Periodicity shadows: a new combinatorial insight in studying periodic algebras jt work with Jerzy Białkowski and Karin Erdmann

Adam Skowyrski (skowyr@mat.umk.pl)

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Toruń

International Conference on Representations of Algebras (ICRA 21, 2024)

へのへ

Shanghai Jiao Tong University

- **1** Unexpected show up of signed adjacency matrices
- **2** Periodicity shadows
- **3** Periodicity shadows of small size

COLLA

 \leftarrow \overline{m} \rightarrow

 $2Q$

€

Basic notions

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

メロトメ 御 トメ 君 トメ 君 トッ

È

 299

* algebra = fin.dim. basic k-algebra over $k = \overline{k}$;

メロメ メタメ メミメ メミメ

重

 299

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ is injective;

 $4.171 \pm$

 $2Q$

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra $=$ algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$;

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra $=$ algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$; * periodic module $=\Lambda$ -module M , such that $\Omega_\Lambda^d(M)\simeq M$, for some $d \geq 1$:

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra $=$ algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$;
- * periodic module $=\Lambda$ -module M , such that $\Omega_\Lambda^d(M)\simeq M$, for some $d \geq 1$:
- * **periodic algebra** = algebra Λ , such that Λ is periodic as a module over the enveloping algebra $\Lambda^e = \Lambda \otimes_k \Lambda$.

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra $=$ algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$;
- * periodic module $=\Lambda$ -module M , such that $\Omega_\Lambda^d(M)\simeq M$, for some $d \geq 1$:
- * **periodic algebra** = algebra Λ , such that Λ is periodic as a module over the enveloping algebra $\Lambda^e = \Lambda \otimes_k \Lambda$.
- Λ: symmetric or periodic ⇒ Λ: self-injective;

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra $=$ algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$;
- * periodic module $=\Lambda$ -module M , such that $\Omega_\Lambda^d(M)\simeq M$, for some $d \geq 1$:
- * **periodic algebra** = algebra Λ , such that Λ is periodic as a module over the enveloping algebra $\Lambda^e = \Lambda \otimes_k \Lambda$.
- Λ: symmetric or periodic ⇒ Λ: self-injective;
- $Λ$: periodic \Rightarrow all non-projective $Λ$ -modules are periodic;

 $4.49 \times 4.72 \times$

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra = algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$;
- * periodic module $=\Lambda$ -module M , such that $\Omega_\Lambda^d(M)\simeq M$, for some $d \geq 1$:
- * **periodic algebra** = algebra Λ , such that Λ is periodic as a module over the enveloping algebra $\Lambda^e = \Lambda \otimes_k \Lambda$.
- Λ: symmetric or periodic ⇒ Λ: self-injective;
- $Λ$: periodic \Rightarrow all non-projective $Λ$ -modules are periodic;
- All simples are periodic $\Rightarrow \Lambda$: self-injective

K ロ ト K 倒 ト K ミ ト K ミ

- * algebra = fin.dim. basic k-algebra over $k = \overline{k}$;
- * self-injective algebra = algebra Λ , such that Λ_{Λ} is injective;
- * symmetric algebra $=$ algebra Λ , such that there exists an associative, symmetric, non-degenerate k-bilinear form $\Lambda \times \Lambda \rightarrow k$;
- * periodic module $=\Lambda$ -module M , such that $\Omega_\Lambda^d(M)\simeq M$, for some $d \geq 1$:
- * **periodic algebra** = algebra Λ , such that Λ is periodic as a module over the enveloping algebra $\Lambda^e = \Lambda \otimes_k \Lambda$.
- Λ: symmetric or periodic ⇒ Λ: self-injective; $Λ$: periodic \Rightarrow all non-projective $Λ$ -modules are periodic; All simples are periodic $\Rightarrow \Lambda$: self-injective [Green-Snashal-Solberg, 2003]

メロト メタト メミト メミト

Basic notions

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

メロトメ 御 トメ 君 トメ 君 トッ

È

 299

4 0 K

④ → → ミ

 $2Q$

(1) Λ is symmetric and tame of infinite representation type,

(2) every simple Λ-module is periodic of period 4.

(1) Λ is symmetric and tame of infinite representation type,

(2) every simple Λ-module is periodic of period 4.

Note: the class of GQT-algebras contains:

(1) Λ is symmetric and tame of infinite representation type,

(2) every simple Λ-module is periodic of period 4.

Note: the class of GQT-algebras contains:

• the class of so-called *algebras of quaternion type* [Erdmann, 1990]

(1) Λ is symmetric and tame of infinite representation type,

(2) every simple Λ-module is periodic of period 4.

Note: the class of GQT-algebras contains:

- the class of so-called algebras of quaternion type [Erdmann, 1990]
- **•** the class of all tame symmetric periodic algebras of period 4 (rep.-inf.)

(1) Λ is symmetric and tame of infinite representation type,

(2) every simple Λ-module is periodic of period 4.

Note: the class of GQT-algebras contains:

- the class of so-called algebras of quaternion type [Erdmann, 1990]
- **•** the class of all tame symmetric periodic algebras of period 4 (rep.-inf.)

K ロ ▶ K 御 ▶ K ヨ ▶

つくい

• most of the weighted surface/triangulation algebras [Erdmann-Skowroński, 2015]

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

 299

È

メロトメ 御 トメ 君 トメ 君 トッ

Take admissible presentation $\Lambda = kQ/I$.

メロトメ部 トメミトメミト

后

 299

Take admissible presentation $\Lambda = kQ/I$.

Then Q is the Gabriel quiver of Λ and there are pariwise different primitive idempotens e_i , indexed by vertices $i \in Q_0 = \{1, \ldots, n\}$, such that $1_A = \sum_{i \in Q_0} e_i$.

 $2Q$

Take admissible presentation $\Lambda = kQ/I$.

Then Q is the Gabriel quiver of Λ and there are pariwise different primitive idempotens e_i , indexed by vertices $i \in Q_0 = \{1, \ldots, n\}$, such that $1_A = \sum_{i \in Q_0} e_i$. Moreover, modules $P_i = e_i \Lambda$, $i \in Q_0$, form a complete set of pairwise nonisomorphic projective Λ-modules.

へのへ

Take admissible presentation $\Lambda = kQ/I$.

Then Q is the Gabriel quiver of Λ and there are pariwise different primitive idempotens e_i , indexed by vertices $i \in Q_0 = \{1, \ldots, n\}$, such that $1_A = \sum_{i \in Q_0} e_i$. Moreover, modules $P_i = e_i \Lambda$, $i \in Q_0$, form a complete set of pairwise nonisomorphic projective Λ-modules.

The **Cartan matrix** $C_A = [c_{ii}]$ of Λ contains dimension vectors of P_1, \ldots, P_n , as columns, i.e. $c_{ij} = \dim_K e_j \Lambda e_i$.

Take admissible presentation $\Lambda = kQ/I$.

Then Q is the Gabriel quiver of Λ and there are pariwise different primitive idempotens e_i , indexed by vertices $i \in Q_0 = \{1, \ldots, n\}$, such that $1_A = \sum_{i \in Q_0} e_i$. Moreover, modules $P_i = e_i \Lambda$, $i \in Q_0$, form a complete set of pairwise nonisomorphic projective Λ-modules.

The **Cartan matrix** $C_A = [c_{ii}]$ of Λ contains dimension vectors of P_1, \ldots, P_n , as columns, i.e. $c_{ij} = \dim_K e_j \Lambda e_i$.

For a quiver $Q = (Q_0, Q_1)$, we will denote by $a(i, j)$ the number of all arrows $i \rightarrow j$ in Q_1 .

≮ロト ⊀母 ト ⊀ ヨ ト ⊀ ヨ ト

Take admissible presentation $\Lambda = kQ/I$.

Then Q is the Gabriel quiver of Λ and there are pariwise different primitive idempotens e_i , indexed by vertices $i \in Q_0 = \{1, \ldots, n\}$, such that $1_A = \sum_{i \in Q_0} e_i$. Moreover, modules $P_i = e_i \Lambda$, $i \in Q_0$, form a complete set of pairwise nonisomorphic projective Λ-modules.

The **Cartan matrix** $C_A = [c_{ii}]$ of Λ contains dimension vectors of P_1, \ldots, P_n , as columns, i.e. $c_{ij} = \dim_K e_j \Lambda e_i$.

For a quiver $Q = (Q_0, Q_1)$, we will denote by $a(i, j)$ the number of all arrows $i \rightarrow j$ in Q_1 . Then we define the (signed) adjacency matrix of Q as the following matrix

$$
Ad_Q=[a_{ij}],
$$

メロメ メタメ メミメ メミメ

Take admissible presentation $\Lambda = kQ/I$.

Then Q is the Gabriel quiver of Λ and there are pariwise different primitive idempotens e_i , indexed by vertices $i \in Q_0 = \{1, \ldots, n\}$, such that $1_A = \sum_{i \in Q_0} e_i$. Moreover, modules $P_i = e_i \Lambda$, $i \in Q_0$, form a complete set of pairwise nonisomorphic projective Λ-modules.

The **Cartan matrix** $C_A = [c_{ii}]$ of Λ contains dimension vectors of P_1, \ldots, P_n , as columns, i.e. $c_{ij} = \dim_K e_j \Lambda e_i$.

For a quiver $Q = (Q_0, Q_1)$, we will denote by $a(i, j)$ the number of all arrows $i \rightarrow j$ in Q_1 . Then we define the (signed) adjacency matrix of Q as the following matrix

$$
Ad_Q=[a_{ij}],
$$

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

 $2Q$

where $a_{ii} = a(i, j) - a(j, i)$.

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

 299

È

メロトメ 御 トメ 君 トメ 君 トッ

Theorem

If Λ is a symmetric algebra with every simple Λ-module periodic of period 4, then its Cartan matrix satisfy the following identity

 $Ad_Q \cdot C_\Lambda = 0.$

a miller

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B} \mathcal{B}

 QQ

€

メロメメ 倒 メメ ミメメ ミメー

 299

目

In the context of previous theorem, it is natural to consider the following equation

$$
(\Delta) \hspace{1.6cm} AC = 0,
$$

メロトメ 倒 トメ ミトメ ミト

重

 298

In the context of previous theorem, it is natural to consider the following equation

$$
(\Delta) \hspace{3.1em} AC = 0,
$$

where A is a given skew-symmetric matrix with $a_{ii} = 0$ (treated as the adjacency matrix of unknown quiver), and C is a matrix variable.

 $2Q$

In the context of previous theorem, it is natural to consider the following equation

$$
(\Delta) \hspace{3.1em} AC = 0,
$$

where A is a given skew-symmetric matrix with $a_{ii} = 0$ (treated as the adjacency matrix of unknown quiver), and C is a matrix variable.

Problem 1. Describe the set of all matrices A of the form $A = Ad_O$, where Q is the Gabriel quiver of some tame symmetric algebra with periodic simples of period 4;

へのへ

In the context of previous theorem, it is natural to consider the following equation

$$
(\Delta) \hspace{3.1em} AC = 0,
$$

where A is a given skew-symmetric matrix with $a_{ii} = 0$ (treated as the adjacency matrix of unknown quiver), and C is a matrix variable.

Problem 1. Describe the set of all matrices A of the form $A = Ad_O$, where Q is the Gabriel quiver of some tame symmetric algebra with periodic simples of period 4; or at least a reasonable superset.

へのへ

In the context of previous theorem, it is natural to consider the following equation

$$
(\Delta) \hspace{3.1em} AC = 0,
$$

where A is a given skew-symmetric matrix with $a_{ii} = 0$ (treated as the adjacency matrix of unknown quiver), and C is a matrix variable.

Problem 1. Describe the set of all matrices A of the form $A = Ad_O$, where Q is the Gabriel quiver of some tame symmetric algebra with periodic simples of period 4; or at least a reasonable superset.

Problem 2. Having fixed A such that $(∆)$ has at least one solution $C \in M_n(\mathbb{N})$ with non-zero columns, answer when $C = C_1$ for a tame symmetric algebra Λ with periodi[c s](#page-33-0)i[m](#page-35-0)[p](#page-28-0)[le](#page-29-0)[s](#page-34-0)[\(p](#page-0-0)[eri](#page-77-0)[od](#page-0-0) [4](#page-77-0)[\).](#page-0-0) Ω

メロメメ 倒 メメ ミメメ ミメー

 299

目
4 ID F

4 A F

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

• given Q find all matrices $C = C_A$ of possible algebras $\Lambda = kQ/I$ defined on Q;

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

• given Q find all matrices $C = C_A$ of possible algebras $\Lambda = kQ/I$ defined on Q; then check whether Ad_Q \cdot C can be zero;

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

• given Q find all matrices $C = C_A$ of possible algebras $\Lambda = kQ/I$ defined on Q; then check whether Ad_Q · C can be zero; if not then this quiver is not possible...

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

- **e** given Q find all matrices $C = C_A$ of possible algebras $\Lambda = kQ/I$ defined on Q; then check whether Ad_Q · C can be zero; if not then this quiver is not possible...
- find natural interpretation of basis of $\mathcal{N}(\mathsf{Ad}_\mathcal{O})$ in terms of combinatorics of Q

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

- **e** given Q find all matrices $C = C_A$ of possible algebras $\Lambda = kQ/I$ defined on Q; then check whether Ad_Q · C can be zero; if not then this quiver is not possible...
- find natural interpretation of basis of $\mathcal{N}(\mathsf{Ad}_\mathcal{O})$ in terms of combinatorics of Q (hopefully, cycles in Q)

K 母 → K ミ →

Problem 2 seem to be a much harder task... There are some natural strategies for future work (partially in progress):

- **e** given Q find all matrices $C = C_A$ of possible algebras $\Lambda = kQ/I$ defined on Q; then check whether Ad_Q · C can be zero; if not then this quiver is not possible...
- find natural interpretation of basis of $\mathcal{N}(\mathsf{Ad}_\mathcal{O})$ in terms of combinatorics of Q (hopefully, cycles in Q)

K ロ ▶ K 御 ▶ K ミ ▶

つくい

 \bullet ?

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

メロメメ 御 メメ きょくきょ

È

 299

A matrix $A \in M_n(\mathbb{Z})$ is called a **periodicity shadow**, if the following holds:

メロト メタト メミト メミト

重

Definition

A matrix $A \in M_n(\mathbb{Z})$ is called a **periodicity shadow**, if the following holds:

PS1) A is a singular skew-symmetric with zeros on the main diagonal.

a mille

 $\left\{ \begin{array}{ccc} \overline{a} & \overline{b} & \overline{c} & \overline{d} \\ \overline{c} & \overline{c} & \overline{d} & \overline{d} \end{array} \right.$

A matrix $A \in M_n(\mathbb{Z})$ is called a **periodicity shadow**, if the following holds:

- PS1) A is a singular skew-symmetric with zeros on the main diagonal.
- PS2) A does not admit a nonzero row containing integers of the same sign.

A matrix $A \in M_n(\mathbb{Z})$ is called a **periodicity shadow**, if the following holds:

- PS1) A is a singular skew-symmetric with zeros on the main diagonal.
- PS2) A does not admit a nonzero row containing integers of the same sign.
- PS3) There exists a symmetric matrix $C \in M_n(\mathbb{N})$ with non-zero columns, such that $AC = 0$.

A matrix $A \in M_n(\mathbb{Z})$ is called a **periodicity shadow**, if the following holds:

- PS1) A is a singular skew-symmetric with zeros on the main diagonal.
- PS2) A does not admit a nonzero row containing integers of the same sign.
- PS3) There exists a symmetric matrix $C \in M_n(\mathbb{N})$ with non-zero columns, such that $AC = 0$.

Note: For every algebra $\Lambda = kQ/I$, that is symmetric and all simple Λ-modules are periodic of period 4, the associated adjacency matrix Ad_Q of its Gabriel quiver $Q = Q_{\Lambda}$ is a periodicity shadow!

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

メロメメ 御 メメ きょくきょ

È

 299

If Λ is additionally tame, then the adjacency matrix $A = Ad_{Q}$ of its Gabriel quiver $Q = Q_{\Lambda}$ satisfy the following conditions:

a mille

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$, \mathcal{A} , $\mathcal{F}^{\mathcal{A}}$, $\mathcal{F}^{\mathcal{A}}$

If Λ is additionally tame, then the adjacency matrix $A = Ad_{\mathcal{O}}$ of its Gabriel quiver $Q = Q_{\Lambda}$ satisfy the following conditions:

T1) all entries a_{ij} of A are in $\{-2, -1, 0, 1, 2\}$.

K 御 ▶ K 唐 ▶ K 唐 ▶

If Λ is additionally tame, then the adjacency matrix $A = Ad_Q$ of its Gabriel quiver $Q = Q_{\Lambda}$ satisfy the following conditions:

- T1) all entries a_{ij} of A are in $\{-2, -1, 0, 1, 2\}$.
- T2) each row of A does not contain simultainously: both 2 and 1 or both -2 and -1 .

If Λ is additionally tame, then the adjacency matrix $A = Ad_Q$ of its Gabriel quiver $Q = Q_{\Lambda}$ satisfy the following conditions:

- T1) all entries a_{ii} of A are in $\{-2, -1, 0, 1, 2\}$.
- T2) each row of A does not contain simultainously: both 2 and 1 or both -2 and -1 .
- T3) each row of A cannot have more than four 1's or more that four -1 's.

If Λ is additionally tame, then the adjacency matrix $A = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$ satisfy the following conditions:

- T1) all entries a_{ii} of A are in $\{-2, -1, 0, 1, 2\}$.
- T2) each row of A does not contain simultainously: both 2 and 1 or both -2 and -1 .
- T3) each row of A cannot have more than four 1's or more that four -1 's.

Our main objects of study are so called tame periodicity shadows,

If Λ is additionally tame, then the adjacency matrix $A = Ad_Q$ of its Gabriel quiver $Q = Q_{\Lambda}$ satisfy the following conditions:

- T1) all entries a_{ii} of A are in $\{-2, -1, 0, 1, 2\}$.
- T2) each row of A does not contain simultainously: both 2 and 1 or both -2 and -1 .
- T3) each row of A cannot have more than four 1's or more that four -1 's.

Our main objects of study are so called tame periodicity shadows, that is by definition, these periodicity shadows A, which satisfy the above conditions $T1$)-T3).

メロメ メタメ メミメ メミメ

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

メロメメ 御 メメ きょくきょ

È

 299

For a GQT-algebra Λ, by its shadow, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{Q}$ of its Gabriel quiver $Q = Q_{\Lambda}$.

 $2Q$

€

4 A F

For a GQT-algebra Λ, by its shadow, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$. Of course, \mathbb{S}_{Λ} is always a periodicity shadow, and it is tame, if Λ is tame.

For a GQT-algebra Λ , by its **shadow**, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$. Of course, \mathbb{S}_{Λ} is always a periodicity shadow, and it is tame, if Λ is tame.

But if \mathbb{S}_{Λ} a tame periodicity shadow, then Λ is not necesarilly tame

For a GQT-algebra Λ , by its **shadow**, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$. Of course, \mathbb{S}_{Λ} is always a periodicity shadow, and it is tame, if Λ is tame.

But if \mathbb{S}_{Λ} a tame periodicity shadow, then Λ is not necesarilly tame (or even has periodic simples).

For a GQT-algebra Λ , by its **shadow**, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$. Of course, \mathbb{S}_{Λ} is always a periodicity shadow, and it is tame, if Λ is tame.

But if \mathbb{S}_{Λ} a tame periodicity shadow, then Λ is not necesarilly tame (or even has periodic simples). More restrictions needed to get a tool detecting tame algebras (future work).

For a GQT-algebra Λ , by its **shadow**, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$. Of course, \mathbb{S}_{Λ} is always a periodicity shadow, and it is tame, if Λ is tame.

But if \mathbb{S}_{Λ} a tame periodicity shadow, then Λ is not necesarilly tame (or even has periodic simples). More restrictions needed to get a tool detecting tame algebras (future work).

Nevertheless, this already gives a pretty dense sieve.

For a GQT-algebra Λ , by its **shadow**, we mean the adjacency matrix $\mathbb{S}_{\Lambda} = Ad_{\Omega}$ of its Gabriel quiver $Q = Q_{\Lambda}$. Of course, \mathbb{S}_{Λ} is always a periodicity shadow, and it is tame, if Λ is tame.

But if \mathbb{S}_{Λ} a tame periodicity shadow, then Λ is not necesarilly tame (or even has periodic simples). More restrictions needed to get a tool detecting tame algebras (future work).

Nevertheless, this already gives a pretty dense sieve. Namely, from the total number of $5^{\frac{n(n-1)}{2}}$ skew-symmetric integer matrices with coefficients in $[-2, 2]$ (and zeros on the diagonal) we have only

≮ロト ⊀母 ト ⊀ ヨ ト ⊀ ヨ ト

- 5 tame periodicity shadows, for $n = 3$,
- 12 tame periodicity shadows, for $n = 4$,
- \bullet < 138 tame periodicity shadows, for $n = 5$, and
- \bullet < 1290 tame periodicity shadows, if $n = 6$.

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

 299

目

メロトメ 倒 トメ ミトメ ミト

Fix an indecomposable tame symmetric algebra $\Lambda = KQ/I$, $Q = Q_{\Lambda}$, such that all simple Λ -modules are periodic of period 4. Let $n = |Q_0| \leq 6$.

 \leftarrow \Box

∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 $2Q$

€

Fix an indecomposable tame symmetric algebra $\Lambda = KQ/I$, $Q = Q_{\Lambda}$, such that all simple Λ -modules are periodic of period 4. Let $n = |Q_0| \leq 6$.

Then, up to permutation, its shadow \mathbb{S}_{Λ} is one of the tame periodicity shadows computed for $n \leq 6$. Using the results of computation, one can prove the following two theorems.

Fix an indecomposable tame symmetric algebra $\Lambda = KQ/I$, $Q = Q_{\Lambda}$, such that all simple Λ -modules are periodic of period 4. Let $n = |Q_0| \leq 6$.

Then, up to permutation, its shadow \mathbb{S}_{Λ} is one of the tame periodicity shadows computed for $n \leq 6$. Using the results of computation, one can prove the following two theorems.

Theorem

If $n = 2$, then the quiver $Q = Q_0$ is one of the four quivers:

Fix an indecomposable tame symmetric algebra $\Lambda = KQ/I$, $Q = Q_{\Lambda}$, such that all simple Λ -modules are periodic of period 4. Let $n = |Q_0| \leq 6$.

Then, up to permutation, its shadow \mathbb{S}_{Λ} is one of the tame periodicity shadows computed for $n \leq 6$. Using the results of computation, one can prove the following two theorems.

Theorem

If $n = 2$, then the quiver $Q = Q_0$ is one of the four quivers:

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

 299

目

メロトメ 倒 トメ ミトメ ミト

Theorem

 \leftarrow \Box \rightarrow

∢ ⊜ → ∢ ∃

扂

つくへ

€
Small size

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

 299

目

メロトメ 倒 トメ ミトメ ミト

For $n = 4$, we have exactly 12 tame periodicity shadows, identified with the following quivers

◦ /◦ ◦ OOOO o o ◦ ◦ /◦ ◦ OOOO ◦ ◦ /◦ ◦ OOOO ◦ ◦ / / ◦ ◦ / / ◦ ◦ / ◦ OOOO oo ◦ ◦ OOOO o ◦ / ◦ ◦ OOOO ◦ ◦ / ◦ ◦ OOOO o ◦ ◦ /◦ ◦ OO o ◦ _ ◦ /◦ ◦ OO ◦ _ ◦ /◦ ◦ OO o ◦ ◦ /◦ ◦ OO ◦ ◦ ◦ ◦ ◦

メロト メタト メミト メミト

 $2Q$

€

Reconstruction Theorem

Adam Skowyrski (skowyr@mat.umk.pl) [Periodicity shadows](#page-0-0)

メロメメ 倒 メメ きょくきょう

È

 299

Theorem

Let Λ be a tame symmetric algebra with all simple modules periodic of period 4.

メロメ メ御 メメ ミメメ ミメ

重

 $2Q$

Theorem

Let Λ be a tame symmetric algebra with all simple modules periodic of period 4. Then its Gabriel quiver Q (modulo loops) is obtained from one of the tame periodicity shadows by attaching disjoint union of 2-cycles.

4 A + 4 E

つくい

Thank you for your attention !!!

メロメメ 御 メメ きょくきょ

È

 299