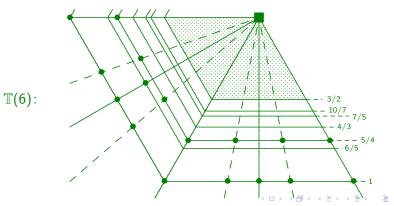
International Conference on Representations of Algebras Shanghai Jiao Tong University, July 31 – August 10, 2024

Invariant subspaces of nilpotent operators. Level, mean and colevel: The triangle $\mathbb{T}(n)$

Markus Schmidmeier (Florida Atlantic University) A report on joint work with Claus Michael Ringel (Bielefeld University)



Contents of my talk

Introduction: Linear Algebra 3

Invariant subspaces

Related topics and applications

Basic invariants, the *pr*-triangle $\mathbb{T}(n)$

Sparsity

Two basic LA statements

Duality and rotation

The case n = 3

Density

BTh-vectors

The center of $\mathbb{T}(6)$

Terra incognita

The case n = 6

The 12 lines

The triangle support

The spider web for n = 6

Some literature

Linear Algebra 3

- LA1: vectorspaces V, finite dimensional over a field k
 - subspaces $U \subset V$
 - linear maps $T: U \rightarrow V$
 - etc.
- LA2: linear operators $T: V \rightarrow V$
 - Jordan normal form
 - etc.
- LA3: linear operators with an invariant subspace (U, V) is a finite dimensional vector space $T: V \to V$ a linear operator, usually nilpotent, and $U \subset V$ a subspace with $TU \subset U$

Example (Pickets): Let $1 \le m, 0 \le \ell \le m$ be integers.

- $V = k[T]/(T^m)$ has 1 Jordan block of size m
- $U = (T^{m-\ell})$ is the ℓ -dimensional kernel of T^{ℓ}
- We write $(U, V) = ([\ell], [m])$
- Definition: $S(n) = \{(U, V) : T^n = 0\}$ invariant subspaces of T^n -bounded linear operators

Related topics and applications

- Birkhoff 1938: Subgroups of abelian groups link to $\mathcal{S}(n)$: Gao, Külshammer, Kvamme, Psaroudakis '23
- Gorenstein-projective modules S(n) = G-proj $U_2(k[T]/(T^n))$ G-proj=smon (Xiuhua Luo, Pu Zhang '17)
- The Invariant Subspace Problem in functional analysis seems to be a theorem now (Per Enflo, Charles Neville '23)
- The algebraic Riccati equation in control theory ...determines the solution of ... two of the most fundamental problems in control theory [W]
- Persistance homology in topological data analysis differential complexes are graded square-zero operators...
- LA ∨ Calculus = pure math ∧ applied math ∧ applications
 ICOT conference series in Tunisia...

Basic invariants, the *pr*-triangle $\mathbb{T}(n)$

The non-zero object $(U, V) \in \mathcal{S}(n)$ has the invariants:

- $\triangleright u = \dim U$
- \triangleright $v = \dim V$, or equivalently, $w = \dim V/U$
- ▶ $b = \dim \operatorname{Ker} T = \#\{\operatorname{Jordan blocks of } V\}$

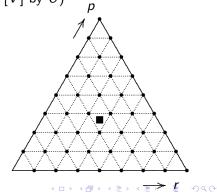
This yields the projective coordinates

- ightharpoonup q = v/b the mean (average size of Jordan blocks)
- ightharpoonup p = u/b the level (of a filling of [V] by U)
- ightharpoonup r = w/b the colevel

The point $(p,r) \in \mathbb{R}^2$ occurs inside the triangle

- $ightharpoonup p \geq 0$,
- $ightharpoonup r \geq 0$,
- $ightharpoonup q = p + r \le n.$

Here is the *pr*-triangle $\mathbb{T}(8)$ with one picket at each lattice point $\neq (0,0)$.



Theorem 1

Theorem 1. Let V = (V, T) be a linear operator and U a T-invariant subspace of V such that the pair (U, V) is indecomposable. Then either U = 0 (and V has only one Jordan block) or the dimension of U is at least the number of Jordan blocks of V.

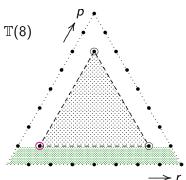
Theorem 1 (reformulation). Suppose $X \in \mathcal{S}$ is indecomposable. Then either uX = 0 and bX = 1 (so X is a picket) or else $uX \geq bX$.

Theorem 1 (reformulation). Let X=(U,V) be an object in \mathcal{S} . If uX < bX, then V has a direct decomposition $V=V_1 \oplus V_2$ with $TV_i \subset V_i$ for i=1,2, such that $U \subset V_1$ and $V_2 \neq 0$.

Sparsity

Theorem 1. Suppose $X \in \mathcal{S}$ is indecomposable. Then either uX = 0 and bX = 1 (so X is a picket) or else $uX \geq bX$.

Theorem 2. Suppose $(U, V) \in S$ is indecomposable and such that the average size of the Jordan blocks of V is at most two. Then (U, V) is either a picket ([t], [m]) with $m \le 2$ or the indecomposable bipicket E with global space [3, 1], subspace [2] and factor [2].

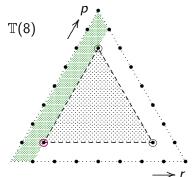


Duality

The duality D on S is given for X = (U, V) by $DX = ((V/U)^*, V^*)$.

$$uDX = wX$$
, $vDX = vX$, $wDX = uX$, $bDX = bX$.

Theorem 1'. Let X be an indecomposable object in S. Then either wX = 0 (and X is a picket), or else $wX \ge bX$.



The square of the Auslander-Reiten translation

Let $n \geq 1$. An object $X \in \mathcal{S}(n)$ is reduced if it has no non-zero projective direct summand. By $\tau = \tau_n$ denote the Auslander-Reiten translation in $\mathcal{S}(n)$. Write $\omega X = \dim \Omega V = n \, bX - v$.

Lemma: If $X \in \mathcal{S}(n)$ is reduced, then so is $\tau^2 X$ and we have

$$u\tau^2 X = wX$$
, $\omega \tau^2 X = uX$, $w\tau^2 X = \omega X$, $b\tau^2 X = bX$.

Proof: An embedding $X = (U \subset V)$ gives rise to a short exact sequence in $\mod k[T]/(T^n)$, hence to a triangle in the stable category:

$$U \rightarrow V \rightarrow W \rightarrow \Omega U \rightarrow$$

Recall that τX gives rise to the rotated triangle

$$V \rightarrow W \rightarrow \Omega U \rightarrow \Omega V \rightarrow$$

hence $\tau^2 X$ to the triangle

$$W \to \Omega U \to \Omega V \to \Omega W \to .$$

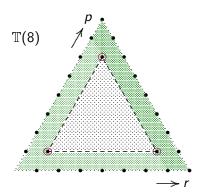
Moreover,

$$nbX = \dim PV = uX + wX + \omega X = wX + \omega X + \omega X = nb\tau^2 X$$

The rotation

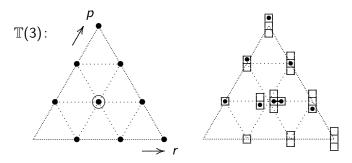
On $\mathbb{T}(n)$, the operator τ^2 gives rise to a rotation by 120° as it permutes the coordinates: $p \rightsquigarrow r \rightsquigarrow (n-q) \rightsquigarrow p$

Theorem 1". Let X be an indecomposable object in S(n). Then either vX = n bX (and X is a picket), or else $vX \le (n-1)bX$.



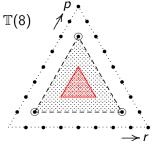
The case n = 3

In the case where n=3, Theorems 1, 1', 1" and 2 recover the full classification of the indecomposable objects in S(n): There are 9 pickets and the bipicket E.



Density: BTh-vectors

Theorem. Any rational pr-vector with boundary distance at least 2 is a BTh-vector.



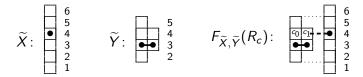
A \mathbb{P}^1 -family $\{M_c: c \in \mathbb{P}^1\}$ is a set of pairwise non-isomorphic indecomposable objects with fixed values for uM_c , wM_c and bM_c , indexed by the elements $c=(c_0:c_1)$ of the projective line $\mathbb{P}^1=\mathbb{P}^1(k)=\{\text{one-dimensional subspaces in }k^2\}$.

A point $(p,r) \in \mathbb{T}(n)$ is a BTh-vector if there is an integer a such that for any natural number t there is a \mathbb{P}^1 -family $\{M_c\}$ in $\mathcal{S}(n)$ with $uM_c = atp$, $wM_c = atr$ and $bM_c = at$.

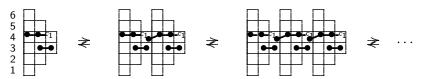
The center of $\mathbb{T}(6)$

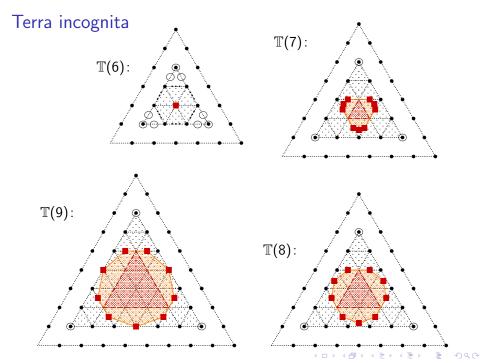
In $\mathbb{T}(6)$, the point (2,2) is the only BTh-vector.

Consider the orthogonal pair $(\widetilde{X}, \widetilde{Y})$ in $\widetilde{\mathcal{S}}(6)$. It satisfies dim $\operatorname{Ext}^1(\widetilde{X}, \widetilde{Y}) = 2$, hence gives rise to a \mathbb{P}^1 -family.



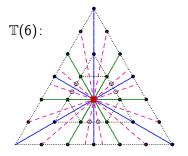
Here are the extensions in case $c_0 \neq 0$ (where we assume $c_0 = 1$):





The case n = 6: 12 lines

Theorem. The pr-vector of each indecomposable object in S(6) lies on one of 12 central lines. In the variables p, r and $\omega = n - q$, the equations have the form p = r, $\omega = 2$ and $r = 2(\omega - 1)$.

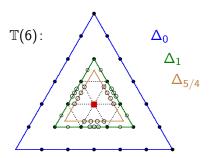


Necessity: Each non-central object X in an AR-component gives rise to an infinite sequence of objects in the same component on the half-line connecting $\operatorname{pr}(X)$ and the center.

The triangle support for S(6)

Theorem. There exists an increasing sequence Ψ of numbers in [0,2) which converges to 2 with the following properties.

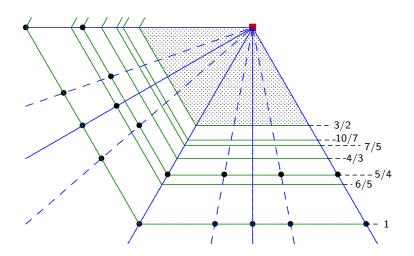
- (a) Each indecomposable object in S(6) occurs on the standard triangle Δ_d for some $d \in \Psi$.
- (b) Each triangle Δ_d is support of finitely many indecomposable objects in S(6).



Remark. In the Theorem, "standard triangles" can be replaced by "costandard triangles" or "hexagons".

The spider web for n = 6

Zooming into $\mathbb{T}(6)$ reveals the following picture:



Thank you!

Some literature

- N. Gao, J. Külshammer, S. Kvamme, Ch. Psaroudakis, A functorial approach to monomorphism categories II: Indecomposables, arXiv: 2303.07753, 2023, 46 pp.
- ► S. Kvamme, *An introduction to monomorphism categories,* to appear in Proc. Conf. Icra 20, arXiv: 2407.17147, 36 pp.
- X. Luo, P. Zhang, Separated monic representations I: Gorenstein-projective modules, J. Algebra 2017, 1–34
- ➤ X. Luo, S. Zhu, Auslander-Reiten translations in the monomorphism categories of exact categories, arXiv: 2408.01359, 2024, 1–26
- ► C. M. Ringel, M. Schmidmeier, *The Auslander-Reiten translation in submodule categories*, Trans. Amer. Math. Soc. 2008, 691–716
- ▶ C. M. Ringel, M. Schmidmeier, *Invariant subspaces of nilpotent linear operators. Level, mean, colevel: The triangle* $\mathbb{T}(n)$, arXiv: 2405.18592