Shunsuke Kano

Introduction

Sign-stabl mutation loop

Statmen

Entropy

Statement 3

 $\begin{array}{c} {\rm Future} \\ {\rm direction} \end{array}$

Entropy of cluster DT transformations and the finite-tame-wild trichotomy of acyclic quivers

Shunsuke Kano

Tohoku University, MathCCS

joint work with Tsukasa Ishibashi (Tohoku Univ.) (arXiv:2403.01396) ICRA 21, Shanghai

Finite-tame-wild trichotomy

Entropy of DT and trichotomy

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment

Entropy

Statement 3

Future direction Let Q be an acyclic quiver.

Then, the representation type of Q is either *finite*, *tame*, or *wild*. Let $A_Q = (a_{ij})$ be the Cartan matrix of Q:

$$a_{ij} := \begin{cases} 2 & \text{if } i = j, \\ -\#\{i \to j \text{ in } Q\} & \text{else.} \end{cases}$$

Then, the representation type of Q is

- finite iff A_Q is positive definite,
- tame iff A_Q is positive semi-definite,
- wild iff A_Q is indefinite.

Nielsen–Thurston classification

Entropy of DT and trichotomy

Shunsuke Kano

Introduction

Sign-stable mutation loop

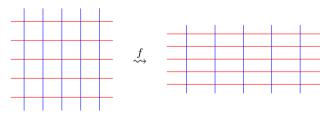
Statment

Entropy

Statement 2

Future direction For a real oriented surface Σ with $\chi(\Sigma) < 0$, mapping class $\phi \in MC(\Sigma) = \text{Homeo}^+/\text{homotopy}$ is either

- periodic (finite order in $MC(\Sigma)$),
- reducible (there exist a curve system on Σ fixed by ϕ),
- pseudo-Anosov (represented by a pseudo-Anosov homeo. f)



Introduction

Entropy of

DT and trichotomy Shunsuke Kano

Sign-stable mutation loop

Statment

Entropy

Statement 2

Future direction

(geometry of surfaces)

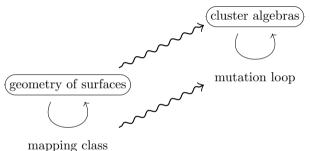
 $rac{mutation}{loop}$

Entropy of

DT and trichotomy Shunsuke Kano

Entropy Statemen

 ${f Future}\ {f direction}$



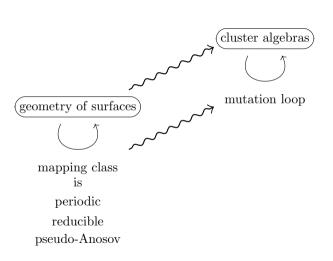
Introduction

Entropy of

DT and trichotomy Shunsuke Kano

Sign-stable mutation loop

Statment Entropy Statement Future



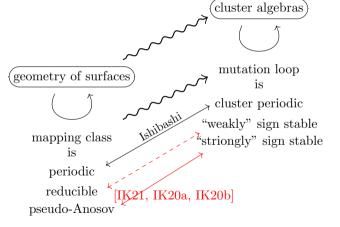
Kano Introduction

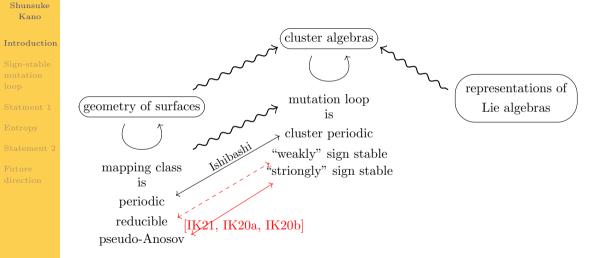
Entropy of

DT and trichotomy Shunsuke

Sign-stable mutation loop

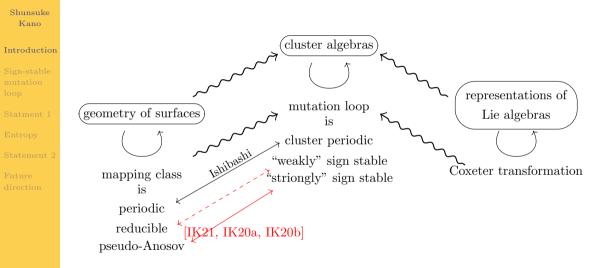
Statment Entropy Statement Future





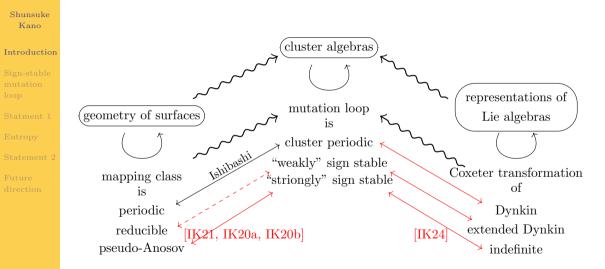
Entropy of

DT and trichotomy



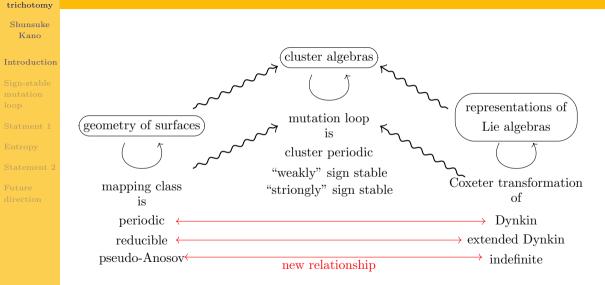
Entropy of

DT and trichotomy



Entropy of

DT and trichotomy



Entropy of

DT and

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment

Entropy

Statement 2

Future direction Let Q be a quiver with vertex set I. A sequence

$$\gamma: Q = Q_0 \stackrel{k_0}{-\!-\!\!-\!\!-} Q_1 \stackrel{k_1}{-\!\!-\!\!-\!\!-} \cdots \stackrel{k_{h-1}}{-\!\!-\!\!-} Q_h$$

of mutations is called a *(representation path of a) mutation loop* at Q if $Q_h = Q$ (up to relabeling by I).

Mutation loop

Shunsuke Kano

Introduction

Sign-stable mutation loop

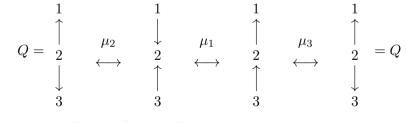
Statment

Statement

Future direction Let Q be a quiver with vertex set I. A sequence

$$\gamma: Q = Q_0 \stackrel{k_0}{-\!\!-\!\!-\!\!-} Q_1 \stackrel{k_1}{-\!\!-\!\!-\!\!-} \cdots \stackrel{k_{h-1}}{-\!\!-\!\!-} Q_h$$

of mutations is called a *(representation path of a) mutation loop* at Q if $Q_h = Q$ (up to relabeling by I).



Therefore, $\gamma: Q \xrightarrow{2} Q_1 \xrightarrow{1} Q_2 \xrightarrow{3} Q$ is a mutation loop.

Mutation loop

Sign of a mutation loop

Introduction

Entropy of

DT and trichotomy Shunsuke Kano

Sign-stable mutation loop

Statment

Entropy

Future

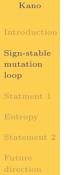
For each mutation at $k \in I$, we assign the PL isomorphism

$$\mu_k : \mathbb{R}^I \to \mathbb{R}^I, \quad (x_i)_{i \in I} \mapsto (x'_i)_{i \in I}, \quad x'_i = \begin{cases} -x_k & \text{if } i = k, \\ x_i + [\operatorname{sgn}(x_k)b_{ik}]_+ x_k & \text{else.} \end{cases}$$

(cf. It is nothing but the tropicalized cluster \mathcal{X} -transformation.) A sign $\boldsymbol{\epsilon}_{\gamma} = (\epsilon_0, \dots, \epsilon_{h-1})$ of a mutation loop $\gamma : Q \xrightarrow{k_0} \cdots \xrightarrow{k_{h-1}} Q$ at $w \in \mathbb{R}^I$ is defined as

 $\epsilon_r :=$ the sign of the k_r -th coordinate of $\mu_{k_{r-1}} \cdots \mu_{k_0}(w)$

Example of sign of a mutation loop



Entropy of

DT and trichotomy Shunsuke

$$\gamma: Q = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} \xrightarrow{\mu_2} \begin{pmatrix} 1 \\ \mu_2 \\ 2 \\ \mu_1 \\ \mu_1 \\ 2 \\ \mu_1 \\ \mu_1 \\ \mu_3 \\ \mu_4 \\ \mu_4$$

Therefore, $\boldsymbol{\epsilon}_{\gamma}(w) = (-, -, +)$

Sign stability

Definition

Sign-stable mutation loop

Entropy of

DT and trichotomy Shunsuke Kano

Statment

Entropy Statement Future direction Let $\Omega \subset \mathbb{R}^I$ be an $\mathbb{R}_{>0}$ -invariant subset. A mutation loop $\gamma : Q \xrightarrow{k_0} \cdots \xrightarrow{k_{h-1}} Q$ is *sign stable* on Ω if there is a sequence $\epsilon_{\gamma,\Omega}^{\text{stab}} \in \{+,-\}^h$ of strict signs such that for each $w \neq 0 \in \Omega$ there is $n_0 > 0$ satisfying

 $\boldsymbol{\epsilon}_{\gamma}(\boldsymbol{\mu}_{\gamma}^{n}(w)) = \boldsymbol{\epsilon}_{\gamma,\Omega}^{\mathrm{stab}}$

for all $n \ge n_0$. We call $\epsilon_{\gamma,\Omega}^{\text{stab}}$ the stable sign of γ on Ω .

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment Entropy

Statement 2

Future direction

(Counter) example of sign stable mutation loops

Q			
γ	(2,1,3)	(2,1,3)	
$\boldsymbol{\epsilon}_{\gamma}(w)$	(+, +, +)	(+, +, +)	$\begin{pmatrix} 1 \end{pmatrix}$
$oldsymbol{\epsilon}_\gamma(\mu_\gamma(w))$	(-,-,-)	(-,-,-)	$w := \begin{pmatrix} 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3_{\geq 0}.$
$oldsymbol{\epsilon}_\gamma(\mu_\gamma^2(w))$	(-,-,-)	(-,-,-)	$\left(1\right)$
$oldsymbol{\epsilon}_\gamma(\mu_\gamma^3(w))$	(+, +, +)	(-,-,-)	
$oldsymbol{\epsilon}_\gamma(\mu_\gamma^4(w))$	(-,-,-)	(-,-,-)	
$oldsymbol{\epsilon}_{\gamma}(\mu^5_{\gamma}(w))$	(-,-,-)	(-,-,-)	
$oldsymbol{\epsilon}_{\gamma}(\mu_{\gamma}^6(w))$	(+, +, +)	(-,-,-)	
$\epsilon_{\gamma}(\mu_{\gamma}^{7}(w))$	(-,-,-)	(-,-,-)	

9/17

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment

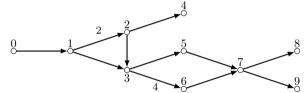
Entropy

Statement

future direction

Cluster DT transformation of an acyclic quiver

Let Q be an acyclic quiver with admissible labeling $\pi : \{1, \ldots, N\} \to Q_0$. Namely, i < j if $\pi(i) \to \pi(j)$.



Then, the sequence

Example:

$$\gamma_{\pi}: Q \xrightarrow{1} Q_1 \xrightarrow{2} \cdots \xrightarrow{N} Q_N$$

is mutation loop. (i.e., $Q_N = Q$.) Moreover, this mutation loop is a cluster Donaldson-Thomas transformation. Namely, $\mu_{\gamma_{\pi}}(\mathbb{R}^N_{\geq 0}) = \mathbb{R}^N_{\leq 0}$.

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment 1 Entropy

Statement Future

Theorem

Let Q and π be as the previous slide. Then, the representation type of Q is

- finite iff γ_{π} is not sign stable on $\mathbb{R}^{N}_{>0} \cup \mathbb{R}^{N}_{<0}$.
- 2 tame iff γ_{π} is sign stable on $\mathbb{R}^{N}_{>0} \cup \mathbb{R}^{N}_{<0}$ and the spectral radius of its Coxeter matrix is equal to 1.
- **3** wild iff γ_{π} is sign stable on $\mathbb{R}_{>0}^{N} \cup \mathbb{R}_{<0}^{N}$ and the spectral radius of its Coxeter matrix is larger than 1.

Here, the Coxeter matrix Φ is defined as follows:

- $M := #\{ \text{direct paths in } Q \text{ from } i \text{ to } j \},$
- $\Phi_{\pi} := -M_{\pi}^{-1} \cdot M_{\pi}^{\mathsf{T}}.$

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment

Entropy

Statement

 $\begin{array}{c} {\rm Future} \\ {\rm direction} \end{array}$

Stable presentation matrix and cluster stretch factor

Let
$$\gamma: Q \xrightarrow{k_0} Q_1 \xrightarrow{k_1} \cdots \xrightarrow{k_{h-1}} Q_h = Q.$$

Recall that $\mu_{\gamma} : \mathbb{R}^I \to \mathbb{R}^I$ is a piecewise-linear isomorphsm. The "piecewise linearity" of μ_{γ} is controlled by its sign ϵ_{γ} . Namely, for $\epsilon \in \{+, -\}^h$, the set

$$\mathcal{C}^{\boldsymbol{\epsilon}}_{\gamma} := \{ w \in \mathbb{R}^{I} \mid \boldsymbol{\epsilon}_{\gamma}(w) = \boldsymbol{\epsilon} \}$$

is a domain of linearity of μ_{γ} .

Let E_{γ}^{ϵ} denote the presentation matrix of μ_{γ} on $\mathcal{C}_{\gamma}^{\epsilon}$. For a sign-stable mutation loop γ with the stable sign $\epsilon_{\gamma}^{\text{stab}}$, we call the presentation matrix $E_{\gamma}^{\text{stab}} := E_{\gamma}^{\epsilon_{\gamma}^{\text{stab}}}$ stable presentation matrix.

We call the spectral radius $\lambda_{\gamma} := \rho(E_{\gamma}^{\text{stab}})$ of the stable presentation matrix *cluster stretch factor*.

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment 1

Entropy

Statement

Algebraic entropy of a sign-stable mutation loop

A mutation loop γ induces birational maps

$$\mu_{\gamma}^{a}: (\mathbb{C}^{\times})^{I} \to (\mathbb{C}^{\times})^{I}, \qquad \mu_{\gamma}^{x}: (\mathbb{C}^{\times})^{I} \to (\mathbb{C}^{\times})^{I}$$

by composing the corresponding cluster \mathcal{A} - and \mathcal{X} -transformations along γ .

Theorem (IK21)

If γ is sign-stable on $\mathbb{R}_{>0} \cup \mathbb{R}_{<0}$ and satisfies palindromicity property, then the algebraic entropies $h_{\text{alg}}(\mu_{\gamma}^{a})$ and $h_{\text{alg}}(\mu_{\gamma}^{x})$ are given by the logarithm of the cluster stretch factor:

$$h_{\text{alg}}(\mu_{\gamma}^{a}) = h_{\text{alg}}(\mu_{\gamma}^{x}) = \log(\lambda_{\gamma}) (= \rho(E_{\gamma}^{\text{stab}})).$$

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment

Entropy

Statement :

Categorical entropy of a sign-stable mutation loop

Theorem (K. 21)

If a mutation loop $\gamma: Q \xrightarrow{k_0} \cdots \xrightarrow{k_{h-1}} Q$ is sign-stable on $\mathbb{R}^{I}_{>0}$ and satisfies palindromicity property induces a derived equivalence F_{γ} of a Ginzburg dg algebra Γ associated with the quiver Q with non-degenerate potential W so that the categorical entropies of the restrictions

$$F_{\gamma}|_{\mathsf{per}} : \mathsf{per}(\Gamma) \to \mathsf{per}(\Gamma), \qquad F_{\gamma}|_{\mathsf{pvd}} : \mathsf{pvd}(\Gamma) \to \mathsf{pvd}(\Gamma)$$

are given by the logarithm of the cluster stretch factor:

 $h_T(F_\gamma|_{\mathsf{pvd}}) = h_0(F_\gamma|_{\mathsf{per}}) = \log(\lambda_\gamma), \quad (T \in \mathbb{R}).$

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment

Entropy

Statement 2

Future direction

Theorem (IK24)

For an acyclic quiver Q with an admissible labeling π , if γ_{π} is sign stable then the stable presentation matrix coincides with the Coxeter matrix: $E_{\gamma_{\pi}}^{\text{stab}} = \Phi_{\pi}$.

Therefore, we can update the statement version 1 as follows:

Theorem (IK24)

Let Q and π be as above. Then, the representation type of Q is

- finite iff γ_{π} is not sign-stable on $\mathbb{R}^{N}_{>0} \cup \mathbb{R}^{N}_{<0}$.
- 2 tame iff γ_π is sign-stable on ℝ^N_{>0} ∪ ℝ^N_{<0} and its entropies are equal to 0.
 3 wild iff γ_π is sign-stable on ℝ^N_{>0} ∪ ℝ^N_{<0} and its entropies are larger than 0.

Shunsuke Kano

Introduction

Sign-stable mutation loop

Statment 3

Entropy

Statement 2

Future direction

Vanishing of entropy for finite and tame case

Theorem (IK24)

If Q is acyclic and its representation type is finite or tame, then the algebraic entropies of its any mutation loop is zero.

Shunsuke Kano

Entropy of

DT and trichotomy

Introductio

Sign-stable mutation loop

Statment

Entropy

Statement 2

Future direction We hope that the similar statement holds for any quivers with cluster DT transformations:

We expect that there exists the classes corresponds to

- cluster DT transformation is not sign-stable,
- cluster DT transformation is sign-stable and its entropies are equal to 0, and
- cluster DT transformation is sign-stable and its entropies are larger than 0, respectively.