Biset functors defined on categories

Peter Webb

University of Minnesota

arXiv:2304.06863, ICRA 21, August 8, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The short story

- The biset category B has objects: finite categories, and morphisms: linear combinations of bisets.
 Bisets = profunctors = distributors. Disjoint unions of bisets are identified as their sum.
- Biset functors are linear functors $\mathbb{B} \to R$ -mod.
- ► Historically the objects of B were just groups.
- Bisets encode restriction, induction, conjugation, inflation, deflation.

- Examples of biset functors: the Burnside ring, the representation ring, homology and cohomology (when representable bisets are used).
- Uses: refined information about representation rings; computation of cohomology; description of maps between classifying spaces; construction of transfer maps.

C is a finite category and Set denotes the category of finite sets. A C-set is a functor $\Omega : C \to Set$.

New definition! The Burnside ring of C is B(C) = the Grothendieck group finite C-sets with relations $\Theta = \Omega + \Psi$ if $\Theta \cong \Omega \sqcup \Psi$ as C-sets. The product of C-sets is defined pointwise: $(\Omega \cdot \Psi)(x) := \Omega(x) \times \Psi(x)$.

The poset $A_2 = x < y$

Example

The \sqcup -indecomposable \mathcal{A}_2 -sets have the form

$$\Omega_n:=\{1,\ldots,n\}\to\{*\},\quad n\ge 0.$$

The Burnside ring is

$$B(\mathcal{A}_2) = \mathbb{Z}\{\Omega_0, \Omega_1, \Omega_2, \ldots\} \cong \mathbb{Z}\mathbb{N}_{\geq 0}^{ imes}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What are bisets for categories?

- If C and D are finite categories, a (C, D)-biset is a set CΩD with a left action of C and a right action of D, so that these actions commute. This is the same as a set with an action of C × D^{op}.
- A_R(C, D) is the free R-module with the transitive finite (C, D)-bisets as basis. We identify [Ω ⊔ Ψ] = [Ω] + [Ψ]
- Composition of bisets: $_{\mathcal{C}}\Omega_{\mathcal{D}} \circ _{\mathcal{D}}\Psi_{\mathcal{E}} = \Omega \times_{\mathcal{D}} \Psi.$
- ► The biset category B over a commutative ring R has objects finite groups, and homomorphisms Hom_B(D, C) = A_R(C, D).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

▶ A biset functor is an *R*-linear functor $M : \mathbb{B} \to R$ -mod.

Encoding homomorphisms and functors: special bisets

Recall: a biset functor M specifies: for each biset $_{\mathcal{C}}\Omega_{\mathcal{D}}$ an R-module homomorphism $M(\Omega): M(\mathcal{D}) \to M(\mathcal{C})$.

For groups: restriction, corestriction are encoded by bisets $_HG_G$, $_GG_H$ where $H \leq G$. Inflation and deflation are encoded by bisets $_GQ_Q$, $_QQ_G$ when Q is a quotient of G.

For categories: when $F : \mathcal{C} \to \mathcal{D}$ is a functor we get bisets ${}_{\mathcal{D}}\mathcal{D}_{F_{\mathcal{C}}}$ and ${}_{\mathcal{C}^{F}}\mathcal{D}_{\mathcal{D}}$

We have functors

SimplicialComplexes \rightarrow SCat $\rightarrow \mathbb{B}$ or \mathbb{B}^{op} .

Examples of biset functors on categories

• The Burnside ring B(C).

In fact, $B(\mathcal{C})$ is the representable biset functor $\operatorname{Hom}_{\mathbb{B}}(1, -)$ evaluated at \mathcal{C} . This is because $\operatorname{Hom}_{\mathbb{B}}(1, \mathcal{C})$ is the Grothendieck group of $(\mathcal{C}, 1)$ -bisets with respect to \sqcup , and these bisets are really the same as \mathcal{C} -sets. B(-) is a projective biset functor.

► The Grothendieck group of finite dimensional kC-modules with respect to direct sum decompositions K₀(kC, ⊕) is a biset functor.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Homology and cohomology of a category

The cohomology ring of C over R is $H^*(C, R) := \operatorname{Ext}_{RC}^*(\underline{R}, \underline{R})$. The homology of C over R is $H_*(C, R) := \operatorname{Tor}_*^{RC}(\underline{R}, \underline{R})$.

These are isomorphic to the cohomology and homology of the nerve of $\ensuremath{\mathcal{C}}.$

A C-set Ω is representable if $\Omega \cong \bigsqcup \operatorname{Hom}(x_i, -)$, for some objects $x_i \in C$.

Let $\mathbb{B}^{1,\mathsf{all}}$ be the subcategory of $\mathbb B$ obtained by using only bisets that are representable on the left, and $\mathbb B^{\mathsf{all},1}$ be the subcategory using bisets free on the right.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Cohomology of a category as a biset functor

Theorem (Bouc, Keller)

Hochschild homology $\mathcal{C} \mapsto HH_*(R\mathcal{C})$ is a biset functor on $\mathbb{B}^{1,all}$.

Theorem

Let R be a field. Then $\mathcal{C} \mapsto H^*(\mathcal{C}, R)$ is a functor on $\mathbb{B}^{all,1}$ and $\mathcal{C} \mapsto H_*(\mathcal{C}, R)$ is a functor on $\mathbb{B}^{1,all}$.

This provides a solution to the problem of finding a 'corestriction' map or 'transfer' in the cohomology of categories.

More theory

Theory of simple biset functors.

Internal tensor product: the direct product of categories $\mathcal{C}\times\mathcal{D}$ Unit: the category 1

Theorem

The biset category \mathbb{B} is a rigid tensor category. The dual of a category \mathcal{C} is $\mathcal{C}^{\mathrm{op}}$.

There is thus also an internal hom on \mathbb{B} . A tensor product and internal hom can then be constructed on biset functors, giving rise to Green biset functors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Structural properties of biset functors

Theorem (Coşkun, W., Snowden-W.)

Let R be a field of characteristic 0.

- On finite groups, biset functors defined on $\mathbb{B}^{1,1}$ are semisimple.
- ► On finite groups, biset functors defined on B are quasi-hereditary.
- Fix a prime p. Defined only on p-groups, finitely generated biset functors have finite length.

Many questions

- What are the composition factors of the representation ring biset functor?
- What are the composition factors of the Burnside ring biset functor?
- ► Identify classes of categories so that, over a field of characteristic 0, the category of biset functors on B^{1,1} is semisimple.
- ► True or false?: If C ≅ D in B then the idempotent completions of C and D are equivalent.
- Are there simple biset functors S and finite categories C so that dim S(C) is infinite? Are there finite categories C and infinitely many simple biset functors S so that S(C) ≠ 0?
- Identify the Burnside rings of categories such as the orbit category of a finite group and relate it to the the Burnside ring of its fusion system.