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2. ∆-Hall algebra and derived Hall algebras
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∆-Hall number

Let A be a Hom-finite hereditary abelian category over k = Fq.

Definition
The ∆-Hall number for A,B,M ∈ A is defined as

F̂M
AB =

∑
[L],[I],[N ]

v⟨L,I,N⟩ · aLaIaN
aM

· FB
LIF

M
NLF

A
IN .

Here
⟨L, I,N⟩ = ⟨L, I⟩+ ⟨I, I⟩+ ⟨I,N⟩ − ⟨L,N⟩,

and ⟨A,B⟩ = dimHomA(A,B)− dimExt1A(A,B)
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Three-cycle

Roughly speaking, the ∆-Hall number F̂M
AB calculates the num-

ber (FB
LIF

M
NLF

A
IN ) of three-cycles of exact sequences as follow:

N M L

A

I

B

Compare with Ringle’s original Hall number FM
AB:

0 → B → M → A → 0
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Associativity

Proposition (Chen-Lin-R.)
For any objects A,B,C,M ∈ A, the following equation holds:∑

[X]

F̂X
ABF̂

M
XC =

∑
[Y ]

F̂M
AY F̂

Y
BC .

[Chen-Lin-Ruan] J. CHEN, Y. LIN AND S. RUAN. New realization of ıquantum groups via ∆-Hall algebras, J.

Algebra 653 (2024), 378–403.
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Green’s formula

Proposition (Green)
The following formula holds in A.∑

[E]

FE
MNFE

XY

1

aE
=

∑
[A],[B],[C],[D]

q−⟨A,D⟩FM
ABF

N
CDF

X
ACF

Y
BD

· aAaBaCaD
aMaNaXaY

.

[Green] J. GREEN. Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120 (2) (1995),

361-377.
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∆-Hall algebra

Proposition (Chen-Lin-R.)

The Q(v)-vector space H∆(A) with the basis {[M ] | [M ] ∈
Iso(A)}, endowed with the multiplication defined by

[A] ∗ [B] =
∑
[M ]

F̂M
AB · [M ],

forms an associative algebra with the unit [0], called the ∆-Hall
algebra of A.
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1-periodic derived Hall algebras

Denote by

D1(A): the derived category of 1-periodic complexes on A

ãM := |AutD1(A)(M)|

(A,B)M := {f ∈ HomD1(A)(A,B)|Cone(f) ∼= M}

{A,B}:= 1

|HomD1(A)(A,B)|
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Derived Hall algebra

Definition (Xu-Chen)

The 1-periodic derived Hall algebra DH1(A) is a Q(v)-vector
space with the basis {u[M ] | [M ] ∈ Iso(D1(A))}, endowed with
the multiplication defined by

u[A] ∗ u[B] =
∑
[M ]

GM
AB · u[M ]

where

GM
AB =

ãM · |(A,B)M |
ãA · ãB

√
{A,B}{M,M}
{A,A}{B,B}

.

[Xu-Chen] F. XU AND X. CHEN. Hall algebras of odd periodic triangulated categories, Algebr. Represent.

Theory 16 (3) (2013), 673–687.
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∆-Hall algebra VS derived Hall algebra

Proposition (Chen-Lin-R.)
There is an algebra isomorphism

ΞA : DH1(A) → H∆(A)

u[M ] 7→
1

aM
· [M ].
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3. Extended ∆-Hall algebra and ıHall algebra
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ıHall algebra

1-periodic complexes: M• = (M,d), d2 = 0 : M → M

C1(A): the category of 1-periodic complexes in A
H(C1(A)): Ringel-Hall algebra of C1(A),

[M•] ⋄ [N•] =
∑

[L•]∈Iso(C1(A))

|Ext1(M•, N•)L• |
|Hom(M•, N•)|

[L•]

[Lu-Peng’2016], [Lu-Wang’2020] ıHall algebra ıH̃(A):
H(C1(A)) +quotient+localization+twist

ıH̃(A) has an (ıHall) basis given by

{[M ] ∗ [Kα] | [M ] ∈ Iso(A), α ∈ K0(A)}
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Extended ∆-Hall algebras

Denote by
K0(A): the Grothendieck group of A, assume free

M̂ : the image of M ∈ A in K0(A)

H̃∆(A): the Q(v)-vector space with the basis

{[M ][Kα] | [M ] ∈ Iso(A), α ∈ K0(A)}
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Extended ∆-Hall algebras

Proposition (Chen-Lin-R.)

The Q(v)-vector space H̃∆(A) endowed with the multiplication
defined by

[A][Kα] ∗ [B][Kβ] =
∑
[M ]

F̂M
AB · [M ][K Â+B̂−M̂

2
+α+β

],

in which [A], [B] ∈ Iso(A) and α, β ∈ K0(A), forms an associa-
tive algebra with unit [0][K0], called the extended ∆-Hall algebra
of A.
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The relation between extended ∆-Hall algebras and
ıHall algebras

Proposition (Chen-Lin-R.)
There is an algebra isomorphism

Ξ̃A :ıH̃(A) −→ H̃∆(A).

[M ] ∗ [Kα] 7→ v−⟨M,M⟩[M ][Kα]
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4. New realizations of ıquantum groups
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Notations for ıQG

C = (cij)i,j∈I : symmetric generalized Cartan matrix
g: Kac-Moody Lie algebra
[n] = [n]v = vn−v−n

v−v−1 ; [m]!v =
∏m

j=1[j]v

n ≥ 1, i ∈ I,

E
(n)
i =

En
i

[n]!
, F

(n)
i =

Fn
i

[n]!
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The universal quantum group Ũ := Ũv(g) of g is defined to
be the Q(v)-algebra generated by Ei, Fi, K̃i, K̃

′
i, i ∈ I, where

K̃i, K̃
′
i are invertible, subject to the following relations for i, j ∈ I:

[Ei, Fj ] = δij
K̃i − K̃ ′

i

v − v−1
, [K̃i, K̃j ] = [K̃i, K̃

′
j ] = [K̃ ′

i, K̃
′
j ] = 0,

(1)

K̃iEj = vcijEjK̃i, K̃iFj = v−cijFjK̃i, (2)

K̃ ′
iEj = v−cijEjK̃

′
i, K̃ ′

iFj = vcijFjK̃
′
i, (3)

and the quantum Serre relations for i ̸= j ∈ I,
1−cij∑
r=0

(−1)rE
(r)
i EjE

(1−cij−r)
i = 0, (4)

1−cij∑
r=0

(−1)rF
(r)
i FjF

(1−cij−r)
i = 0. (5)
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Analogous as for Ũ, the quantum group U := Uv(g) is defined
to be the Q(v)-algebra generated by Ei, Fi,Ki,K

−1
i , i ∈ I, sub-

ject to the relations modified from (1)–(5) with K̃i and K̃ ′
i re-

placed by Ki and K−1
i , respectively.
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The universal ıquantum group of split type Ũı is defined to be
the Q(v)-subalgebra of Ũ generated by

Bi = Fi + EiK̃
′
i, ki = K̃iK̃

′
i, ∀i ∈ I.

Let ς = (ςi)i∈I ∈ (Q(v)×)I . The ıquantum group of split type
Uı := Uı

ς is the Q(v)-subalgebra of U generated by

Bi = Fi + ςiEiK
−1
i , ∀i ∈ I.

We consider the case

ςi = −v−2, ∀i ∈ I, (6)
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Main result

Theorem (Chen-Lin-R.)

Let Q be an arbitrary quiver without loops. We have the following
commutative diagram of algebra homomorphisms

⟨ki + v−2⟩ //

��

⟨[Kα]− 1⟩ //

��

⟨[Kα]− 1⟩

��

Ũı
|v=v

[LW1]

��

[LW2] // ıH̃(kQ)
∼= //

[CLR]

��

H̃∆(kQ)

��
Uı

|v=v

[CLR] // DH1(kQ)
∼= // H∆(kQ)
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Main result

Theorem (Chen-Lin-R.)

For any weighted projective line Xk, there exists a Q(v)-algebra
homomorphism

DrŨı
|v=v

[LR]

[LRW] // ıH̃(Xk)
∼= // H̃∆(Xk)
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Thank you!
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