorem 2.2. Then $\operatorname{Hom}_{\Lambda}(T, M) = 0$ implies that $M \in \operatorname{Sub}\tau T$. That is, $M \mapsto (\tau T)^m$ for some integer $m \ge 1$. Since $\operatorname{Ext}^1_{\Lambda}(T, M) = 0$, by Theorem 2.4, one gets $\operatorname{Hom}_{\Lambda}(M, \tau T) = 0$ which implies that the monomorphism $f: M \mapsto (\tau T)^m$ factors through an injective module, and hence factors through the injective envelope $h: M \hookrightarrow I^0(M)$, that is, f = gh for some $g: I^0(M) \to (\tau T)^m$. Since his an essential monomorphism, one gets that g is a monomorphism, and hence $I^0(M)$ is a direct summand of τT . This is a contradiction. **Theorem 3.2** Let $T \in \text{mod}\Lambda$ be a τ -tilting module. Then the following statements are equivalent.

- \blacksquare T is a tilting module.
- Ext^{*i*}_{Λ}(*T*, Fac*T*) = 0 for all *i* ≥ 1
- $\operatorname{Ext}^{i}_{\Lambda}(T, \operatorname{Fac} T) = 0$ for i = 2.

Theorem 3.3 Let $T \in \text{mod}\Lambda$. Then the following statements are equivalent.

- \blacksquare T is a tilting module.
- $\operatorname{Ext}^{i}_{\Lambda}(T, \operatorname{Fac} T) = 0$ for all $i \geq 1$ and $|T| = |\Lambda|$.
- $\operatorname{Ext}^{i}_{\Lambda}(T, \operatorname{Fac}T) = 0$ for i = 1, 2 and $|T| = |\Lambda|$.

Lemma 3.4 Let $T \in \text{mod}\Lambda$ be a τ -tilting module with $\text{Pd}_{\Lambda}T = d < \infty$. If $\text{Ext}^{i}_{\Lambda}(T,T) = 0$ holds for all $i \geq 1$, then $\text{Ext}^{i}_{\Lambda}(T, \text{Fac}T) = 0$ for all $i \geq 1$.

Theorem 3.5 Let Λ be an algebra and $T \in \text{mod}\Lambda$ a τ -tilting module of finite projective dimension. Then T is a tilting module if and only if $\text{Ext}^{i}_{\Lambda}(T,T) = 0$ for all $i \geq 1$.

We should remark that a self-orthogonal support τ -tilting modules need not be partial tilting modules. We give an example to illustrate it.

Example 3.6 Let Λ be the finite dimensional algebra given by the quiver $Q: 1 \xrightarrow{a_1} 2 \xrightarrow{a_2} 3$ with the relation $a_1a_2 = 0$. Then S(1) = 1 is an injective support τ -tilting module with projective dimension 2 and hence not a partial tilting module.

Theorem 3.7[CLZZ] Let Λ be an algebra of finite representation type and T a τ -tilting module in mod Λ . Then T is a tilting module if and only if $\operatorname{Ext}_{\Lambda}^{i}(T,T) = 0$ for all $i \geq 1$.

We remark that Prof. Jiaqun Wei also gets Theorem 3.8 independently by using Wakamatsu tilting modules. We also remark that Prof. Wen Chang give a positive answer to the question over gentle algebras by using the geometric model.

- [A1] T. Adachi, The classification of τ -tilting modules over Nakayama algebras, J. Algebra, 452(2016), 227-262.
- [AIR] T. Adachi, O. Iyama and I. Reiten, $\tau\text{-tilting theory, Compos.}$ Math., 150(3)(2014), 415-452.

[AuR]M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc., 52 (1975), 69-74. [DIJ] L. Demonet, O. Iyama and G. Jasso, τ -tilting finite algebras, bricks and g-vectors, Int. Math. Res. Not., 3(2019), 852-892. [HaR] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 274(2)(1982), 399-443. [IZ] O. Iyama and X. Zhang, Classifying τ -tilting modules over the Auslander algebra of $K[x]/(x^n)$, J. Math. Soc. Japan, 72(3)(2020), 731-764.

[M]Y. Mizuno, Classifying τ -tilting modules over preprojective algebras of Dynkin type, Math. Zeit., 277(3)(2014), 665-690.

[T] H. Tachikawa, Quasi-Frobenius rings and generalizations, Lecture Notes in Math., Berlin-Heidelberg- New York, 1973

[XZZ] Z. Xie, L. Zan and X. Zhang, Three results for τ -rigid modules, Rocky Mountain J. Math., 49(8)(2019), 2791-2807

[Z] X. Zhang, Self-orthogonal τ -tilting modules and tilting modules, J. Pure Appl. Algebra, 2022, No 106860.

[CLZZ] X. Chen, Z. Li, X. Zhang and Z. Zhao, Self-orthogonal τ -tilting modules and tilting modules II: finite representation type, In preparation.

Thanks for your attention!!!