The orbit method for the Witt algebra

Tuan Anh Pham August 8, 2024

University of Edinburgh

Motivation: The orbit method and the Witt algebra

The orbit method via Poisson primitive ideal

Prim U(W) and the Dixmier map for W

Motivation: The orbit method and the Witt algebra

- All vector spaces and Lie algebras are over $\mathbb{C}.$
- Let g be a Lie algebra, dim g is finite or countable with ordered basis (e_i).
- The universal enveloping algebra $\mathsf{U}(\mathfrak{g})$

$$\mathsf{U}(\mathfrak{g}) \cong \mathbb{C} \langle e_i \rangle / (e_i e_j - e_j e_i - [e_i, e_j]).$$

- Question: Understand $\operatorname{Rep}_{\mathfrak{g}} \cong \operatorname{Mod}_{U(\mathfrak{g})}$ (Irreducible representations correspond to simple modules)
- In general, difficult to understand/classify simple U(g)-modules.
- A two-sided ideal Q of U(g) is called primitive if Q is the annihilator of a simple module M over U(g) ⇔ QM = 0
- Refined question: Understand the primitive spectrum
 Prim U(g) = {primitive ideals Q ⊲ U(g)} instead.
- Prim U(g) is still hard to understand, so we seek some kinds of correspondence.

 Let G be the adjoint group of g acting on g* by coadjoint action. We denote the space of orbits by g*/G.

Theorem (Conze, Dixmier, Duflo, Mathieu, Rentschler) If g is a finite dimensional solvable Lie algebra, then there exists a homeomorphism between

$$\operatorname{Dx}:\operatorname{\mathsf{Prim}}\operatorname{\mathsf{U}}(\mathfrak{g})\xrightarrow[]{}{}_{\operatorname{Dx}}\mathfrak{g}^*/G.$$

The Witt and Virasoro algebra

 The Witt algebra W = C[t, t⁻¹]∂ is the Lie algebra of derivations of C[t, t⁻¹], where ∂ = d/dt, with Lie bracket

$$[f\partial,g\partial]=(fg'-f'g)\partial.$$

• W has a nice countable basis $(e_i = t^{i+1}\partial | i \in \mathbb{Z})$, and

$$[e_i, e_j] = (j-i)e_{i+j}.$$

- Its one-dimensional central extension is the Virasoro Lie algebra *Vir*, which is important in physics, conformal field theory and vertex algebras.
- Problem: *W* and *Vir* do not have an adjoint group. Need a slightly different approach.

• A Poisson algebra A is a commutative algebra with a Poisson bracket (that is a Lie bracket) such that

$$\{xy, z\} = \{x, z\}y + \{y, z\}x.$$

The symmetric algebra S(g) ≅ C[e_i] is a Poisson algebra with {x, y} = [x, y] (x, y ∈ g). S(g) is the associated graded of U(g).

Poisson primitive spectrum of S(g)

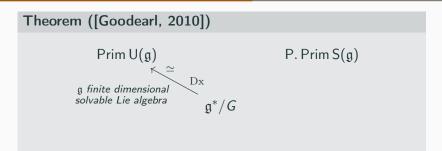
• S(g) satisfies (generalized) <u>Nullstellensatz</u>

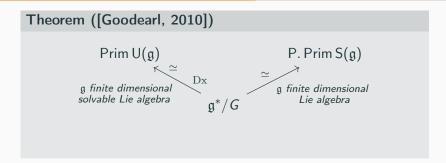
 $\chi\in\mathfrak{g}^*\leftrightarrow \ \text{maximal ideal}\ \mathfrak{m}_{\chi}=\ker(\textit{ev}_{\chi}:\mathsf{S}(\mathfrak{g})\rightarrow\mathbb{C})\triangleleft\mathsf{S}(\mathfrak{g}).$

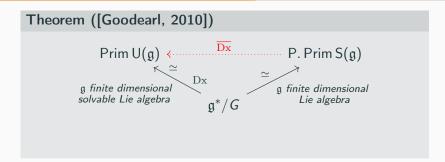
- $I \triangleleft S(\mathfrak{g})$ is a Poisson ideal if $\{I, S(\mathfrak{g})\} \subseteq I$
- A Poisson primitive ideal P(χ) of S(g) is the maximal Poisson ideal contained in m_χ.
- The Poisson primitive spectrum of $S(\mathfrak{g})$ P. Prim $S(\mathfrak{g}) = \{P(\chi) | \chi \in \mathfrak{g}^*\}.$
- We have a canonical map

$$\mathfrak{g}^* \to \mathsf{P}. \operatorname{Prim} \mathsf{S}(\mathfrak{g}); \quad \chi \mapsto P(\chi).$$

The set O(χ) = {η ∈ g*|P(χ) = P(η)} is called the pseudo-orbit of χ. When g is finite-dimensional with adjoint group G, then O(χ) = G ⋅ χ.







- Goal: Construct the map Dx : P. Prim S(W) → Prim U(W) for the countable dimensional Witt algebra.

Poisson primitve spectrum of S(W)

- Goal: Study Prim U(W) and construct $\overline{\text{Dx}}$: P. Prim S(W) \rightarrow Prim U(W).
- P. Prim S(W) is understood in [Petukhov and Sierra, 2023]
- A one-point local function $\chi_{x;\alpha_0,...,\alpha_n}$ on W:

$$\chi_{x;\alpha_0,\ldots,\alpha_n}: W \to \mathbb{C}; \quad f \partial \mapsto \alpha_0 f(x) + \cdots + \alpha_n f^{(n)}(x),$$

where $x, \alpha_n \neq 0$. *n* is called the order of χ .

- A local function χ = χ₁ + · · · + χ_ℓ on W is a finite-sum of one-point local function χ_i, where x_i ≠ x_j.
- [Petukhov and Sierra, 2023] P(χ) ≠ 0 iff χ is a local function on W. They also completely characterize O(χ) for χ ∈ W*.

Prim U(W) and the Dixmier map for W

Local representation of W from orbit method

The orbit method gives us a recipe to construct representations of W from local functions on W.

- Let χ = χ₁ + ... χ_ℓ be a local function on W, where χ_i is of order n_i at x_i.
- A polarization of χ is subalgebra \mathfrak{p} of W such that $\chi|_{[\mathfrak{p},\mathfrak{p}]} = 0$ and has maximal dimension.

Lemma (P.)

A polarization for χ is $\mathfrak{p} = (t - x_1)^{m_1+1} \dots (t - x_\ell)^{m_\ell+1} W$, where $m_i = \lfloor \frac{n_i}{2} \rfloor$.

- So χ is a one-dimensional representation of $\mathfrak{p},$ which we write $\mathbb{C}_{\chi}.$ The induced module

$$M_{\chi} = \mathsf{U}(W) \otimes_{\mathsf{U}(\mathfrak{p})} \mathbb{C}_{\chi}$$

is called a local representation of W.

Dixmier map for the Witt algebra

• Let $Q(\chi) = \operatorname{Ann}_{U(W)} M_{\chi}$.

Theorem (P.)

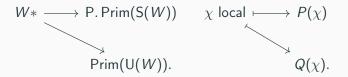
Let $\chi = \chi_1 + \cdots + \chi_\ell$ be a local function on W. Then M_{χ} is an irreducible representation of W iff $n_i > 0$ for all i.

However, all $Q(\chi)$ are (completely prime) primitive ideals of U(W) (no assumption on n_i). Thus, we now have a well-defined map

$$W^* o \operatorname{Prim} U(W), \quad \chi \text{ local} \mapsto Q(\chi),$$

 $\chi \text{ not local} \mapsto 0.$

Thus we have a candidate for the Dixmier map



Thus we have a candidate for the Dixmier map

$$W* \longrightarrow P. Prim(S(W)) \qquad \chi \text{ local } \longmapsto P(\chi)$$

$$\downarrow Dx$$

$$Prim(U(W)). \qquad Q(\chi).$$

Thus we have a candidate for the Dixmier map

Theorem (P.)

The Dixmier map \overline{Dx} above is well-defined, i.e.

if $P(\chi) = P(\eta)$, then $Q(\chi) = Q(\eta)$.

Proof idea - Use solvable finite-dimensional algebra

- Let g_n = C{e₀,..., e_{n-1}} be a finite-dimensional solvable subquotient W with [e_i, e_j] = (j − i)e_{i+j}. Let C[t, t⁻¹, ∂] be the localized Weyl algebra with ∂t − t∂ = 1.
- We consider one-point local function $\chi = \chi_{x;\alpha_0,...,\alpha_n} \in W^*$.

Theorem (P.)

There exists a graded ring homomorphism

$$\Psi_n: \mathsf{U}(W) \to T_n = \mathbb{C}[t, t^{-1}, \partial] \otimes_{\mathbb{C}} \mathsf{U}(\mathfrak{g}_n),$$

and a T_n -module L_{χ} such that $M_{\chi} \cong \operatorname{res}_{\Psi_n} L_{\chi}$.

 Q(χ) = Ψ_n⁻¹(Ann_{T_n} L_χ). Then we use the Dixmier map on the solvable Lie algebra g_n. We have shown that the map $\overline{\mathrm{Dx}} : \mathsf{P}. \operatorname{Prim} \mathsf{S}(W) \to \operatorname{Prim} \mathsf{U}(W)$ is well-defined and it is indeed an instance of orbit method.

- We know that \overline{Dx} is not injective. But how non-injective is it, i.e. all instances where injectivity fails?
- Is $\overline{\mathrm{Dx}}$ a continuous and open map?
- Is $\overline{\mathrm{Dx}}$ surjective?
- For $\chi, \eta \in W^*$, when is $P(\chi) \subsetneq P(\eta)$, that is, what is the "closure" of $\mathbb{O}(\chi)$? When is $Q(\chi) \subsetneqq Q(\eta)$?

Goodearl, K. R. (2010).
 Semiclassical Limits of Quantized Coordinate Rings.
 Petukhov, A. V. and Sierra, S. J. (2023).
 The Poisson spectrum of the symmetric algebra of the Virasoro algebra.