Derived equivalences for derived discrete algebras of infinite global dimension

Tomasz Ciborski (tomaszcib@mat.umk.pl)

Nicolaus Copernicus University in Toruń

International Conference on Representations of Algebras (ICRA 21, 2024)

• Throughout the talk $\mathbb K$ is an algebraically closed field, all categories and functors are $\mathbb K$ -linear.

- Throughout the talk \mathbb{K} is an algebraically closed field, all categories and functors are \mathbb{K} -linear.
- Let $\mathcal{T}, \mathcal{T}'$ be triangulated categories with respective suspension functors Σ, Σ' .
- (F, ω) : $\mathcal{T} \to \mathcal{T}'$ is called a **triangle functor**, when:

- Throughout the talk \mathbb{K} is an algebraically closed field, all categories and functors are \mathbb{K} -linear.
- Let $\mathcal{T}, \mathcal{T}'$ be triangulated categories with respective suspension functors Σ, Σ' .
- (F, ω) : $\mathcal{T} \to \mathcal{T}'$ is called a **triangle functor**, when:
 - $F: \mathcal{T} \to \mathcal{T}'$ is a functor,

- Throughout the talk $\mathbb K$ is an algebraically closed field, all categories and functors are $\mathbb K$ -linear.
- Let $\mathcal{T}, \mathcal{T}'$ be triangulated categories with respective suspension functors Σ , Σ' .
- (F, ω) : $\mathcal{T} \to \mathcal{T}'$ is called a **triangle functor**, when:
 - $F: \mathcal{T} \to \mathcal{T}'$ is a functor,
 - $\omega \colon F\Sigma \to \Sigma' F$ is a natural isomorphism (connecting isomorphism),

- Throughout the talk $\mathbb K$ is an algebraically closed field, all categories and functors are $\mathbb K$ -linear.
- Let $\mathcal{T}, \mathcal{T}'$ be triangulated categories with respective suspension functors Σ, Σ' .
- (F, ω) : $\mathcal{T} \to \mathcal{T}'$ is called a **triangle functor**, when:
 - $F: \mathcal{T} \to \mathcal{T}'$ is a functor,
 - $\omega \colon F\Sigma \to \Sigma' F$ is a natural isomorphism (connecting isomorphism),
 - if $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$ is exact in \mathcal{T} , then

$$F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \xrightarrow{\omega_X \circ F(h)} \Sigma' F(X)$$

is exact in \mathcal{T}' .

- Throughout the talk
 \mathbb{K} is an algebraically closed field, all categories
 and functors are
 \mathbb{K}-linear.
- Let $\mathcal{T}, \mathcal{T}'$ be triangulated categories with respective suspension functors Σ, Σ' .
- (F, ω) : $\mathcal{T} \to \mathcal{T}'$ is called a **triangle functor**, when:
 - $F: \mathcal{T} \to \mathcal{T}'$ is a functor,
 - $\omega \colon F\Sigma \to \Sigma'F$ is a natural isomorphism (**connecting isomorphism**),
 - if $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} \Sigma X$ is exact in \mathcal{T} , then

$$F(X) \xrightarrow{F(f)} F(Y) \xrightarrow{F(g)} F(Z) \xrightarrow{\omega_X \circ F(h)} \Sigma' F(X)$$

is exact in \mathcal{T}' .

• $\eta: (F, \omega) \to (F', \omega')$ is a **natural transformation** between triangle functors if η is a natural transformation between F and F' st. $\omega' \circ \eta \Sigma = \Sigma' \eta \circ \omega$.

◆□▶◆□▶◆臺▶◆臺▶ 臺 釣۹ペ

• Let A, B be finite dimensional \mathbb{K} -algebras.

- Let A, B be finite dimensional \mathbb{K} -algebras.
- A and B are **derived equivalent** if there exists a triangle equivalence $(F, \omega) \colon \mathbf{D}^b (\operatorname{mod} A) \to \mathbf{D}^b (\operatorname{mod} B)$.

- Let A, B be finite dimensional \mathbb{K} -algebras.
- A and B are **derived equivalent** if there exists a triangle equivalence $(F, \omega) \colon \mathbf{D}^b (\operatorname{mod} A) \to \mathbf{D}^b (\operatorname{mod} B)$.
- (F,ω) is **standard** if it is isomorphic to a derived equivalence $(X \otimes_A^{\mathbb{L}} -, \omega')$ for a two-sided tilting complex X of B-A-bimodules.

- Let A, B be finite dimensional \mathbb{K} -algebras.
- A and B are **derived equivalent** if there exists a triangle equivalence $(F, \omega) \colon \mathbf{D}^b (\operatorname{mod} A) \to \mathbf{D}^b (\operatorname{mod} B)$.
- (F,ω) is **standard** if it is isomorphic to a derived equivalence $(X \otimes_A^{\mathbb{L}} -, \omega')$ for a two-sided tilting complex X of B-A-bimodules.

Open question (Rickard '91)

Is any derived equivalence standard?

Affirmative answer for algebras:

- hereditary (Miyachi, Yekutieli '01),
- (anti-)Fano (Minamoto '12),
- triangular (Chen '16),
- derived discrete of finite global dimension (Chen, Zhang '19).

Derived discrete algebras

Definition (Vossieck '01)

A finite dimensional \mathbb{K} -algebra A is **derived discrete** if for any $\mathbf{n} = (n_i)_{i \in \mathbb{Z}}$, where $n_i \in \mathbb{N}_{\geq 0}$, there are only finitely many isoclasses of indecomposables in $\mathbf{D}^b (\text{mod } A)$ of cohomology dimension vector \mathbf{n} .

Example

The algebra of dual numbers given as a path algebra of the quiver:

$$0 \Rightarrow \alpha_0$$

where
$$\alpha_0^2 = 0$$

Classification of derived discrete algebras

Let A be a finite dimensional algebra which is not piecewise hereditary of Dynkin type. Then A is derived discrete iff $\mathbf{D}^b(\operatorname{mod} A) \cong \mathbf{D}^b(\operatorname{mod} \Lambda(r,n,m))$, where $1 \leq r \leq n$, $m \geq 0$ and $\Lambda(r,n,m) = \mathbb{K}\Delta(r,n,m)/I(r,n,m)$ is the path algebra of the quiver

bounded by $\alpha_{n-1}\alpha_0$, $\alpha_{n-2}\alpha_{n-1}$, ..., $\alpha_{n-r}\alpha_{n-r+1}$.

Moreover, gldim $A = \infty$ iff r = n.

Ref: Vossieck '01 (Thm 2.1) and Bobiński-Geiss-Skowroński '04 (Thm A)

 $\Delta(r, n, m)$:

Useful criterion

- Let \mathcal{A} be a category. A triangle functor (F, ω) : $\mathbf{K}^b(\mathcal{A}) \to \mathbf{K}^b(\mathcal{A})$ is a **pseudo-identity** if:
 - F(X) = X for all objects $X \in \mathcal{A}$,
 - $F|_{\Sigma^n(\mathcal{A})} = \mathrm{Id}_{\Sigma^n(\mathcal{A})}$.
- Note: any pseudo-identity is an autoequivalence.

Useful criterion

- Let \mathcal{A} be a category. A triangle functor (F, ω) : $\mathbf{K}^b(\mathcal{A}) \to \mathbf{K}^b(\mathcal{A})$ is a **pseudo-identity** if:
 - F(X) = X for all objects $X \in \mathcal{A}$,
 - $F|_{\Sigma^n(\mathcal{A})} = \mathrm{Id}_{\Sigma^n(\mathcal{A})}$.
- Note: any pseudo-identity is an autoequivalence.

Theorem (Chen, Ye '18)

Let A be a finite dimensional algebra. Suppose that any pseudo-identity (F,ω) on $\mathbf{K}^b(\operatorname{proj} A)$ is isomorphic to $(\operatorname{Id}_{\mathbf{K}^b(\operatorname{proj} A)},\operatorname{Id}_{\Sigma})$. Then for any finite dimensional algebra B any derived equivalence $\mathbf{D}^b(\operatorname{mod} A) \xrightarrow{\sim} \mathbf{D}^b(\operatorname{mod} B)$ is standard.

Strategy of the proof

Main result

Any derived equivalence between derived discrete algebras of infinite global dimension is standard.

Remark

A partial result has been obtained in [Chen, Ye, '18, Section 7] for the algebras of type $\Lambda(n, n, 0)$.

Strategy of the proof

Main result

Any derived equivalence between derived discrete algebras of infinite global dimension is standard.

Remark

A partial result has been obtained in [Chen, Ye, '18, Section 7] for the algebras of type $\Lambda(n, n, 0)$.

We will start by describing a structure of ind $K^b(\text{proj }\Lambda)$ for $\Lambda = \Lambda(n, n, m)$. Then:

- **o** pick an arbitrary pseudo-identity (F, ω) on $\mathbf{K}^b(\text{proj }\Lambda)$,
- ① construct an isomorphism $\eta\colon F|_{\operatorname{ind} \mathbf{K}^b(\operatorname{proj}\Lambda)} \to \operatorname{Id}_{\operatorname{ind} \mathbf{K}^b(\operatorname{proj}\Lambda)}$ (which extends to an isomorphism $\eta\colon F \to \operatorname{Id}_{\mathbf{K}^b(\operatorname{proj}\Lambda)}$),
- 2 then, by [Chen, Ye '18, Lemma 2.1] we obtain $(F, \omega) \xrightarrow{\sim} (\mathrm{Id}, \omega')$ for some ω' ,
- **3** depending on n, m, either $\omega' = \operatorname{Id}_{\Sigma}$ or $(\operatorname{Id}, \omega') \cong (\operatorname{Id}, \operatorname{Id}_{\Sigma})$.

ind $\mathbf{K}^b(\operatorname{proj}\Lambda) \cong \mathbb{K}\Gamma/\mathfrak{I}$ where $\Gamma = (\Gamma_0, \Gamma_1)$ and:

$$\Gamma_0 = \{(i, a, b) \mid i \in \{0, \dots, n-1\}, a \leq b + \delta_{i,0} \cdot m\}.$$

For every $v = (i, a, b) \in \Gamma_0$ we define two sets:

$$\mathcal{I}_{v} = \{(i, x, y) \mid x = a, \dots, b + \delta_{i,0} \cdot m, y \geq b\},\$$

$$\mathcal{X}_{v} = \{(i+1, x, y) \mid x \leq a + \delta_{i,n-1} \cdot m, \ y = a, \dots, b + \delta_{i,0} \cdot m\}.$$

- for $u \in \mathcal{I}_v$ st. $u \neq v$ we have $f_{v,u} : v \to u$ in Γ_1 ,
- for $u \in \mathcal{X}_v$ we have $e_{v,u} \colon v \to u$ in Γ_1 ,
- note: i + 1 is taken modulo n.
- Ref: Bobiński '11

Example \mathcal{I}_{v} and \mathcal{X}_{v} sets

 $n=1, m=2, \ v=(0,0,-m)$, we have sets \mathcal{I}_{v} and \mathcal{X}_{v} , intersection $\mathcal{I}_{v}\cap\mathcal{X}_{v}$ is in purple.

The arrows are subject to the following relations for every $v \in \Gamma_0$:

 $\textbf{9} \ \, \mathsf{For} \,\, u \in \mathcal{I}_{\mathsf{v}}, w \in \mathcal{I}_{\mathsf{u}}, v \neq u, w \neq u :$

$$f_{u,w} \circ f_{v,u} = egin{cases} f_{v,w} & w \in \mathcal{I}_v, \ 0 & ext{otherwise}. \end{cases}$$

② For $u \in \mathcal{I}_v, w \in \mathcal{X}_u, v \neq u$:

$$e_{u,w} \circ f_{v,u} = egin{cases} e_{v,w} & w \in \mathcal{X}_v, \ 0 & ext{otherwise}. \end{cases}$$

3 For $u \in \mathcal{X}_{V}$, $w \in \mathcal{I}_{u}$:

$$f_{u,w} \circ e_{v,u} = egin{cases} e_{v,w} & w \in \mathcal{X}_v, \ 0 & ext{otherwise}. \end{cases}$$

- If v = u then we define $f_{v,v}$ to be the identity morphism id_v .
- We write $e'_{v,u} = \begin{cases} e_{v,u} & u \in \mathcal{X}_v, \\ 0 & \text{otherwise.} \end{cases}$
- We have the following definitions of the suspension functor Σ and the AR-translation τ :
 - $\Sigma(i, a, b) = (i + 1, 1 + \delta_{i,n-1} \cdot m, 1 + \delta_{i,0} \cdot m)$
 - $\tau(i, a, b) = (i, a 1, b 1)$.

Lemma

Let $v = (i, a, b) \in \Gamma_0$. Then:

- $f \in \text{End}(v)$ is an automorphism iff $f = \lambda f_{v,v} + \mu e'_{v,v}$ for $\lambda \neq 0$.
- ② Suppose we have $f: v \to u$. Then f is irreducible iff $u \in \{(i, a+1, b), (i, a, b+1)\}$ and $f = \lambda f_{v,u} + \mu e'_{v,u}$ for $\lambda \neq 0$.

Lemma

Let $v = (i, a, b) \in \Gamma_0$. Then:

- **1** $f \in \text{End}(v)$ is an automorphism iff $f = \lambda f_{v,v} + \mu e'_{v,v}$ for $\lambda \neq 0$.
- ② Suppose we have $f: v \to u$. Then f is irreducible iff $u \in \{(i, a+1, b), (i, a, b+1)\}$ and $f = \lambda f_{v,u} + \mu e'_{v,u}$ for $\lambda \neq 0$.

Lemma

We have identification of projective modules up to Σ and AR-translation: P_{-j} with (0,0,-j) for $j=0,\ldots,m$ and P_k with (k,0,0) for $k=1,\ldots,n-1$ (compare: Bobiński, '10, Corollary 6.3).

We construct $\phi_v \in \operatorname{Aut}(v)$ for every $v \in \Gamma_0$, st. F'(f) = f for every f where $F'(f) := \phi_u \circ F(f) \circ \phi_v^{-1}$ for $f : v \to u$.

We construct $\phi_v \in \operatorname{Aut}(v)$ for every $v \in \Gamma_0$, st. F'(f) = f for every f where $F'(f) := \phi_u \circ F(f) \circ \phi_v^{-1}$ for $f : v \to u$.

This will be done inductively. We put $\phi_v = \mathrm{id}_v$ for $v = (i, 0, -\delta_{i,0} \cdot m)$. For the rest, we construct *canonical walks to and from v* for every connected component of the AR-quiver:

Fix $v = (i, a, b) \in \Gamma_0$ and let $f : v \to u$ be an irreducible morphism.

- If $u=(i,a,b+1)\in \Gamma_0$, then there exists $\phi\in \operatorname{Aut}(u)$, st. $\phi\circ f=f_{v,u}$.
- ② If u = (i, a+1, b+1) for $b = a \delta_{i,0} \cdot m$ such that $f \circ f_{w,v} = 0$ for w = (i, a, b), then there exists $\phi \in \operatorname{Aut}(u)$ st. $\phi \circ f = f_{v,u}$.

Dual statements for "backward" canonical walks also hold. For the proof of the above observation, let $f = \lambda f_{v,u} + \mu e'_{v,u}, \lambda \neq 0$. Then:

- Three subcases:
 - $e'_{u,u} = 0, e'_{v,u} = 0$. Proceed as in (1).
 - $e'_{u,u} = e_{u,u}, e'_{v,u} = e_{v,u}$. Proceed as in (1).
 - $e'_{u,u}=0, e'_{v,u}=e_{v,u}$. This happens iff n=1, m=1. Note $u\notin \mathcal{I}_w$ but $u\in \mathcal{X}_w$. Hence $0=f\circ f_{w,v}=\mu e_{w,u} \implies \mu=0 \implies \phi:=\lambda^{-1}f_{u,u}$.

By applying the above observations we inductively construct ϕ_u for every $u \in \Gamma_0$ such that $F'(f_{v,u}) (= \phi_u \circ F(f_{v,u}) \circ \phi_v^{-1}) = f_{v,u}$.

If n = 1, then for brevity we will use (a, b) := (0, a, b) for indecomposables.

In this step we will show that $F'(e_{v,u}) = e_{v,u}$ for every morphism $e_{v,u} \colon v \to u$.

General method

Find decomposition of morphisms of one of the forms:

- $e_{w_1,w_4}=f_{w_3,w_4}\circ e_{w_2,w_3}\circ f_{w_1,w_2}$ where either $e_{v,u}=e_{w_1,w_4}$ or $e_{v,u}=e_{w_2,w_3}$, or
- $f_{w_2,w_3}\circ e_{w_1,w_2}=e_{w,w_3}\circ f_{w_1,w}$ where either $e_{v,u}=e_{w_1,w_2}$ or $e_{v,u}=e_{w,w_3}$,

where, by induction, F' acts trivially on all the morphisms different from $e_{v,u}$. Obtain the result by applying F' to the both sides of the equation.

We now know that $(F,\omega) \cong (\operatorname{Id}_{K^b(\operatorname{proj}\Lambda)},\omega')$ for some ω' .

We now know that $(F,\omega) \cong (\operatorname{Id}_{K^b(\operatorname{proj}\Lambda)},\omega')$ for some ω' .

Lemma

Let $(\operatorname{Id}_{\mathsf{K}^b(\operatorname{proj}\Lambda)},\omega')\colon \mathsf{K}^b(\operatorname{proj}\Lambda)\to \mathsf{K}^b(\operatorname{proj}\Lambda)$. Then for every $v\in\operatorname{ind}(\mathsf{K}^b(\operatorname{proj}\Lambda))$ we get $\omega'_v=f_{\Sigma v,\Sigma v}+\mu e'_{\Sigma v,\Sigma v}$ where $\mu\in\mathbb{K}$. In particular if n>1, then $\omega'=\operatorname{id}_\Sigma$.

Idea of proof

 $v=(i,a,b),\ v=(i,a,b+1),\ w=(i,b+\delta_{i,0}\cdot m+1,b+1).$ There exists exact triangle: $v\xrightarrow{f_{v,u}}u\xrightarrow{f_{u,w}}w\xrightarrow{\lambda e_{w,\Sigma v}}\Sigma v$ (see Bobiński, Schmude '20, Prop. 2.2). Apply $(\operatorname{Id}_{\mathbf{K}^b(\operatorname{proj}\Lambda)},\omega)$ and use (TR3) axiom.

It suffices to consider n = 1.

• If m>0, then in every ray of the AR-quiver we have v=(a,b), st. $\dim_{\mathbb{K}}(\operatorname{End}(v))=1$, hence $\omega'_v=\operatorname{id}_{\Sigma_v}$. If $f:v\to u$ for u=(a,b+1), then by functoriality $\omega'_u\circ\Sigma(f)=\Sigma(f)$. But since $\operatorname{Hom}(v,u)\cong\operatorname{End}(u)$, as left $\operatorname{End}(u)$ -modules then $\omega'_u=\operatorname{id}_{\Sigma_u}$. Proceed by induction on b.

It suffices to consider n = 1.

- If m>0, then in every ray of the AR-quiver we have v=(a,b), st. $\dim_{\mathbb{K}}(\operatorname{End}(v))=1$, hence $\omega'_v=\operatorname{id}_{\Sigma v}$. If $f:v\to u$ for u=(a,b+1), then by functoriality $\omega'_u\circ\Sigma(f)=\Sigma(f)$. But since $\operatorname{Hom}(v,u)\cong\operatorname{End}(u)$, as left $\operatorname{End}(u)$ -modules then $\omega'_u=\operatorname{id}_{\Sigma u}$. Proceed by induction on b.
- If m=0, then $(\operatorname{Id}_{\mathbf{K}^b(\operatorname{proj}\Lambda)},\omega')\cong (\operatorname{Id}_{\mathbf{K}^b(\operatorname{proj}\Lambda)},\operatorname{Id}_{\Sigma})$. Isomorphism is constructed iteratively. For v=(0,b) $b\geq 0$ put $\eta_v:=\operatorname{id}_v$. Let $s\geq 0$. For $v=(s,b)\in \Gamma_0$ put:

$$\eta_{v} = \Sigma^{s-1}(\omega_{(0,b-s)}) \circ \Sigma^{s-2}(\omega_{(1,b-s+1)}) \circ \ldots \circ \omega_{(s-1,b-1)}$$

For $v = (-s, b) \in \Gamma_0$ put:

$$\eta_{\mathsf{v}} = \Sigma^{-s}(\omega_{(-1,b+s-1)}^{-1}) \circ \Sigma^{-s+1}(\omega_{(-2,b+s-2)}^{-1}) \circ \ldots \circ \Sigma^{-1}(\omega_{(-s,b)}^{-1})$$