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Motivation

In this talk,

“subcategory” =
additive full subcategory which is closed

under isomorphisms and direct summands.

Fact

1 (Iyama-Yoshino’08) D-mutation pair (Z,Z) where Z is extension
closed induces a triangulated category Z/[D].

2 (Simões-Pauksztello’20) ⟨M⟩-mutation pair (Z,Z) which satisfies
some conditions induces a tri. cat. Z.

3 (Nakaoka-Palu’19) A Frobenius extriangulated (ET) cat. C induces
a tri. cat. C/[Proj C].

4 (Nakaoka’18) A Hovey twin cotorsion pair ((S, T ), (U ,V)) induces a
triangulated cat. T ∩ U/[S ∩ V ].
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Motivation

These triangulated structures are induced by mutations.

1 (Iyama-Yoshino’08) Mutations of cluster-tilting / silting subcategory.

2 (Simões-Pauksztello’20) Mutations of simple-minded system /
collection.

3 (Nakaoka-Palu’19) Special case of 1 in ET categories.

4 (Nakaoka’18) The shift functor is exactly the right mutation in 2 .

Question

Is there a simultaneous generalization of previous four facts?

Answer

It is exactly a mutation triple satisfying (MT4).
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Mutation triple

Definition

Let (C,E, s) be an ET cat. and S,Z,V be subcategories of C.
• A triplet (S,Z,V) is called mutation triple (MT) if it satisfies the
conditions from (MT1) to (MT3).

• We introduce an additional condition for MTs: (MT4).

Example

1 (IY’08) (D,Z,D) is a MT satisfying (MT4).

2 (SP’20) (⟨M[1]⟩,Z, ⟨M[−1]⟩) is a MT satisfying (MT4).

3 (NP’19) (Proj C, C,Proj C) is a MT satisfying (MT4).

4 (Nak’18) (S, T ∩ U ,V) is a MT satisfying (MT4).
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Main theorem

Theorem 1 [I, arXiv’24:2406.19625v2]

Mutation triple (S,Z,V) induces a pretriangulated category Z/[S ∩ V ].

Theorem 2 [I, arXiv’24]

Moreover, if (S,Z,V) satisfies (MT4),
then it induces a tri. cat. Z/[S ∩ V ].

Corollary

1 (IY’08) Z/[D] is a tri. cat.

2 (SP’20) Z is a tri. cat.

3 (NP’19) C/[Proj C] is a tri. cat.

4 (Nak’18) T ∩ U/[S ∩ V ] is a tri. cat.
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Preliminaries: relative structures of ET category

Relative structure

Let I ⊂ C be a subcategory. For f : X → Y ,

• f : I-monic ⇐⇒ C(f, I) : C(Y, I) → C(X, I) is surjective.
• f : I-epic ⇐⇒ C(I, f) : C(I, X) → C(I, Y ) is surjective.

Definition [Herschend-Liu-Nakaoka’21, Dräxler-Reiten-Smalø-Solberg-Keller’99]

Let I ⊂ C be a subcategory.

• EI(Y,X) = {δ ∈ E(Y,X);X
f−→ E

g−→ Y
δ99K X where f is I-monic.}

• EI(Y,X) = {δ ∈ E(Y,X);X
f−→ E

g−→ Y
δ99K X where g is I-epic.}

We define sI (resp. sI) by s|EI (resp. s|EI ).

Proposition [Herschend-Liu-Nakaoka’21]

(C,EI , sI) and (C,EI , sI) are ET cat.
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The condition (MT1)

Definition [Zhou-Zhu’18]

Let I ⊂ Z be subcategories of C.
1 I ⊂ Z is strongly covariantly finite if

∀Z ∈ Z ∃s-inflation Z
f−→ IZ where f is a left I-approximation.

2 Dually, we define strongly contravariantly finite.

3 I ⊂ Z is strongly functorially finite if
I ⊂ Z is both strongly cov.fin. and strongly cont.fin.

Note that “strongly” is not necessary in tri. cat.

Definition (MT1)

Let (S,Z,V) be a triplet of subcat. of C.
(MT1) (i) S ∩ Z = Z ∩ V , denoted by I.

(ii) I ⊂ Z is strongly funct.fin.
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The condition (MT1)

(MT1) (i) S ∩ Z = Z ∩ V , denoted by I.
(ii) I ⊂ Z is strongly funct.fin.

Example : (MT1)

1 (IY’08) From D ⊂ Z, I = D.

2 (SP’20) From Z ⊂ ⊥M[−1],M[1]⊥, I = 0.

3 (NP’19) I = Proj C, which is strongly funct. fin. in C.
4 (Nak’18) Because ((S, T ), (U ,V)) is concentric, S ∩ Z = Z ∩ V = I.
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The condition (MT1)

Let (S,Z,V) be a triplet of subcat. satisfying (MT1).

• For a subcat. X , X/[I] is denoted by X .
• From (MT1), for Z ∈ Z, there exists the following sI-tri. and fix it.

Z → IZ → Z⟨1⟩ λZ99K Z (IZ ∈ I)

Lemma 1

1 For z : Z1 → Z2 in Z,

∃z′ : Z1⟨1⟩ → Z2⟨1⟩ s.t.

Z1⟨1⟩

Z2⟨1⟩

Z1

Z2

λZ1 //

λZ2 //

z

��
z′

��
� (we denote z′ by z⟨1⟩.)

2 ⟨1⟩ induces a functor ⟨1⟩ : Z → C and does not depend on the
choices of sI-tri. up to iso.

Dually, we define a functor ⟨−1⟩ : Z → C by the following sI-tri.

Z
λZ99K Z⟨−1⟩ → IZ → Z (IZ ∈ I)
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The condition (MT1)

Example : ⟨1⟩, ⟨−1⟩

1 (IY’08) ⟨1⟩ (resp. ⟨−1⟩) is called left (resp. right) mutation there.

2 (SP’20) Since I = 0, ⟨1⟩ = [1].

3 (NP’19) ⟨1⟩ (resp. ⟨−1⟩) is so-called cosyzygy (resp. syzygy) functor.

4 (Nak’18) ⟨1⟩ is defined in the same way.
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The condition (MT2)

Notations

Let X ,Y be subcat.

• ConeE(X ,Y)

:=

{
Z ∈ C

∣∣∣∣∣ There exists an s-tri.

X → Y → Z 99K X where X ∈ X , Y ∈ Y

}
.

• CoConeE(X ,Y)

:=

{
Z ′ ∈ C

∣∣∣∣∣ There exists an s-tri.

X 99K Z ′ → X → Y where X ∈ X , Y ∈ Y

}
.

• Z⟨1⟩ := ConeEI (Z, I)
• Z⟨−1⟩ := CoConeEI (I,Z)

Definition

Let (S,Z,V) be a triplet of subcat. satisfying (MT1).

(MT2) (i) EI(S,Z) = 0 and EI(S,Z⟨−1⟩) = 0.
(ii) EI(Z,V) = 0 and EI(Z⟨1⟩,V) = 0.
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The condition (MT2)

We use the following notations.

• Ũ := CoConeEI (Z,S)
• T̃ := ConeEI (V,Z)

For U ∈ Ũ , there exists the following sI-tri. and fix it.

U
hU−−→ σU → SU 99K U (σU ∈ Z, SU ∈ S)

(For Z ∈ Z ⊂ Ũ , we choose Z = σZ and idZ = hZ .)

Lemma 2

Let (S,Z,V) be a triplet of subcat. satisfying (MT1) and (MT2).
Then − ◦ hU : Z(σU,Z) → Ũ(U,Z) is a natural iso.

12 / 23



The condition (MT2)

Corollary

σ induces a functor σ : Ũ → Z, which is a left adjoint functor of the
inclusion functor i : Z → Ũ .

On the other hand, for T ∈ T̃ , there exists the following sI-tri. and fix it.

T 99K VT → ωT
hT−−→ T (ωT ∈ Z, VT ∈ V)

Dually, we may define a functor ω : T̃ → Z, which is a right adjoint
functor of the inclusion functor j : Z → T̃ .
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The condition (MT2)

Example : σ

1 (IY’08) Since Z = Z⟨1⟩, σ|Z⟨1⟩ = Id.

2 (SP’20) For Z ∈ Z, σ(Z[1]) is defined by choosing the following tri.

M
m−→ Z[1] → σ(Z[1]) →M [1] (m : minimal right ⟨M⟩-approx.)

Note that (⟨M[1]⟩,Z, ⟨M[−1]⟩) is a MT and M [1] ∈ ⟨M[1]⟩.
3 (NP’19) Since Z = Ũ = C, σ = Id.

4 (Nak’18) σ is defined in the same way.
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The condition (MT3)

Let (S,Z,V) be a triplet of subcat.

Definition

Assume that (S,Z,V) satisfies (MT1) and (MT2).

(MT3) (i) ConeEI (Z,Z) ⊂ Ũ and S,Z are closed under extensions in EI.
(ii) CoConeEI (Z,Z) ⊂ T̃ and Z,V are closed under ext. in EI .

Definition

(S,Z,V) is a mutation triple if it satisfies (MT1), (MT2) and (MT3).
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The condition (MT3)

Definition

1 Σ := σ ◦ ⟨1⟩ : Z → Z is called right mutation.

2 Ω := ω ◦ ⟨−1⟩ : Z → Z is called left mutation.

Example : Σ,Ω

1 (IY’08)
Σ = ⟨1⟩ (resp.Ω = ⟨−1⟩) is called left (resp. right) mutation there.

2 (SP’20) Σ (resp.Ω) is called right (resp. left) mutation there.

3 (NP’19)
Σ = ⟨1⟩ (resp.Ω = ⟨−1⟩) is a so-called cosyzygy (resp. syzygy)
functor.

4 (Nakaoka’18) Σ (resp.Ω) is defined in the same way.
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Right triangulated structure

Let (S,Z,V) be a MT.

• For a : X → Y in Z, there exists the following comm. diag. in EI

from [Liu-Nakaoka’19].

X

X

Y ⊕IX

IX

Ca

X⟨1⟩

X

X

[
a
iX

]
// b // δ̃ //

iX // pX // λX //

[0 1]

��
ca

��
� � �

• ∇ =

(
seq. in Z iso. to one in

{X a−→ Y
hC

a◦b−−−−→ σCa
σ(ca)−−−→ ΣX | a : morph. in Z}.

)
We define ∆, dually.
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Right triangulated structure

Proposition

Let (S,Z,V) be a MT.
Then (Z,Σ,∇) is a right triangulated category in Beligiannis-Reiten’07.

[Sketch of proof] (RT0) and (RT1) are clear.

(RT2) Let b′ = hC
a ◦ b. Then a standard right tri. of b′

Y
b′−→ σCa −−−→ σCb

′ −−→ ΣY is iso. to the right rotated seq.

Y
b′−→ σCa

σ(ca)−−−→ ΣX
Σ(a)−−−→ ΣY .

(RT3) Let Xi, Yi ∈ Z, δi ∈ EI for i = 1, 2.

X1 Y1 U1 X1

X2 Y2 U2 X2

a1 // b1 // δ1 //

a2 // b2 // δ1 //

x

��

y

��
u

��
x

��
� � � ⇒

X1 Y1 σU1 ΣX1

X2 Y2 σU2 ΣX2

a1 //
hU1b1// σ(ca1 )//

a2 //
hU2b2// σ(ca2 )//

x

��

y

��
σ(u)

��
Σx

��
� � �

(RT4) U1
a−→ U2

b−→ U3
δ99K U1 : s

I-tri. (Ui ∈ ConeEI (Z,Z) for 1≤ i≤3)

Then σU1
σ(a)−−→ σU2

σ(b)−−→ σU3 → Σ(σU1) is a right tri.
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Right triangulated structure

Dually, one can show the following proposition.

Proposition

Let (S,Z,V) be a MT.
Then (Z,Ω,∆) is a left triangulated category.

By checking the compatibility of right triangles and left triangles, we get
Theorem 1.

Theorem 1

Let (S,Z,V) be a MT.
Then (Z,Σ,Ω,∇,∆) is a pretriangulated category.
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The condition (MT4)

Before we define (MT4), we introduce new cones and cocones.

• Ũ− = CoConeEI (I,S) ⊂ Ũ .
• T̃ + = ConeEI (V, I) ⊂ T̃ .

For U ∈ Ũ and T ∈ T̃ , U− ∈ Ũ− and T+ ∈ T̃ + are defined by:

SU SU

ZU ⟨−1⟩ U− U ZU ⟨−1⟩

ZU ⟨−1⟩ IZU ZU ZU ⟨−1⟩

SU SU

rU // sU // χU //

// //
λ
ZU//

��

��

��

ρU

��

��

��

�

� � �

�

ZT ⟨1⟩ ZT ⟨1⟩

VT ZT T VT

VT IZT T+ VT

ZT ⟨1⟩ ZT ⟨1⟩

// // ρT //

// // //

λZT

��

��

��

χT

��

sT

��

rT

��

�

� � �

�
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The condition (MT4)

Lemma

1 (·)− : Ũ → Ũ− is a right adjoint functor of i− : Ũ− → Ũ .
2 (·)+ : T̃ → T̃ + is a left adjoint functor of i+ : T̃ + → T̃ .

Definition

Let (S,Z,V) be a MT.

(MT4) (i) Z⟨1⟩− ⊂ T̃ +.

(ii) Z⟨−1⟩+ ⊂ Ũ−.

• Note that if Ũ− = T̃ +, then (MT4) holds. (it is denoted by (MT4+)).

• (MT4) is equivalent to Z⟨1⟩− = Z⟨−1⟩+.
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The condition (MT4)

Example : (MT4)

1 (IY’08) Z⟨1⟩− = Z⟨−1⟩+ = 0.

2 (SP’20)

• Ũ− = CoConeE(0, ⟨M[1]⟩) = ⟨M⟩.
• T̃ + = ConeE(⟨M[−1]⟩, 0) = ⟨M⟩.

3 (NP’19)

• Ũ− = CoConeE(Proj C,Proj C) = Proj C.
• T̃ + = ConeE(Inj C, Inj C) = Inj C = Proj C.

4 (Nak’18) For any concentric twin cotorsion pair ((S, T ), (U ,V)),
Hovey ⇒ (MT4) holds.

Theorem 2

Let (S,Z,V) be a MT satisfying (MT4).
Then Σ is an equiv., in particular, (Z,Σ,Ω,∇,∆) is a tri. cat.
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The condition (MT4)

Sketch of proof

We only prove Id
∼⇒ ΣΩ.

• From (ET4) and (MT4), we obtain the following sI-tri.

Z⟨−1⟩ i′Z−−→ I ′
Z p′Z−−→ Ψ(Z) λ′Z99K Z⟨−1⟩

(ΩZ)⟨1⟩ ℏ(ΩZ)⟨1⟩
−−−−−→ Ψ(Z) → S 99K (ΩZ)⟨1⟩

where I ′Z ∈ I, Ψ(Z) ∈ Z and S ∈ S.
• Ψ induces a functor Ψ: Z → Z.

• Natural iso. ψ : Id
∼⇒ Ψ and φ : Ψ

∼⇒ ΣΩ are defined as follows.

Z⟨−1⟩ IZ Z Z⟨−1⟩

Z⟨−1⟩ I ′Z Ψ(Z) Z⟨−1⟩

iZ // pZ // λZ //

i′Z // p′Z // λ′Z//
��

ψZ

��
� � �

(ΩZ)⟨1⟩ Ψ(Z)

(ΩZ)⟨1⟩ ΣΩZ

ℏ(ΩZ)⟨1⟩
//

h(ΩZ)⟨1⟩
//

φZ

��

�
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