The λ -pure singularity categories on a Grothendieck category

Xi Wang

School of Mathematics, Statistics and Mechanics Beijing University of Technology

ICRA, 2024

A D > A A P > A

Outline

2 Preliminaries

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The derived category is the smallest additive category that quasi-isomorphisms become isomorphisms, it is an important and complete set of theories.
- Neeman[5] considered the derived category of exact categories: Let (A, E) be an exact category, the derived category of (A, E), denoted by D(A), is the quotient of homotopy category K(A) by a thick subcategory (which is a full subcategory of K(A) consisting of the acyclic complexes).

- The derived category is the smallest additive category that quasi-isomorphisms become isomorphisms, it is an important and complete set of theories.
- Neeman[5] considered the derived category of exact categories: Let (A, E) be an exact category, the derived category of (A, E), denoted by D(A), is the quotient of homotopy category K(A) by a thick subcategory (which is a full subcategory of K(A) consisting of the acyclic complexes).

- Provided a fixed exact structure, one can define relative derived categories.
- Such as: Gao-Zhang introduced Gorenstein derived category; Asadollahi *et.al.* explored the relative derived category with respect to a contravariantly finite subcategory \mathcal{X} of an abelian category \mathcal{A} ; Zheng-Huang investigated the pure one in the module category.
- Note that these relative versions of derived categories share many important results with ordinary ones. For example, the equivalence between the derived category and a special homotopy category.

- Provided a fixed exact structure, one can define relative derived categories.
- Such as: Gao-Zhang introduced Gorenstein derived category; Asadollahi *et.al.* explored the relative derived category with respect to a contravariantly finite subcategory \mathcal{X} of an abelian category \mathcal{A} ; Zheng-Huang investigated the pure one in the module category.
- Note that these relative versions of derived categories share many important results with ordinary ones. For example, the equivalence between the derived category and a special homotopy category.

- Provided a fixed exact structure, one can define relative derived categories.
- Such as: Gao-Zhang introduced Gorenstein derived category; Asadollahi *et.al.* explored the relative derived category with respect to a contravariantly finite subcategory \mathcal{X} of an abelian category \mathcal{A} ; Zheng-Huang investigated the pure one in the module category.
- Note that these relative versions of derived categories share many important results with ordinary ones. For example, the equivalence between the derived category and a special homotopy category.

- Provided a fixed exact structure, one can define relative derived categories.
- Such as: Gao-Zhang introduced Gorenstein derived category; Asadollahi *et.al.* explored the relative derived category with respect to a contravariantly finite subcategory \mathcal{X} of an abelian category \mathcal{A} ; Zheng-Huang investigated the pure one in the module category.
- Note that these relative versions of derived categories share many important results with ordinary ones. For example, the equivalence between the derived category and a special homotopy category.

Introduction

• As a natural continuation, many scholars studied a singularity category, which is actually a Verdier quotient of a derived category by a thick subcategory.

Singularity Category

Assume that \mathcal{A} is an abelian category with enough projective objects. Denote by $\mathbf{K}^{b}(\mathcal{P})$ the subcategory of $\mathbf{K}^{b}(\mathcal{A})$ consisting of all complexes of projective objects. Then by [7, Lemma 5.1.10], it is a triangulated subcategory of the bounded derived category $\mathbf{D}^{b}(\mathcal{A})$. And it is also a thick one by Buchweitz. Thus, the Verdier quotient category $\mathbf{D}^{b}(\mathcal{A})/\mathbf{K}^{b}(\mathcal{P})$, in fact, is the usual singularity category of the abelian category \mathcal{A} , denoted by $\mathbf{D}_{sg}^{b}(\mathcal{A})$.

Introduction

• As a natural continuation, many scholars studied a singularity category, which is actually a Verdier quotient of a derived category by a thick subcategory.

Singularity Category

Assume that \mathcal{A} is an abelian category with enough projective objects. Denote by $\mathbf{K}^{b}(\mathcal{P})$ the subcategory of $\mathbf{K}^{b}(\mathcal{A})$ consisting of all complexes of projective objects. Then by [7, Lemma 5.1.10], it is a triangulated subcategory of the bounded derived category $\mathbf{D}^{b}(\mathcal{A})$. And it is also a thick one by Buchweitz. Thus, the Verdier quotient category $\mathbf{D}^{b}(\mathcal{A})/\mathbf{K}^{b}(\mathcal{P})$, in fact, is the usual singularity category of the abelian category \mathcal{A} , denoted by $\mathbf{D}_{sg}^{b}(\mathcal{A})$.

- More generally, Christensen *et.al.* [3] explored the singularity category of an ordinary exact category.
- The relative version of singularity categories was studied by Chen,Li-Huang,respectively. And Bao introduced the Gorenstein singularity categories. Cao *et.al.*explored the pure singularity categories.
- Note that these relative versions of singularity categories share many results similar to ordinary ones. For example, the condition for the singularity category vanished.

- More generally, Christensen *et.al.* [3] explored the singularity category of an ordinary exact category.
- The relative version of singularity categories was studied by Chen,Li-Huang,respectively. And Bao introduced the Gorenstein singularity categories. Cao *et.al.*explored the pure singularity categories.
- Note that these relative versions of singularity categories share many results similar to ordinary ones. For example, the condition for the singularity category vanished.

- More generally, Christensen *et.al.* [3] explored the singularity category of an ordinary exact category.
- The relative version of singularity categories was studied by Chen,Li-Huang,respectively. And Bao introduced the Gorenstein singularity categories. Cao *et.al.*explored the pure singularity categories.
- Note that these relative versions of singularity categories share many results similar to ordinary ones. For example, the condition for the singularity category vanished.

- More generally, Christensen *et.al.* [3] explored the singularity category of an ordinary exact category.
- The relative version of singularity categories was studied by Chen,Li-Huang,respectively. And Bao introduced the Gorenstein singularity categories. Cao *et.al*.explored the pure singularity categories.
- Note that these relative versions of singularity categories share many results similar to ordinary ones. For example, the condition for the singularity category vanished.

Introduction

What we concerned is λ-pure exact structure, and we studied the λ-pure version derived category. As a continuation, we begin to explore the λ-pure singularity categories.

Aim l

Introduce the notion of λ -pure singularity category of a Grothendieck category and explore its basic properties.

Aim II

Investigate the relations between a λ -pure singularity category and other quotient categories.

Introduction

What we concerned is λ-pure exact structure, and we studied the λ-pure version derived category. As a continuation, we begin to explore the λ-pure singularity categories.

Aim I

Introduce the notion of λ -pure singularity category of a Grothendieck category and explore its basic properties.

Aim II

Investigate the relations between a λ -pure singularity category and other quotient categories.

Introduction

What we concerned is λ-pure exact structure, and we studied the λ-pure version derived category. As a continuation, we begin to explore the λ-pure singularity categories.

Aim I

Introduce the notion of λ -pure singularity category of a Grothendieck category and explore its basic properties.

Aim II

Investigate the relations between a λ -pure singularity category and other quotient categories.

Preliminaries

We introduce some necessary notions and results which will be used repeatedly.

- Let λ be an infinite regular cardinal. In what follows, A denotes a Grothendieck category and λ is the least regular cardinal such that A is locally λ-presentable.
- Let C(A) and K(A) denote the category of complexes and homotopy category of A, respectively.

For any $X \in \mathbf{C}(\mathcal{A})$, we write

$$X: \cdots \to X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^m} X^{n+1} \to \cdots$$

A complex **X** is acyclic if its cohomology

$$\mathrm{H}^{i}(\boldsymbol{X}) := \ker d_{\boldsymbol{X}}^{i} / \mathrm{Im} d_{\boldsymbol{X}}^{i-1} = 0$$

▶ < Ξ ▶ <</p>

Preliminaries

We introduce some necessary notions and results which will be used repeatedly.

- Let λ be an infinite regular cardinal. In what follows, A denotes a Grothendieck category and λ is the least regular cardinal such that A is locally λ-presentable.
- Let $C(\mathcal{A})$ and $K(\mathcal{A})$ denote the category of complexes and homotopy category of \mathcal{A} , respectively.

For any $X \in \mathbf{C}(\mathcal{A})$, we write

$$X: \cdots \to X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \to \cdots$$

A complex **X** is acyclic if its cohomology

$$\mathrm{H}^{i}(\boldsymbol{X}) := \ker d_{\boldsymbol{X}}^{i} / \mathrm{Im} d_{\boldsymbol{X}}^{i-1} = 0$$

for each integer *i*.

ロトスロトスロトスロト 田 ろくの

Preliminaries

We introduce some necessary notions and results which will be used repeatedly.

- Let λ be an infinite regular cardinal. In what follows, A denotes a Grothendieck category and λ is the least regular cardinal such that A is locally λ-presentable.
- Let C(A) and K(A) denote the category of complexes and homotopy category of A, respectively.

For any $X \in \mathbf{C}(\mathcal{A})$, we write

$$X: \cdots \to X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \to \cdots$$

A complex **X** is acyclic if its cohomology

$$\mathrm{H}^{i}(\boldsymbol{X}) := \ker d_{\boldsymbol{X}}^{i} / \mathrm{Im} d_{\boldsymbol{X}}^{i-1} = 0$$

伺 ト く ヨ ト く ヨ ト

Preliminaries

We introduce some necessary notions and results which will be used repeatedly.

- Let λ be an infinite regular cardinal. In what follows, A denotes a Grothendieck category and λ is the least regular cardinal such that A is locally λ-presentable.
- Let C(A) and K(A) denote the category of complexes and homotopy category of A, respectively.

For any $X \in \mathbf{C}(\mathcal{A})$, we write

$$X: \cdots \to X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^n} X^{n+1} \to \cdots$$

A complex *X* is acyclic if its cohomology

$$\mathrm{H}^{i}(\boldsymbol{X}) := \ker d_{\boldsymbol{X}}^{i} / \mathrm{Im} d_{\boldsymbol{X}}^{i-1} = 0$$

/□ ▶ ▲ 三 ▶ ▲

Preliminaries

We introduce some necessary notions and results which will be used repeatedly.

- Let λ be an infinite regular cardinal. In what follows, A denotes a Grothendieck category and λ is the least regular cardinal such that A is locally λ-presentable.
- Let C(A) and K(A) denote the category of complexes and homotopy category of A, respectively.

For any $X \in \mathbf{C}(\mathcal{A})$, we write

$$X: \cdots \to X^{n-1} \xrightarrow{d_X^{n-1}} X^n \xrightarrow{d_X^m} X^{n+1} \to \cdots$$

A complex X is acyclic if its cohomology

$$\mathrm{H}^{i}(X) := \ker d_{X}^{i} / \mathrm{Im} d_{X}^{i-1} = 0$$

/□ ▶ ▲ 三 ▶ ▲

Preliminaries

- Let f : X → Y be a morphism in C(A). Then f is called a quasi-isomorphism, if it induces the isomorphism Hⁿ(f) : Hⁿ(X) ≅ Hⁿ(Y) for each integer n.
- The mapping cone of a morphism $f : X \to Y$ in $\mathbb{C}(\mathcal{A})$ is the complex $\operatorname{Cone}(f) := \mathbb{Z}$ with component $Z^n = X^{n+1} \bigoplus Y^n$ and differential $d_{\mathbb{Z}}^n = \begin{bmatrix} -d_{\mathbb{X}}^{n+1} & 0\\ f^{n+1} & d_{\mathbb{Y}}^n \end{bmatrix}$. We know f is a quasi-isomorphism if and only if $\operatorname{Cone}(f)$ is acyclic.

Preliminaries

- Let f : X → Y be a morphism in C(A). Then f is called a quasi-isomorphism, if it induces the isomorphism Hⁿ(f) : Hⁿ(X) ≅ Hⁿ(Y) for each integer n.
- The mapping cone of a morphism $f : X \to Y$ in $\mathbb{C}(\mathcal{A})$ is the complex $\operatorname{Cone}(f) := \mathbb{Z}$ with component $\mathbb{Z}^n = X^{n+1} \bigoplus Y^n$ and differential $d_{\mathbb{Z}}^n = \begin{bmatrix} -d_{\mathbb{X}}^{n+1} & 0\\ f^{n+1} & d_{\mathbb{Y}}^n \end{bmatrix}$. We know f is a quasi-isomorphism if and only if $\operatorname{Cone}(f)$ is acyclic.

ヘロト 人間 とくほとくほとう

Preliminaries

Recall that an object $A \in A$ is λ -presentable [1, Definition1.13(2)] if the functor Hom_A(A, -) commutes with λ -directed colimits in A. The following are some of our previous study on λ -pure derived category in [6].

Definition 2.1

A short exact sequence $\xi : 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is λ -pure, if for any λ -presentable object *F*, Hom_{\mathcal{A}}(*F*, ξ) is an exact sequence. Naturally, in this case, we say that *f* is a λ -pure monomorphism, and *g* is a λ -pure epimorphism.

Preliminaries

Recall that an object $A \in A$ is λ -presentable [1, Definition1.13(2)] if the functor Hom_A(A, -) commutes with λ -directed colimits in A. The following are some of our previous study on λ -pure derived category in [6].

Definition 2.1

A short exact sequence $\xi : 0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is λ -pure, if for any λ -presentable object *F*, Hom_{\mathcal{A}}(*F*, ξ) is an exact sequence. Naturally, in this case, we say that *f* is a λ -pure monomorphism, and *g* is a λ -pure epimorphism.

Preliminaries

Definition 2.2

An object *X* in \mathcal{A} is called λ -pure projective, if *X* is projective with respect to λ -pure exact sequence. We denote by \mathcal{PP}_{λ} the class of all λ -pure projective objects.

Note that the Grothendieck category \mathcal{A} have enough λ -pure projective objects.

Preliminaries

Definition 2.2

An object *X* in A is called λ -pure projective, if *X* is projective with respect to λ -pure exact sequence. We denote by \mathcal{PP}_{λ} the class of all λ -pure projective objects.

Note that the Grothendieck category \mathcal{A} have enough λ -pure projective objects.

Preliminaries

Definition 2.3

A morphism $f : X \to Y$ in $\mathbb{C}(\mathcal{A})$ is called a λ -pure quasi-isomorphism if $\operatorname{Cone}(f)$ is λ -pure acyclic.

In fact, a morphism $f : X \to Y$ in $\mathbb{C}(\mathcal{A})$ is a λ -pure quasi-isomorphism if and only if $\operatorname{Hom}_{\mathcal{A}}(P, f)$ is a quasi-isomorphism for any λ -pure projective, or λ -presentable, object P.

Preliminaries

Definition 2.3

A morphism $f : X \to Y$ in $\mathbb{C}(\mathcal{A})$ is called a λ -pure quasi-isomorphism if $\operatorname{Cone}(f)$ is λ -pure acyclic.

In fact, a morphism $f : X \to Y$ in $\mathbb{C}(\mathcal{A})$ is a λ -pure quasi-isomorphism if and only if $\operatorname{Hom}_{\mathcal{A}}(P, f)$ is a quasi-isomorphism for any λ -pure projective, or λ -presentable, object P.

Preliminaries

λ -pure derived category

Let $\mathbf{K}_{\lambda}(\mathcal{A})$ be a subcategory of $\mathbf{K}(\mathcal{A})$ consisting of all λ -pure acyclic complexes, then it is thick. Naturally, the corresponding Verdier quotient is the λ -pure derived category of \mathcal{A} , that is, $\mathbf{D}_{\lambda}(\mathcal{A}) := \mathbf{K}(\mathcal{A})/\mathbf{K}_{\lambda}(\mathcal{A})$. Moreover, $\mathbf{D}_{\lambda}^{*}(\mathcal{A}) := \mathbf{K}^{*}(\mathcal{A})/\mathbf{K}_{\lambda}^{*}(\mathcal{A})$, where $* \in \{b, -, +\}$.

Preliminaries

Theorem 2.4

There exists a triangle equivalence $\mathbf{D}_{\lambda}^{-}(\mathcal{A}) \simeq \mathbf{K}^{-}(\mathcal{PP}_{\lambda})$. In particular, $\mathbf{D}_{\lambda}^{b}(\mathcal{A}) \simeq \mathbf{K}_{\lambda}^{-,b}(\mathcal{PP}_{\lambda})$.

Where $\mathbf{K}_{\lambda}^{-,b}(\mathcal{PP}_{\lambda})$ is the full subcategory of $\mathbf{K}^{-}(\mathcal{PP}_{\lambda})$ consisting of all complexes X such that $\operatorname{Hom}_{\mathcal{A}}(F, X)$ is with bounded cohomology for any λ -presentable (more generally, λ -pure projective) object F. In fact, we say a complex $X \in \mathbf{K}_{\lambda}^{-,b}(\mathcal{PP}_{\lambda})$, if there exists an appropriate integer n, such that X is λ -pure acyclic in degree $\leq n$.

Preliminaries

Theorem 2.4

There exists a triangle equivalence $\mathbf{D}_{\lambda}^{-}(\mathcal{A}) \simeq \mathbf{K}^{-}(\mathcal{PP}_{\lambda})$. In particular, $\mathbf{D}_{\lambda}^{b}(\mathcal{A}) \simeq \mathbf{K}_{\lambda}^{-,b}(\mathcal{PP}_{\lambda})$.

Where $\mathbf{K}_{\lambda}^{-,b}(\mathcal{PP}_{\lambda})$ is the full subcategory of $\mathbf{K}^{-}(\mathcal{PP}_{\lambda})$ consisting of all complexes X such that $\operatorname{Hom}_{\mathcal{A}}(F, X)$ is with bounded cohomology for any λ -presentable (more generally, λ -pure projective) object F. In fact, we say a complex $X \in \mathbf{K}_{\lambda}^{-,b}(\mathcal{PP}_{\lambda})$, if there exists an appropriate integer n, such that X is λ -pure acyclic in degree $\leq n$.

Preliminaries

Definition 2.5

The complex $X \in \mathbf{D}_{\lambda}(\mathcal{A})$ is said to be of λ -pure projective dimension at most *n*, written by $p_{\lambda}.pd_{\mathcal{A}}X \leq n$, if there exists a λ -pure quasi-isomorphism $P \to X$, where *P* is a complex of λ -pure projective objects, such that $P^i = 0$ for any i < -n.

Definition 2.6

The λ -pure global dimension of \mathcal{A} , written by P_{λ} .gldim \mathcal{A} , is the supremum of the λ -pure projective dimensions of all objects in \mathcal{A} . It can be expressed as

 $P_{\lambda}.gldim\mathcal{A} = \sup\{p_{\lambda}.pd_{\mathcal{A}}X|X \in \mathcal{A}\}$

Preliminaries

Definition 2.5

The complex $X \in \mathbf{D}_{\lambda}(\mathcal{A})$ is said to be of λ -pure projective dimension at most *n*, written by $p_{\lambda}.pd_{\mathcal{A}}X \leq n$, if there exists a λ -pure quasi-isomorphism $P \to X$, where *P* is a complex of λ -pure projective objects, such that $P^i = 0$ for any i < -n.

Definition 2.6

The λ -pure global dimension of \mathcal{A} , written by P_{λ} .gldim \mathcal{A} , is the supremum of the λ -pure projective dimensions of all objects in \mathcal{A} . It can be expressed as

$$P_{\lambda}.gldim\mathcal{A} = \sup\{p_{\lambda}.pd_{\mathcal{A}}X | X \in \mathcal{A}\}$$

Fundamental results

Definition 3.1

The λ -pure singularity category is defined to be the Verdier quotient

$$\mathbf{D}^{b}_{\lambda\text{-}sg}(\mathcal{A}) := \mathbf{D}^{b}_{\lambda}(\mathcal{A})/\mathbf{K}^{b}(\mathcal{PP}_{\lambda}) \cong \mathbf{K}^{-,b}_{\lambda}(\mathcal{PP}_{\lambda})/\mathbf{K}^{b}(\mathcal{PP}_{\lambda}).$$

Proposition 3.2

The λ -pure singularity category $\mathbf{D}^{b}_{\lambda-sg}(\mathcal{A}) = 0$ if and only if the λ -pure global dimension P_{λ} .gldim \mathcal{A} is finite.

Fundamental results

Definition 3.1

The λ -pure singularity category is defined to be the Verdier quotient

$$\mathbf{D}^{b}_{\lambda\text{-}sg}(\mathcal{A}) := \mathbf{D}^{b}_{\lambda}(\mathcal{A})/\mathbf{K}^{b}(\mathcal{PP}_{\lambda}) \cong \mathbf{K}^{-,b}_{\lambda}(\mathcal{PP}_{\lambda})/\mathbf{K}^{b}(\mathcal{PP}_{\lambda}).$$

Proposition 3.2

The λ -pure singularity category $\mathbf{D}_{\lambda-sg}^{b}(\mathcal{A}) = 0$ if and only if the λ -pure global dimension P_{λ} .gldim \mathcal{A} is finite.

Fundamental results

We set *P*_λ a class consisting of all the projective resolution of λ-pure projective objects, and ⟨*P*_λ⟩ the triangulated subcategory of **K**^{-,b}(*P*) generated by *P*_λ, i.e., ⟨*P*_λ⟩ is the smallest triangulated subcategory of **K**^{-,b}(*P*) that contains *P*_λ and is closed with respect to direct summands.

Theorem 3.3

Let \mathcal{A} be a Grothendieck category with enough projective objects. Then the triangulated functor

$$G: (\mathbf{K}_{\lambda}^{-,b}/\mathbf{K}^{b})(\mathcal{PP}_{\lambda}) o \mathbf{K}^{-,b}(\mathcal{P})/\langle \boldsymbol{P}_{\lambda}
angle$$

is dense and full. Moreover, if the λ -pure projective dimension of objects in $\mathbf{K}_{ac}^{-}(\mathcal{PP}_{\lambda})$ is finite, then G is faithful.

Fundamental results

We set *P_λ* a class consisting of all the projective resolution of λ-pure projective objects, and ⟨*P_λ*⟩ the triangulated subcategory of **K**^{-,b}(*P*) generated by *P_λ*, i.e., ⟨*P_λ*⟩ is the smallest triangulated subcategory of **K**^{-,b}(*P*) that contains *P_λ* and is closed with respect to direct summands.

Theorem 3.3

Let \mathcal{A} be a Grothendieck category with enough projective objects. Then the triangulated functor

$$G: (\mathbf{K}_{\lambda}^{-,b}/\mathbf{K}^{b})(\mathcal{PP}_{\lambda}) \to \mathbf{K}^{-,b}(\mathcal{P})/\langle \boldsymbol{P}_{\lambda} \rangle$$

is dense and full. Moreover, if the λ -pure projective dimension of objects in $\mathbf{K}_{ac}^{-}(\mathcal{PP}_{\lambda})$ is finite, then G is faithful.

Fundamental results

• We study the λ-pure derived equivalence as well as the λ-pure singular equivalence.

Theorem 3.4

Let \mathcal{A} and \mathcal{B} be Grothendieck categories, then the triangle equivalence

$$F: \mathbf{K}^{-}(\mathcal{PP}_{\lambda}(\mathcal{A})) \to \mathbf{K}^{-}(\mathcal{PP}_{\lambda}(\mathcal{B}))$$

induces a λ -pure derived equivalence $\mathbf{D}^{b}_{\lambda}(\mathcal{A}) \simeq \mathbf{D}^{b}_{\lambda}(\mathcal{B})$, and it also induces a λ -pure singular equivalence $\mathbf{D}^{b}_{\lambda-se}(\mathcal{A}) \simeq \mathbf{D}^{b}_{\lambda-se}(\mathcal{B})$.

Fundamental results

 We study the λ-pure derived equivalence as well as the λ-pure singular equivalence.

Theorem 3.4

Let \mathcal{A} and \mathcal{B} be Grothendieck categories, then the triangle equivalence

$$F: \mathbf{K}^{-}(\mathcal{PP}_{\lambda}(\mathcal{A})) \to \mathbf{K}^{-}(\mathcal{PP}_{\lambda}(\mathcal{B}))$$

induces a λ -pure derived equivalence $\mathbf{D}^{b}_{\lambda}(\mathcal{A}) \simeq \mathbf{D}^{b}_{\lambda}(\mathcal{B})$, and it also induces a λ -pure singular equivalence $\mathbf{D}^{b}_{\lambda-sg}(\mathcal{A}) \simeq \mathbf{D}^{b}_{\lambda-sg}(\mathcal{B})$.

Fundamental results

• Let A be an abelian category with enough projective objects. The classical Buchweitz-Happel Theorem and its inverse show that the singularity category is triangle equivalent to a stable category.

Theorem 3.5

[2, 4.4.1][4] Let A be an abelian category with enough projective objects. Then the canonical functor

 $F: \underline{\mathcal{G}(\mathcal{A})} \to \mathbf{D}^b_{sg}(\mathcal{A})$

is a fully faithful triangle functor. Moreover, F is a triangulated equivalent if and only if the Gorenstein projective dimension of each object in A is finite, where the "only if" part holds by Zhu[8].

Fundamental results

• Let A be an abelian category with enough projective objects. The classical Buchweitz-Happel Theorem and its inverse show that the singularity category is triangle equivalent to a stable category.

Theorem 3.5

[2, 4.4.1][4] Let A be an abelian category with enough projective objects. Then the canonical functor

$$F: \underline{\mathcal{G}(\mathcal{A})} \to \mathbf{D}^b_{sg}(\mathcal{A})$$

is a fully faithful triangle functor. Moreover, F is a triangulated equivalent if and only if the Gorenstein projective dimension of each object in A is finite, where the "only if" part holds by Zhu[8].

- Chen, and Li-Huang generalized the above Theorem, and they got the relative version of Buchweitz-Happel Theorem, respectively. Moreover, Gao-Zhang considered the Gorenstein version. And Cao *et.al.* explored the pure version.
- Is there a λ -pure version of Buchweitz-Happel Theorem?

- Chen, and Li-Huang generalized the above Theorem, and they got the relative version of Buchweitz-Happel Theorem, respectively. Moreover, Gao-Zhang considered the Gorenstein version. And Cao *et.al.* explored the pure version.
- Is there a λ -pure version of Buchweitz-Happel Theorem?

- The general construction of classic Buchweitz-Happel Theorem is not feasible for λ-pure one since the definition of the Gorenstein category is ordinary, i.e., replacing projective objects with λ-pure projective ones in the definition of Gorenstein projective, it is actually still λ-pure projective object.
- We are still searching for a way to construct a λ-pure version of Buchweitz-Happel Theorem.

- The general construction of classic Buchweitz-Happel Theorem is not feasible for λ-pure one since the definition of the Gorenstein category is ordinary, i.e., replacing projective objects with λ-pure projective ones in the definition of Gorenstein projective, it is actually still λ-pure projective object.
- We are still searching for a way to construct a λ-pure version of Buchweitz-Happel Theorem.

References

- J. Adámek, J. Rosicky. Locally presentable and accessible categories. Cambridge University Press, 1994.
- [2] R. Buchweitz. Maximal Cohen-Macaulay modules and tate cohomology over Gorenstein rings. unpublish manuscript. 1987.
- [3] L. Christensen, N. Ding, S. Estrada, J. Hu, H. Li, P. Thompson. The singularity category of an exact category applied to characterize Gorenstein schemes. Q.J. Math., 74(2023), no.1, 1-27.
- [4] D. Happel. On Gorenstein algebras. Progr. Math., 95(1991), 389-404.
- [5] A. Neeman, The derived category of an exact category, J. Algebra 135(1990) 388-394.
- [6] X. Wang, H. Yao, L. Shen. λ-pure derived categories of a Grothendieck category. J. Algebra Appl., DOI: 10.1142/S0219498824501974.
- [7] P. Zhang. Trangulated categories and derived Categories (in Chinese). Science Press, BeiJing. 2015.
- [8] S. Zhu. Left homotopy theory and the inverse of Buchweitz's theorem. Thesis(Master), Shanghai Jiaotong University. 2012.

Thanks for your time and attention!

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶