Biset functors defined on categories

Peter Webb

University of Minnesota

arXiv:2304.06863, ICRA 21, August 8, 2024

KO KKOKKEKKEK E DAG

The short story

- \blacktriangleright The biset category $\mathbb B$ has objects: finite categories, and morphisms: linear combinations of bisets. $Bisets =$ profunctors $=$ distributors. Disjoint unions of bisets are identified as their sum.
- \triangleright Biset functors are linear functors $\mathbb{B} \to R$ -mod.
- \blacktriangleright Historically the objects of $\mathbb B$ were just groups.
- \triangleright Bisets encode restriction. induction, conjugation, inflation, deflation.
- \blacktriangleright Examples of biset functors: the Burnside ring, the representation ring, homology and cohomology (when representable bisets are used).
- \blacktriangleright Uses: refined information about representation rings; computation of cohomology; description of maps between classifying spaces; construction of transfer maps.

 $\mathcal C$ is a finite category and Set denotes the category of finite sets. A C-set is a functor $\Omega : \mathcal{C} \to \text{Set}$.

New definition! The Burnside ring of $\mathcal C$ is $B(C)$ = the Grothendieck group finite C-sets with relations $\Theta = \Omega + \Psi$ if $\Theta \cong \Omega \sqcup \Psi$ as C-sets. The product of C -sets is defined pointwise: $(\Omega \cdot \Psi)(x) := \Omega(x) \times \Psi(x).$

The poset $A_2 = x < y$

Example

The \sqcup -indecomposable A_2 -sets have the form

$$
\Omega_n:=\{1,\ldots,n\}\to\{*\},\quad n\geq 0.
$$

The Burnside ring is

$$
B(\mathcal{A}_2)=\mathbb{Z}\{\Omega_0,\Omega_1,\Omega_2,\ldots\}\cong\mathbb{Z}\mathbb{N}_{\geq 0}^\times
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

What are bisets for categories?

- If C and D are finite categories, a (C, D) -biset is a set $_{C}\Omega_{D}$ with a left action of C and a right action of D, so that these actions commute. This is the same as a set with an action of $\mathcal{C}\times \mathcal{D}^{\mathrm{op}}.$
- \blacktriangleright $A_R(C, D)$ is the free R-module with the transitive finite (C, \mathcal{D}) -bisets as basis. We identify $[\Omega \sqcup \Psi] = [\Omega] + [\Psi]$
- ► Composition of bisets: ∂_{Ω} \circ $\partial \Psi_{\mathcal{E}} = \Omega \times_{\mathcal{D}} \Psi$.
- \triangleright The biset category $\mathbb B$ over a commutative ring R has objects finite groups, and homomorphisms $\text{Hom}_{\mathbb{B}}(\mathcal{D}, \mathcal{C}) = A_R(\mathcal{C}, \mathcal{D})$.

KORKAR KERKER SAGA

A biset functor is an R-linear functor $M : \mathbb{B} \to R$ -mod.

Encoding homomorphisms and functors: special bisets

Recall: a biset functor M specifies: for each biset $_CD_\mathcal{D}$ an R-module homomorphism $M(\Omega) : M(\mathcal{D}) \to M(\mathcal{C})$.

For groups: restriction, corestriction are encoded by bisets $_HG_G$, $_GG_H$ where $H \leq G$. Inflation and deflation are encoded by bisets $_GQ_Q$, $_QQ_G$ when Q is a quotient of G .

For categories: when $F: \mathcal{C} \to \mathcal{D}$ is a functor we get bisets $p\mathcal{D}_{\text{FC}}$ and $_{\mathcal{C}^{\mathcal{F}}}\mathcal{D}_{\mathcal{D}}$

KORKARYKERKER POLO

We have functors

 $SimplicialComplexes \rightarrow SCat \rightarrow \mathbb{B}$ or op . Examples of biset functors on categories

\blacktriangleright The Burnside ring $B(\mathcal{C})$.

In fact, $B(\mathcal{C})$ is the representable biset functor $\text{Hom}_{\mathbb{B}}(1,-)$ evaluated at C. This is because $\text{Hom}_{\mathbb{R}}(1,\mathcal{C})$ is the Grothendieck group of $(C, 1)$ -bisets with respect to \sqcup , and these bisets are really the same as C -sets. $B(-)$ is a projective biset functor.

 \blacktriangleright The Grothendieck group of finite dimensional k C-modules with respect to direct sum decompositions $K_0(k\mathcal{C}, \oplus)$ is a biset functor.

KORKAR KERKER SAGA

Homology and cohomology of a category

The cohomology ring of C over R is $H^*(C, R) := \text{Ext}_{RC}^*(R, R)$. The homology of C over R is $H_*(\mathcal{C}, R) := \operatorname{Tor}_*^{RC}(\underline{R}, \underline{R}).$

These are isomorphic to the cohomology and homology of the nerve of \mathcal{C} .

A C-set Ω is representable if $\Omega \cong \bigsqcup \mathrm{Hom}\nolimits(x_i,-)$, for some objects $x_i \in \mathcal{C}$.

Let $\mathbb{B}^{1,\mathsf{all}}$ be the subcategory of $\mathbb B$ obtained by using only bisets that are representable on the left, and $\mathbb{B}^{\text{all},1}$ be the subcategory using bisets free on the right.

KORKAR KERKER SAGA

Cohomology of a category as a biset functor

Theorem (Bouc, Keller)

Hochschild homology $\mathcal{C} \mapsto H H_*(\mathcal{RC})$ is a biset functor on $\mathbb{B}^{1, \text{all}}$.

Theorem

Let R be a field. Then $\mathcal{C}\mapsto H^*(\mathcal{C},R)$ is a functor on $\mathbb{B}^{all,1}$ and $\mathcal{C}\mapsto H_*(\mathcal{C},R)$ is a functor on $\mathbb{B}^{1,\textit{all}}.$

This provides a solution to the problem of finding a 'corestriction' map or 'transfer' in the cohomology of categories.

More theory

Theory of simple biset functors.

Internal tensor product: the direct product of categories $\mathcal{C} \times \mathcal{D}$ Unit: the category 1

Theorem

The biset category $\mathbb B$ is a rigid tensor category. The dual of a category C is C^{op} .

There is thus also an internal hom on B. A tensor product and internal hom can then be constructed on biset functors, giving rise to Green biset functors.

Structural properties of biset functors

Theorem (Coşkun, W., Snowden-W.)

Let R be a field of characteristic 0.

- \blacktriangleright On finite groups, biset functors defined on $\mathbb{B}^{1,1}$ are semisimple.
- \triangleright On finite groups, biset functors defined on $\mathbb B$ are quasi-hereditary.
- \triangleright Fix a prime p. Defined only on p-groups, finitely generated biset functors have finite length.

Many questions

- \triangleright What are the composition factors of the representation ring biset functor?
- \triangleright What are the composition factors of the Burnside ring biset functor?
- I Identify classes of categories so that, over a field of characteristic 0, the category of biset functors on $\mathbb{B}^{1,1}$ is semisimple.
- ► True or false?: If $C \cong \mathcal{D}$ in $\mathbb B$ then the idempotent completions of C and D are equivalent.
- Are there simple biset functors S and finite categories C so that dim $S(\mathcal{C})$ is infinite? Are there finite categories $\mathcal C$ and infinitely many simple biset functors S so that $S(\mathcal{C}) \neq 0$?
- \triangleright Identify the Burnside rings of categories such as the orbit category of a finite group and relate it to the the Burnside ring of its fusion system.