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Context

Notation: k a field, of finite characteristic p to be interesting,
occasionally assumed to be algebraically closed to avoid trivialities.

S a noetherian k-algebra graded by N, e.g. a polynomial ring
S = k[x1, . . . , xn].

G a finite group, which acts on S preserving the grading.

Any module over S or some noetherian graded sub-algebra will be
assumed to be graded and finite, meaning finitely generated, not
finite cardinality.
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Context contd.

This is the context of classical invariant theory, but we are
interested in the structure of S as a kG -module, not just the
invariants.

In the case of a polynomial ring we are just taking a finite module
for a group (or a Hopf algebra) and trying to describe the
symmetric powers.
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Motivation

This is a natural problem in representation theory.

For the Lyndon-Hochschild-Serre spectral sequence arising from
groups H C G ,

H∗(G/H;H∗(H; k)) =⇒ H∗(G ; k),

we need to understand the action of G/H on H∗(H; k).

In chromatic homotopy theory we have the Adams-Novikov
spectral sequence

H∗(Gn;En) =⇒ π∗LK(n)S
0.

Maybe restrict to a finite subgroup.

We would also like some information about the multiplication.
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Motivation

Galois Module Theory: L a number field, G acts, K = LG .

Regard OL as an OKG -module, or perhaps just as a ZG -module.

OL has a free submodule of finite index. It is locally free if L/K is
tamely ramified.

From yesterday:

G acts on a curve C , hence on H0(C ,Ω⊗mC/k).

Automorphisms of H∗(BT n;Fp).
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Example

Field k of characteristic 3, U = U3(F3) =


1 ∗ ∗

0 1 ∗
0 0 1

 : ∗ ∈ F3


Natural module V ∗, basis x∗, y∗, z∗.

Ring S = S(V ∗) = k[V ]

Invariants:

dx = x∗ degree 1

dy =
∏
λ∈F3

(y∗ + λx∗) = y∗3 − y∗x∗2 degree 3

dz =
∏

λ,µ∈F3

(z∗ + λy∗ + µx∗) = z∗9 + · · · degree 9

In fact SU = k[dx , dy , dz ].
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Example contd.

U acts on the dual space V as


1 0 0
∗ 1 0
∗ ∗ 1

 : ∗ ∈ F3

 , basis

x , y , z .

U fixes z .

Ux =


1 0 0
∗ 1 0
∗ 0 1

 : ∗ ∈ F3

 fixes 〈y , z〉 pointwise.

Uy =


1 0 0

0 1 0
0 ∗ 1

 : ∗ ∈ F3

 fixes 〈x , z〉 pointwise.
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U3(F3)
degree dimensions of indecomposable summands

0 1
1 3
2 6
3 10
4 15
5 21
6 3′ 9 16
7 9 9′ 18
8 9 18 18′

9 1 3′ 9 18 24
10 3 9 9′ 18 27
11 6 9 18 18′ 27
12 3′ 9 10 18 24 27
13 9 9′ 15 18 27 27
14 9 18 18′ 21 27 27
15 3′ 3′ 9 9 16 18 24 27 27
16 9 9 9′ 9′ 18 18 27 27 27
17 9 9 18 18 18′ 18′ 27 27 27
18 1 3′ 3′ 9 9 18 18 24 24 27 27 27
19 3 9 9 9′ 9′ 18 18 27 27 27 27 27
20 6 9 9 18 18 18′ 18′ 27 27 27 27 27





Example contd.

The right hand red block is spread out by three variables. It is
projective (relative to the trivial group 1) and 1 fixes the whole
3-dimensional space V .

The second to right red block is spread out by two variables. It is
projective relative to Uy , which fixes a 2-dimensional subspace of
V .

The second to left red block is spread out by two variables. It is
projective relative to Ux , which fixes a 2-dimensional subspace of
V .

The left hand red block is spread out by one variable. It is
projective relative to U, which fixes a 1-dimensional subspace of V .

Spot the pattern.
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Commutative Algebra

Dimension: A finite R-module has dimension d if it is finite over
some polynomial subalgebra k[a1, . . . , ad ] ≤ R, but not for any
smaller d .

Depth: A finite R-module has depth d if it is free over some
polynomial subalgebra k[a1, . . . , ad ] ≤ R, but not for any larger d .

Cohen-Macaulay: depth = dimension; in other words, free and
finite over some polynomial subalgebra.

In the picture, all four pieces are Cohen-Macaulay, but this does
not hold in general

Hochster: Life is really worth living...in a Cohen-Macaulay ring.

Later revised to: Life is worth living. Period.
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Functors

Given a kG -module M, the classical covariants
k[V ,M] = (k[V ]⊗M)G are the equivariant polynomial functions
from V to M.

In characteristic 0 these are all Cohen Macaulay of dimension
dimV (provided V is faithful).

Notice that k[V ,M] ∼= HomkG (M∗, k[V ]) and
k[V ]G ∼= HomkG (k , k[V ]), so we mostly consider functors related
to HomkG (M,−).

For example, Êxt
i

kG (M,−) or HomkG (PU ,−), where U is a simple
kG -module and PU is its projective cover. The latter counts the
multiplicity of U as a composition factor.



Functors

Given a kG -module M, the classical covariants
k[V ,M] = (k[V ]⊗M)G are the equivariant polynomial functions
from V to M.

In characteristic 0 these are all Cohen Macaulay of dimension
dimV (provided V is faithful).

Notice that k[V ,M] ∼= HomkG (M∗, k[V ]) and
k[V ]G ∼= HomkG (k , k[V ]), so we mostly consider functors related
to HomkG (M,−).

For example, Êxt
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Functors Contd.

We are most interested in indecomposable summands, so we want
Hom⊕kG (M,−) for indecomposable M.

This can be defined as HomkG (M,−)/ rad HomkG (M,−), where
rad denotes the radical in the category kG −mod.

More concretely, for a finite dimensional indecomposable
kG -module M, let

J(M,N) = {f ∈ HomkG (M,N) | f is not split injective}

and define Hom⊕kG (M,N) = HomkG (M,N)/J(M,N).

Alternatively, J(M,N) is the k-span of the f ∈ HomkG (M,N) that
factor through an indecomposable module that is not isomorphic
to M.
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Functors Contd.
We have:

Hom⊕kG (M,−) commutes with ⊕.

Hom⊕kG (M,M) = EndkG (M)/ rad EndkG (M) ∼= k (k algebraically
closed.)

Hom⊕kG (M,N) = 0 if N is indecomposable and not isomorphic to
M.

It follows that dimk Hom⊕kG (M,X ) is the number of times that M
occurs in a decomposition of X into indecomposable summands.

Hom⊕kG (M,S) is a finite SG -module.

Thus we obtain the multiplicity of M as a summand of S in each
degree as the graded dimension of a graded noetherian module.

Define S⊕G = Hom⊕kG (k ,S). It is naturally a ring: the ring of
trivial summands of S .
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The Brauer Construction

For a kG -module M, let M [G ] = MG/
∑

p|[G :H] trGH MH .

For simplicity, assume that G is a p-group.

If X is a G -set and k[X ] is the space of functions X → k ,
considered as a kG -module, then the natural map

k[XG ]→ k[X ][G ]

is an isomorphism.

We will consider S [G ]. It is naturally a ring and is finite as an
SG -module.
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Fixed Point Sets

Given H ≤ G , define IH ≤ S to be the ideal generated by all
elements of the form (h − 1)s for h ∈ G , s ∈ S . Let
I = ∩H∈Sylp(G)IH .

If G is a p-group, then this defines V G ≤ V , where V denotes
Spec(S). In general, we get all the points fixed by some Sylow
p-subgroup.

The ideal SG ∩ I ≤ SG gives us V G ≤ V /G .
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Fixed Point Sets Contd.
Theorem The natural homomorphisms of k-algebras

S [G ] � S⊕G � SG/(SG ∩ I ) ↪→ (S/I )G

induce universal homeomorphisms on the spectra.

This means that we get homeomorphisms on the spectra that
remain homeomorphisms after any base change.

In characteristic p this is the same as what is sometimes called a
purely inseparable isogeny and is equivalent to the ring
homomorphisms being F -isomorphisms.

This means that the homomorphism of rings has locally nilpotent
kernel and for any element in the codomain, some pn-power is in
the image.

Note that Spec((S/I )G ) ∼= Spec(S)P/NG (P), where P is a Sylow
p-subgroup.
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the image.

Note that Spec((S/I )G ) ∼= Spec(S)P/NG (P), where P is a Sylow
p-subgroup.
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Fixed Point Sets Contd.

Corollary When G is a p-group and V is a kG -module we have

dim k[V ][G ] = dim k[V ]⊕G = dimk V
G .

One can also work relative to a different class of subgroups. For
example, the trivial subgroup.

Theorem Spec(Ĥ0(G ;S)) ∼= (Singp Spec(S))/G , where Singp
means fixed by an element of order p.
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Theorem Spec(Ĥ0(G ;S)) ∼= (Singp Spec(S))/G , where Singp
means fixed by an element of order p.



Example: Cyclic Group and Two Variables



Example Contd.: Cyclic Group and Two Variables



Depth and Dimension

The previous example easily generalises.

Proposition Let G be a p-group, V a kG -module, dimk V = n,
dimk V

G = r . Then there are elements d1, . . . , dn such that:

I k[V G ] is finite over k[d1, . . . , dr ],

I there is a finite k[dr+1, . . . , dn]G -submodule U ≤ k[V ],

I S = k[d1, . . . , dr ]⊗k U.

Most functors commute with k[d1, . . . , dr ]⊗k , so we automatically
get depth ≥ r .

We can leverage this.
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Depth and Dimension Contd.

Let M be an indecomposable kG -module with vertex P and source
U. The inertia subgroup I is the stabiliser in NG (P) of the
isomorphism class of U. Let Ip denote its Sylow p-subgroup.

Theorem We have

dim Hom⊕kG (M, k[V ]) ≤ dimV P .

If Hom⊕kG (M, k[V ]) 6= 0, then

depth Hom⊕kG (M, k[V ]) ≥ dimV Ip .

Corollary If Ip = P then Hom⊕kG (M, k[V ]) is Cohen-Macaulay of
dimension dimk V

P , in particular if P is a Sylow p-subgroup. The
ring of trivial summands k[V ]⊕G is always Cohen-Macaulay of
dimension V Gp .
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Depth and Dimension Contd.

Hom⊕kG (M, k[V ]) is not always Cohen-Macaulay.

In characteristic 0, k[V ]G is Gorenstein if det(V ) = 1. But even
for a p-group, k[V ]⊕G is not always Gorenstein.

If the theorem doesn’t hold for one functor, try another.

Theorem Homk(M, k[V ])[G ] is Cohen Macaulay of dimension
dimV P .
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More on k[V ]

Theorem For k[V ], only a finite number of isomorphism types of
indecomposable modules occur.

This is not true in general.

Theorem We have reg Hom⊕kG (M, k[V ]) ≤ 0.

reg is the Castelnuovo-Mumford regularity.

It follows that if we know that Hom⊕kG (M, k[V ]) is finite over
R = k[d1, . . . , dr ] ≤ k[V ]G then Hom⊕kG (M, k[V ]) has generators
and relations as an R-module in degrees at most

∑
(deg di − 1).
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More on k[V ] contd.

More is true. If a computer can calculate the multiplicity of M as a
summand of S in degrees up to

∑
(deg di − 1) then we can deduce

the multiplicity in all degrees by a simple combinatorial formula.

In fact we can always manage di = |G |, so if we know k[V ] as a
kG -module in degrees up to (dimk V )(|G | − 1) then we know it in
all degrees.
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