Categorification of Collapsing Subsurfaces

Suiqi Lu Based on a joint work with L. Fan and Y. Qiu

Tsinghua University

ICRA 21, Shanghai 2024.08.08

< □ > < □ > < □ > < □ > < □ > < □ > = □ =

Motivation

Weighted decorated marked surfaces (wDMS)

3 Subsurface collapsing

4 Categorification of collapsing

5 Further studies

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Subsurface collapsing in [Barbieri-Möller-Qiu-So 2022]:

- S_{Δ} : a decorated marked surface.
- Σ : a subsurface of \boldsymbol{S}_{Δ} (can be regarded as a decorated marked surface).
- \overline{S}_{w} : the collapsed surface (a weighted decorated marked surface).

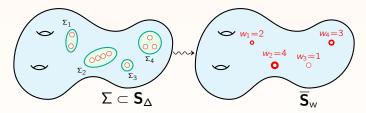


Figure: An example

- $\mathcal{D}_3(S_\Delta)$ and $\mathcal{D}_3(\Sigma)$: are Calabi-Yau-3 categories associated with S_Δ and Σ respectively.
- $\mathcal{D}(\overline{\mathbf{S}}_w)$: is defined as the Verdier quotient

$$\mathcal{D}(\overline{\boldsymbol{S}}_w)\colon = \mathcal{D}_3(\boldsymbol{S}_\Delta)/\mathcal{D}_3(\boldsymbol{\Sigma}).$$

Theorem (BMQS)

Stab
$$\mathcal{D}(\overline{\mathbf{S}}_w) \cong \mathsf{FQuad}(\overline{\mathbf{S}}_w).$$

ヨトィヨト

- We allow normal points and simple poles (among zeros) as finite singularities, i.e. the initial surface is a general wDMS and we allow any weight ≥ -1.
- We deal with more general type categories instead of CY-3 ones.

Motivation

Weighted decorated marked surfaces (wDMS)

3 Subsurface collapsing

4 Categorification of collapsing

イヨトイヨト

wDMS

Definition

A weighted decorated marked surface (wDMS) is $\mathbf{S}_{w} = (\mathbf{S}, \mathbf{M}, \Delta, \mathbf{w})$, where

• \boldsymbol{S} is a compact oriented surface, possibly with boundary $\partial \boldsymbol{S},$

• $\mathbf{M} \subset \mathbf{S}$ is a finite subset of <u>marked points</u>,

- $\Delta \subset S^{\circ} := S \setminus \partial S$ is a finite subset of <u>decorations</u>,
- $\mathbf{w} \colon \Delta \to \mathbb{Z}_{\geq -1}$ is the weight function,

such that

$$\mathbf{D} \ \mathbf{M} \cap \Delta = \emptyset,$$

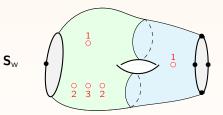
 ${f 2}$ each component of $\partial {f S}$ contains at least one point of ${f M},$

w is compatible with **S**, i.e.

$$|\mathbf{w}(z)|| - (m+2b) = 4g - 4, \qquad (1)$$

where $\|\mathbf{w}(z)\| = \sum_{z \in \Delta} \mathbf{w}(z)$, *m* is the number of marked points on $\partial \mathbf{S}$, *b* is the number of boundary components of **S** and *g* is genus of **S**.

An example of wDMS



ヨト イヨト ICRA 21, Shanghai 2024.08.08

A D >
 A D >
 A

- An arc c in \mathbf{S}_w is a curve $c : [0, 1] \to \mathbf{S}$ such that $c(t) \in \mathbf{S}^\circ$ for any $t \in (0, 1)$.
- An open arc is an arc γ whose endpoints $\gamma(0)$ and $\gamma(1)$ are in **M**.
- A <u>closed arc</u> is an arc η whose endpoints $\eta(0)$ and $\eta(1)$ are in Δ .
- A mixed-angulation \mathbb{A} of a weighted DMS \mathbf{S}_w is a finite collection of open arcs on \mathbf{S}_w with no (self-)intersection between any of them in $\mathbf{S}_w^\circ := \mathbf{S}^\circ \setminus \Delta$. These arcs divide \mathbf{S}_w into once-decorated polygons, where each decoration z with weight $\mathbf{w}(z)$ resides within a ($\mathbf{w}(z) + 2$)-gon. We denote such a ($\mathbf{w}(z) + 2$)-gon by $\mathbb{A}(z)$ and refer to it as an \mathbb{A} -polygon.
- We fix an initial mixed-angulation \mathbb{A}_0 and it induces a grading on \boldsymbol{S}_w , which is a section of $\mathbb{P}\mathcal{T}(\boldsymbol{S}_w \backslash \Delta)$. Then \boldsymbol{S}_w becomes a graded surface, and arcs have gradings and intersection indices.

イロト イボト イヨト イヨト

Mixed-angulations

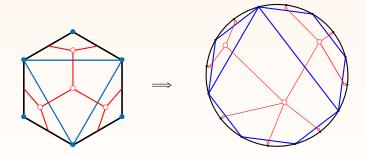


Figure: Triangulation \implies Mixed-angulation

Definition

Let \mathbb{A} be a mixed-angulation of \mathbf{S}_{w} . The forward flip $\mathbb{A}^{\sharp}_{\gamma}$ of \mathbb{A} with respect to a graded arc $\gamma \in \mathbb{A}$ is defined as follows.

- If the endpoints of γ do not coincide, we define the new open arc γ[#] by moving the endpoints of γ along the A-gons containing γ anti-clockwisely.
- If γ is a monogon arc, we define new open arc γ[#] by moving both the endpoints of γ together along the A-gons containing γ anti-clockwisely.
 We obtain a new mixed-angulation A[#]_γ by replacing γ with γ[#]. The backward flip A^b_γ is the inverse of a forward flip.
 - The exchange graph EG(\mathbf{S}_w) associated with a weighted DMS \mathbf{S}_w is a directed graph. Its vertices represent mixed-angulations, and its directed edges denote forward flips between them. Fix an initial mixed-angulation \mathbb{A}_0 of \mathbf{S}_w , and denote by EG°(\mathbf{S}_w) the connected component of EG(\mathbf{S}_w) that includes \mathbb{A}_0 .

・ロト ・ 同ト ・ ヨト ・ ヨト

An example for Case 1

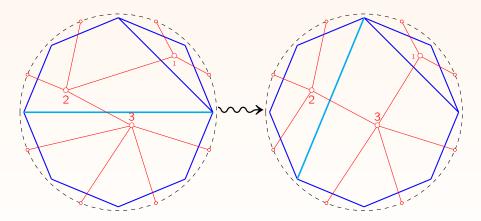


Figure: The forward flip at a usual arc.

An example for Case 2

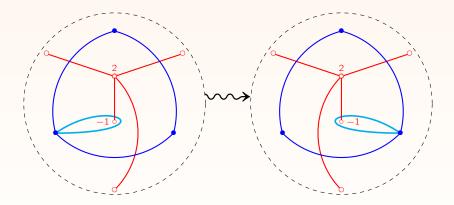


Figure: The forward flip at a monogon arc.

ICRA 21, Shanghai 2024.08.08 13 /

1 Motivation

Weighted decorated marked surfaces (wDMS)

Subsurface collapsing

Categorification of collapsing

5 Further studies

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Collapsing subsurfaces

Definition

- **S**_w: a wDMS.
- Σ : a subsurface of S_w with connected components Σ_i .
- c_{ij} : (simple closed) curves such that the union $\cup_j c_{ij}$ forms $\partial \Sigma_i$.
- An assignment of integers κ_{ij} ≥ 1 to each curve c_{ij} is called an enhancement if for each i, such that

$$\sum_{z \in \Delta \subset \Sigma_i} \mathbf{w}(z) - \sum_j (\kappa_{ij} + 2) = 4g(\Sigma_i) - 4.$$

- The <u>collapse</u> of Σ in \mathbf{S}_{w} : the weighted DMS $\overline{\mathbf{S}}_{\overline{w}}$ obtained by filling each boundary c_{ij} in $\mathbf{S}_{w} \setminus \Sigma$ by a disc with one decorated point that carries the weight $w_{ij} = \kappa_{ij} 2$.
- We regard Σ as a wDMS with κ_{ij} marked points on each boundary component.
- Note that if c_{ij} is a boundary component of S_w, then κ_{ij} coincides with the number of marked points of S_w on c_{ij}.

Lsq (Tsinghua)

An Example

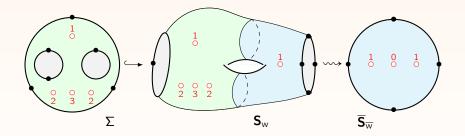


Figure: A collapse with $\kappa_{11} = 3$, $\kappa_{12} = 2$.

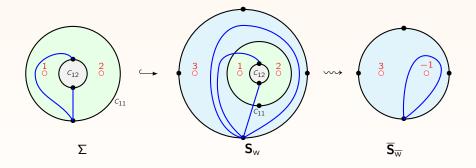
ICRA 21, Shanghai 2024.08.08 16

Definition

Let \mathbb{A} be a mixed-angulation of S_w and $\overline{\mathbb{A}}$ be a mixed-angulation of the collapsed surface $\overline{S}_{\overline{w}}$. We say that \mathbb{A} is a refinement of $\overline{\mathbb{A}}$ if $\overline{\mathbb{A}}$ is isotopic to a subset of \mathbb{A} .

• Recall that $\mathsf{EG}^\circ({\bm{S}}_w)$ is the connected component of $\mathsf{EG}({\bm{S}}_w)$ containing the initial mixed-angulation \mathbb{A}_0 . The principal part $\mathsf{EG}^\circ(\overline{\bm{S}}_{\overline{w}})$ of $\mathsf{EG}(\overline{\bm{S}}_{\overline{w}})$ is defined as the full subgraph of $\mathsf{EG}(\overline{\bm{S}}_{\overline{w}})$ consisting of the mixed-angulations which admit a refinement lying in $\mathsf{EG}^\circ(\bm{S}_w)$.

An Example of Refinements



Lemma

Let \mathbb{A} be a refinement of a mixed-angulation $\overline{\mathbb{A}}$ in $EG^{\bullet}(\overline{S}_{\overline{w}})$. Then each flip of \mathbb{A} with respect to an open arc which is not under the image of collapsing is a refinement of $\overline{\mathbb{A}}$.

Lemma (generalized from BMQS)

Let $\overline{\mathbb{A}}$ be a mixed-angulation in $EG^{\bullet}(\overline{S}_{\overline{w}})$ and $\overline{\mathbb{A}} \xrightarrow{\overline{\gamma}} \overline{\mathbb{A}}_{\overline{\gamma}}^{\sharp}$ be a forward flip in $EG(\overline{S}_{\overline{w}})$. If $\overline{\gamma}$ does not form a monogon, it can be lifted to a forward flip $\mathbb{A} \xrightarrow{\gamma} \mathbb{A}_{\gamma}^{\sharp}$ in $EG^{\circ}(S_{w})$. If $\overline{\gamma}$ forms a monogon, it can be lifted to a series of forward flips $\mathbb{A} \xrightarrow{\gamma_{1}} \mathbb{A}_{\gamma_{1}}^{\sharp} \xrightarrow{\gamma_{2}} \cdots \xrightarrow{\gamma_{n}} \mathbb{A}_{\gamma_{n}}^{\sharp}$ in $EG^{\circ}(S_{w})$.

Motivation

Weighted decorated marked surfaces (wDMS)

3 Subsurface collapsing

5) Further studies

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition

A <u>t-structure</u> on a triangulated category \mathcal{D} is a torsion pair $(\mathcal{P}, \mathcal{P}^{\perp})$ s.t. $\mathcal{P}[1] \subset \mathcal{P}$. It is bounded if $M[\gg 0] \in \mathcal{P}$ and $M[\ll 0] \in \mathcal{P}^{\perp}$ for any object M.

Definition/Lemma (BBD)

A <u>heart</u> \mathcal{H} of \mathcal{D} is $\mathcal{P}^{\perp}[1] \cap \mathcal{P}$ for some bounded t-structure $(\mathcal{P}, \mathcal{P}^{\perp})$, which is an abelian category.

- A heart is finite if it is generated by a finite set of simples $Sim \mathcal{H}$.
- The <u>(total) exchange graph</u> EG(D) is an oriented graph whose vertices are all hearts in D and edges correspond to forward simple tiltings between them.

イロト イポト イヨト イヨト

Triangulated Category associated with a wDMS

We call $\mathcal{D}(\mathbf{S}_w)$ a triangulated category associated with a weighted DMS \mathbf{S}_w if it satisfies the following three conditions:

- There is a bijection between $\widetilde{CA}(\mathbf{S}_w)$ and some set of objects in $\mathcal{D}(\mathbf{S}_w)$ in the sense that for each graded closed arc $\tilde{\eta} \in \widetilde{CA}(\mathbf{S}_w)$, there is a unique object $X_{\tilde{\eta}}$ associated to $\tilde{\eta}$.
- For any three graded closed arcs $\tilde{\eta}_1, \tilde{\eta}_2, \tilde{\eta}_3 \in \widetilde{CA}(\mathbf{S}_w)$ forming a contractible triangle on \mathbf{S}_w , there is a corresponding triangle

$$X_{\widetilde{\eta}_1} \to X_{\widetilde{\eta}_2}[a] \to X_{\widetilde{\eta}_3}[a+b] \to X_{\widetilde{\eta}_1}[a+b+c] = X_{\widetilde{\eta}_1}[1]$$

- in $\mathcal{D}(\mathbf{S}_{w})$, where $a = \operatorname{index}_{z_{1}}(\widetilde{\eta}_{1}, \widetilde{\eta}_{2}), b = \operatorname{index}_{z_{2}}(\widetilde{\eta}_{2}, \widetilde{\eta}_{3})$ and $c = \operatorname{index}_{z_{3}}(\widetilde{\eta}_{3}, \widetilde{\eta}_{1}).$
- For $\mathbb{A}_0^* = \{\widetilde{\eta}_1, \widetilde{\eta}_2, \dots, \widetilde{\eta}_n\}$ which is the dual to a mixed-angulation \mathbb{A}_0 , there is a finite heart $\mathcal{H}_{\mathbb{A}}$ associated to \mathbb{A}_0 which is finitely generated by simples $X_{\widetilde{\eta}_1}.X_{\widetilde{\eta}_2}, \dots, X_{\widetilde{\eta}_n} \in \mathcal{H}_{\mathbb{A}} \subseteq \mathcal{D}(\mathbf{S}_w).$

- \bullet $\mathcal{H}_0:$ the canonical heart that is associated with the initial mixed-angulation $\mathbb{A}_0.$
- $\mathsf{EG}^{\circ}(\mathcal{D})$: a connected component of $\mathsf{EG}(\mathcal{D})$ which consists of all hearts that can be reached by repeated simple tiltings from \mathcal{H}_0 .

Then there is a corollary of the three conditions of $\mathcal{D}(\boldsymbol{S}_w)$:

Lemma

There is an isomorphism between exchange graphs:

$$\mathsf{EG}^{\circ}(\mathcal{D}(\mathbf{S}_{\mathsf{w}})) \cong \mathsf{EG}^{\circ}(\mathbf{S}_{\mathsf{w}}).$$

Lsq (Tsinghua)

Definition

The inclusion $\boldsymbol{\Sigma} \subset \boldsymbol{S}_w$ induces a short exact sequence of triangulated categories:

$$0 \longrightarrow \mathcal{D}(\Sigma) \longrightarrow \mathcal{D}(\boldsymbol{S}_w) \longrightarrow \overline{\mathcal{D}}(\overline{\boldsymbol{S}}_{\overline{w}}) \longrightarrow 0,$$

where $\overline{\mathcal{D}}(\overline{\mathbf{S}}_{\overline{w}})$ is the Verdier quotient $\mathcal{D}(\mathbf{S}_w)/\mathcal{D}(\Sigma)$.

イヨトイヨト

- $EG(\overline{\mathcal{D}}(\overline{S}_{\overline{w}}))$: the exchange graph of hearts in the quotient category.
- EG[•]($\overline{\mathcal{D}}(\overline{S}_{\overline{w}})$): the full subgraph of EG($\overline{\mathcal{D}}(\overline{S}_{\overline{w}})$) with vertices in the form of $\mathcal{H} \cap \mathcal{D}(\Sigma)$, where \mathcal{H} is in the connected component EG[°]($\mathcal{D}(S_w)$), called the principal part.

Theorem

There is an isomorphism between oriented graphs:

$$\mathsf{EG}^{\bullet}(\overline{\mathbf{S}}_{\overline{w}}) \cong \mathsf{EG}^{\bullet}(\overline{\mathcal{D}}(\overline{\mathbf{S}}_{\overline{w}})).$$

(3)

Motivation

Weighted decorated marked surfaces (wDMS)

3 Subsurface collapsing

4 Categorification of collapsing

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- Take the topological Fukaya category to be a model of $\mathcal{D}(\bm{S}_w)$, and show that $\overline{\mathcal{D}}(\overline{\bm{S}}_{\overline{w}}) \cong \mathcal{D}(\overline{\bm{S}}_{\overline{w}})$.
- Consider the stability conditions and quadratic differentials in the case of the collapsed surface $\overline{S}_{\overline{w}}.$

Thank you!

Lsq (Tsinghua)

Categorification of Collapsing Subsurfaces

ICRA 21, Shanghai 2024.08.08 28 / 28

イロト イボト イヨト イヨト