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Motivation: The orbit method and
the Witt algebra



Lie algebra and universal enveloping algebra

• All vector spaces and Lie algebras are over C.

• Let g be a Lie algebra, dim g is finite or countable with ordered
basis (ei ).

• The universal enveloping algebra U(g)

U(g) ∼= C ⟨ei ⟩ /(eiej − ejei − [ei , ej ]).
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Representation theory and primitive spectrum PrimU(g)

• Question: Understand Repg
∼= ModU(g) (Irreducible

representations correspond to simple modules)

• In general, difficult to understand/classify simple
U(g)-modules.

• A two-sided ideal Q of U(g) is called primitive if Q is the
annihilator of a simple module M over U(g) ⇔ QM = 0

• Refined question: Understand the primitive spectrum
PrimU(g) = {primitive ideals Q ◁ U(g)} instead.

• PrimU(g) is still hard to understand, so we seek some kinds of
correspondence.
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The orbit method and Dixmier map

• Let G be the adjoint group of g acting on g∗ by coadjoint
action. We denote the space of orbits by g∗/G .

Theorem (Conze, Dixmier, Duflo, Mathieu, Rentschler)
If g is a finite dimensional solvable Lie algebra, then there exists a
homeomorphism between

Dx : PrimU(g)
∼−−→
Dx

g∗/G .
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The Witt and Virasoro algebra

• The Witt algebra W = C[t, t−1]∂ is the Lie algebra of
derivations of C[t, t−1], where ∂ = d

dt , with Lie bracket

[f ∂, g∂] = (fg ′ − f ′g)∂.

• W has a nice countable basis (ei = t i+1∂|i ∈ Z), and

[ei , ej ] = (j − i)ei+j .

• Its one-dimensional central extension is the Virasoro Lie
algebra Vir , which is important in physics, conformal field
theory and vertex algebras.

• Problem: W and Vir do not have an adjoint group. Need a
slightly different approach.
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The orbit method via Poisson
primitive ideal



The symmetric algebra S(g)

• A Poisson algebra A is a commutative algebra with a Poisson
bracket (that is a Lie bracket) such that

{xy , z} = {x , z}y + {y , z}x .

• The symmetric algebra S(g) ∼= C[ei ] is a Poisson algebra with
{x , y} = [x , y ] (x , y ∈ g). S(g) is the associated graded of
U(g).
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Poisson primitive spectrum of S(g)

• S(g) satisfies (generalized) Nullstellensatz

χ ∈ g∗ ↔ maximal ideal mχ = ker(evχ : S(g) → C) ◁ S(g).

• I ◁ S(g) is a Poisson ideal if {I ,S(g)} ⊆ I

• A Poisson primitive ideal P(χ) of S(g) is the maximal Poisson
ideal contained in mχ.

• The Poisson primitive spectrum of S(g)
P.PrimS(g) = {P(χ)|χ ∈ g∗}.

• We have a canonical map

g∗ → P.PrimS(g); χ 7→ P(χ).

• The set O(χ) = {η ∈ g∗|P(χ) = P(η)} is called the
pseudo-orbit of χ. When g is finite-dimensional with adjoint
group G , then O(χ) = G · χ.
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The orbit method via Poisson primitive ideal

Theorem ([Goodearl, 2010])

PrimU(g) P.PrimS(g)

g∗/G

Dx

g finite dimensional
solvable Lie algebra

Dx
≃ ≃

g finite dimensional
Lie algebra

• The algebraic group G is absent from homeomorphism
Dx : P.PrimS(g) → PrimU(g) (when g is finite-dimensional
solvable Lie algebra), thus can be applied in a more general
setting (e.g. quantum groups).

• Goal: Construct the map Dx : P.PrimS(W ) → PrimU(W )

for the countable dimensional Witt algebra.
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Poisson primitve spectrum of S(W )

• Goal: Study PrimU(W ) and construct
Dx : P.PrimS(W ) → PrimU(W ).

• P.PrimS(W ) is understood in [Petukhov and Sierra, 2023]

• A one-point local function χx ;α0,...,αn on W :

χx ;α0,...,αn : W → C; f ∂ 7→ α0f (x) + · · ·+ αnf
(n)(x),

where x , αn ̸= 0. n is called the order of χ.

• A local function χ = χ1 + · · ·+ χℓ on W is a finite-sum of
one-point local function χi , where xi ̸= xj .

• [Petukhov and Sierra, 2023] P(χ) ̸= 0 iff χ is a local function
on W . They also completely characterize O(χ) for χ ∈ W ∗.
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PrimU(W ) and the Dixmier map
for W



Local representation of W from orbit method

The orbit method gives us a recipe to construct representations of
W from local functions on W .

• Let χ = χ1 + . . . χℓ be a local function on W , where χi is of
order ni at xi .

• A polarization of χ is subalgebra p of W such that χ
∣∣
[p,p]

= 0
and has maximal dimension.

Lemma (P.)

A polarization for χ is p = (t − x1)
m1+1 . . . (t − xℓ)

mℓ+1W , where
mi =

⌊
ni
2

⌋
.

• So χ is a one-dimensional representation of p, which we write
Cχ. The induced module

Mχ = U(W )⊗U(p) Cχ

is called a local representation of W . 11



Dixmier map for the Witt algebra

• Let Q(χ) = AnnU(W )Mχ.

Theorem (P.)
Let χ = χ1 + · · ·+ χℓ be a local function on W . Then Mχ is an
irreducible representation of W iff ni > 0 for all i .

However, all Q(χ) are (completely prime) primitive ideals of
U(W ) (no assumption on ni ). Thus, we now have a well-defined
map

W ∗ → PrimU(W ), χ local 7→ Q(χ),

χ not local 7→ 0.
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Dixmier map for the Witt algebra

Thus we have a candidate for the Dixmier map

W ∗ P.Prim(S(W ))

Prim(U(W )).

Dx

χ local P(χ)

Q(χ).

Theorem (P.)

The Dixmier map Dx above is well-defined, i.e.

if P(χ) = P(η), then Q(χ) = Q(η).
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Proof idea - Use solvable finite-dimensional algebra

• Let gn = C{e0, ..., en−1} be a finite-dimensional solvable
subquotient W with [ei , ej ] = (j − i)ei+j . Let C[t, t−1, ∂] be
the localized Weyl algebra with ∂t − t∂ = 1.

• We consider one-point local function χ = χx ;α0,...,αn ∈ W ∗.

Theorem (P.)
There exists a graded ring homomorphism

Ψn : U(W ) → Tn = C[t, t−1, ∂]⊗C U(gn),

and a Tn-module Lχ such that Mχ
∼= resΨnLχ.

• Q(χ) = Ψ−1
n (AnnTn Lχ). Then we use the Dixmier map on

the solvable Lie algebra gn.
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Questions and Future Work

We have shown that the map Dx : P.PrimS(W ) → PrimU(W ) is
well-defined and it is indeed an instance of orbit method.

• We know that Dx is not injective. But how non-injective is it,
i.e. all instances where injectivity fails?

• Is Dx a continuous and open map?

• Is Dx surjective?

• For χ, η ∈ W ∗, when is P(χ) ⫋ P(η), that is, what is the
“closure” of O(χ)? When is Q(χ) ⫋ Q(η)?
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