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Motivation
In this talk,

“subcat . additive full subcategory which is closed
subcategory” =
gory under isomorphisms and direct summands.

@ (lyama-Yoshino'08) D-mutation pair (£, Z) where Z is extension
closed induces a triangulated category Z/[D].

@® (Simdes-Pauksztello'20) (M)-mutation pair (Z, Z) which satisfies
some conditions induces a tri. cat. Z.

© (Nakaoka-Palu'19) A Frobenius extriangulated (ET) cat. C induces
a tri. cat. C/[ProjC].

O (Nakaoka'18) A Hovey twin cotorsion pair ((S,7T), (,V)) induces a
triangulated cat. 7T NU/[SNV].
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Motivation

These triangulated structures are induced by mutations.
@ (lyama-Yoshino'08) Mutations of cluster-tilting / silting subcategory.

® (Simdes-Pauksztello'20) Mutations of simple-minded system /
collection.

© (Nakaoka-Palu'19) Special case of @ in ET categories.
O (Nakaoka'l8) The shift functor is exactly the right mutation in @.

Question

Is there a simultaneous generalization of previous four facts?
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Motivation

These triangulated structures are induced by mutations.
@ (lyama-Yoshino'08) Mutations of cluster-tilting / silting subcategory.

® (Simdes-Pauksztello'20) Mutations of simple-minded system /
collection.

© (Nakaoka-Palu'19) Special case of @ in ET categories.
O (Nakaoka'l8) The shift functor is exactly the right mutation in @.

Question

Is there a simultaneous generalization of previous four facts?

Answer

It is exactly a mutation triple satisfying (MT4).
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Mutation triple

Let (C,E,s) be an ET cat. and S, Z,V be subcategories of C.

e A triplet (S, Z,V) is called mutation triple (MT) if it satisfies the
conditions from (MT1) to (MT3).

e We introduce an additional condition for MTs: (MT4).
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NS
Mutation triple

Definition

Let (C,E,s) be an ET cat. and S, Z,V be subcategories of C.

e A triplet (S, Z,V) is called mutation triple (MT) if it satisfies the
conditions from (MT1) to (MT3).

e We introduce an additional condition for MTs: (MT4).

Example

® (IY'08) (D, Z,D) is a MT satisfying (MT4).
® (SP'20) ((M[1]), Z,(M[—1])) is a MT satisfying (MT4).
©® (NP'19) (ProjC,C,ProjC) is a MT satisfying (MT4).
O (Nak'18) (S, 7 NU,V) is a MT satisfying (MT4).
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Main theorem

Theorem 1 [l, arXiv'24:2406.19625v2]
Mutation triple (S, Z,V) induces a pretriangulated category Z/[S N V].

Theorem 2 [l, arXiv'24]

Moreover, if (S, Z,V) satisfies (MT4),
then it induces a tri. cat. Z/[SNV)].

Corollary

@ (IY'08) Z/[D] is a tri. cat.
® (SP'20) Z is a tri. cat.
® (NP'19) C/[ProjC] is a tri. cat.
© (Nak'18) TNU/[SN V] is a tri. cat.
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Relative structure

Let Z C C be a subcategory. For f: X = Y,
e f: I-monic <= C(f,Z): C(Y,Z) — C(X,Z) is surjective.
o f: TI-epic <= C(Z,f): C(Z,X)— C(Z,Y) is surjective.
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Preliminaries: relative structures of ET category

Relative structure

Let Z C C be a subcategory. For f: X = Y,
e f: I-monic <= C(f,Z): C(Y,Z) — C(X,Z) is surjective.
o f: TI-epic <= C(Z,f): C(Z,X)— C(Z,Y) is surjective.

Definition [Herschend-Liu-Nakaoka'21, Draxler-Reiten-Smalg-Solberg-Keller'99]

Let Z C C be a subcategory.

¢ EX(Y,X) = {6 € E(Y, X); X L3 E L v -2 X where f is Z-monic.}
¢ Ex(Y,X)={6 cE(Y,X); X 55 E % v -5 X where g is T-epic.}

We define 5T (resp. s7) by s|gz (resp. s|g,).

Proposition [Herschend-Liu-Nakaoka'21]
(C,EZ,s%) and (C,[Ez,s7) are ET cat.
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The condition (MT1)

Definition [Zhou-Zhu'18]

Let Z C Z be subcategories of C.

@® I C Z is strongly covariantly finite if
VZ € Z Fs-inflation Z i> IZ where f is a left Z-approximation.
® Dually, we define strongly contravariantly finite.

© I C Z is strongly functorially finite if
7 C Z is both strongly cov.fin. and strongly cont.fin.

Note that “strongly” is not necessary in tri. cat.
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The condition (MT1)

Definition [Zhou-Zhu'18]

Let Z C Z be subcategories of C.

@® 7 C Z is strongly covariantly finite if
VZ € Z Fs-inflation Z i> IZ where f is a left Z-approximation.
® Dually, we define strongly contravariantly finite.

© I C Z is strongly functorially finite if
7 C Z is both strongly cov.fin. and strongly cont.fin.

Note that “strongly” is not necessary in tri. cat.
Definition (MT1)

Let (S, Z,V) be a triplet of subcat. of C.

(MT1) (i) SNZ=ZnNYV, denoted by 7.
(i) Z C Z is strongly funct.fin.
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The condition (MT1)

(MT1) (i) SNZ =ZnNYV, denoted by Z.
(i) Z C Z is strongly funct.fin.

Example : (MT1)

® (IY'08) FromD C Z,Z =D.
SP'20) From Z C 1t M[-1], M[1]+, Z = 0.
NP'19) Z = ProjC, which is strongly funct. fin. in C.

Nak'18) Because ((S,T), (U,V)) is concentric, SNZ =ZNV =1.

~_~ o~ o~ —~

2]
3]
4]
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The condition (MT1)

Let (S, Z,V) be a triplet of subcat. satisfying (MT1).
e For a subcat. X, X'/[Z] is denoted by X.
e From (MT1), for Z € Z, there exists the following sZ-tri. and fix it.
Z 1% 57200 X 72 (12 1)

Lemma 1

® For z: Z1 — Zy in Z,
AZ1L

Zl<1> **>Zl

32 Z1(1) — Zo(1 l ‘z (we denote 2’ by z(1).)

222

Zy(1) ==>Zs

® (1) induces a functor (1) : Z — C and does not depend on the
choices of sZ-tri. up to iso.

Dually, we define a functor (—1) : Z — C by the following sz-tri.
2% 201 51,72 (Izel)
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The condition (MT1)

Example : (1), (—1)

@ (IY'08) (1) (resp. (—1)) is called left (resp. right) mutation there.
SP'20) Since Z =0, (1) = [1].
NP'19) (1) (resp. (—1)) is so-called cosyzygy (resp. syzygy) functor.

Nak'18) (1) is defined in the same way.

~ o~ o~ —~

2]
3]
4]
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The condition (MT2)

Notations

Let X, ) be subcat.
e Coneg(&X,Y)

=< Zel
X=>Y—>Z7Z--s Xwhere XeX,Ye)y

There exists an s-tri. }

e CoConeg(X,Y)
There exists an s-tri.
=<7 eC , _
X-27Z->X—>Ywhere XeX,Ye)y
e Z(1) := Conegz(Z,7)
e Z(—1) := CoConeg, (Z, Z)
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The condition (MT2)

Notations

Let X, ) be subcat.
e Coneg(&X,Y)

=< Zel

There exists an s-tri.
X—)Y%Z——»thereXEX,Yey}'
e CoConeg(X,Y)
There exists an s-tri.
= {Z’ eC , }
X-27Z->X—>Ywhere XeX,Ye)y

e Z(1) := Conegz(Z,7)

e Z(—1) := CoConeg, (Z, Z)
Let (S, Z,V) be a triplet of subcat. satisfying (MT1).

(MT2) (i) EZ(S, Z) =0 and Ez(S, Z(-1)) = 0.
(i) Ez(Z,V) =0 and EZ(Z(1),V) = 0.

11/23



The condition (MT2)

We use the following notations.
e U := CoConegz(Z,8)
o T := Coneg, (V, Z)

For U € U, there exists the following sZ-tri. and fix it.

UM oy 58U -5 U (oU€ 2,5V € S)
(For Z € Z C U, we choose Z = ¢Z and idy = hZ.)

Lemma 2

Let (S, Z,V) be a triplet of subcat. satisfying (MT1) and (MT2).
Then —ohY: Z(oU, Z) — U(U, Z) is a natural iso.
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The condition (MT2)

Corollary

o induces a functor o : ZZ - Z, which is a left adjoint functor of the
inclusion functor i: Z — U.

On the other hand, for T € T, there exists the following sz-tri. and fix it.

T - Ve swl 5T (WIe Z,Vre V)

Dually, we may define a functor w: T — Z, which is a right adjoint
functor of the inclusion functor j: Z2 — 7.
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Example : o

©® (1Y'08) Since Z = Z(1), 0|z = Id.
® (SP'20) For Z € Z, o(Z][1]) is defined by choosing the following tri.

M Z[1] — o(Z[1]) = M[1] (m : minimal right (M)-approx.)

Note that ((M[1]), Z, (M][-1])) is a MT and M|[1] € (M[1]).
©® (NP'19) Since Z=U =C, 0 = Id.
© (Nak'18) o is defined in the same way.
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Let (S, Z,V) be a triplet of subcat.

Definition
Assume that (S, Z,V) satisfies (MT1) and (MT2).

(MT3) (i) Conegz(Z,2) cU and S, Z are closed under extensions in E-.
(i) CoConeg, (Z,2) C T and Z,V are closed under ext. in Ez.

Definition
(8, Z,V) is a mutation triple if it satisfies (MT1), (MT2) and (MT3).
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Definition

@® X :=o00(l): Z— Zis called right mutation.
@ (:=wo(—1): Z— Zis called left mutation.
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Definition

@® X :=o00(l): Z— Zis called right mutation.
@ (:=wo(—1): Z— Zis called left mutation.

Example : X, Q)

(1) (IY'08)
= (1) (resp. Q2 = (—1)) is called left (resp. right) mutation there.
(SP 20) X (resp. ) is called right (resp. left) mutation there.
(NP 19)
= (1) (resp. Q2 = (—1)) is a so-called cosyzygy (resp. syzygy)
functor.

@ (Nakaoka'l8) X (resp. 2) is defined in the same way.
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Let (S, Z,V) be a MT.

e Fora: X — Y in Z, there exists the following comm. diag. in EZ
from [Liu-Nakaoka'19].

ll

X%Y@IX%C“ 2ox
H X ‘ AX H
X*>IX*>X<>77>X

b, ocC?® o(e)

seq. in Z iso. to one in
[ ] v =
YX | a:morph. in Z}.

We define A, dually.
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Proposition

Let (S, Z,V) be a MT.
Then (Z,%,V) is a right triangulated category in Beligiannis-Reiten'07.
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Right triangulated structure

Proposition

Let (S, Z,V) be a MT.
Then (Z,%,V) is a right triangulated category in Beligiannis-Reiten'07.

[Sketch of proof] (RTO) and (RT1) are clear.
(RT2) Let b’ h¢" ob. Then a standard right tri. of o/

Y :> 0C% —— oC" — XY is iso. to the right rotated seq.

v & po0 2D, vy E@ vy
(RT3) Let X;,Y; € Z,5; € EX fori = 1,2.
ai b1 31 a1 hY1by o(cL)
X1 Yi U1 - — >X1 X1 Y1 0’U1 EXl
lx O ly @) lu O lx = lm @) ly O lcr(u) @) ll‘fc
hU2b. a
Xo— Yy U x, X2y, =200, " Dyx,

(RT4) Uy % Uy % Uy -2 Uy :s%-tri. (U; € Conegz(Z,2) for 1<i<3)
Then oU1 2% Uy 2% U3 s S(ol1) is a right tri.
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Right triangulated structure

Dually, one can show the following proposition.

Proposition

Let (S, Z,V) be a MT.
Then (Z,,A) is a left triangulated category.
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Right triangulated structure

Dually, one can show the following proposition.

Proposition

Let (S, Z,V) be a MT.
Then (Z,,A) is a left triangulated category.

By checking the compatibility of right triangles and left triangles, we get
Theorem 1.

Theorem 1

Let (S, Z,V) be a MT.
Then (Z,%,Q,V,A) is a pretriangulated category.
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Before we define (MT4), we introduce new cones and cocones.
e U/~ = CoConegz(Z,8) C U.
e T+ = Coneg,(V,I)C T.

ForUcland T € 7~' U-clU~ and T+ ¢ 7~.+ are defined by:

sU su Zr(1) = Zr(1)
[ [ | [
I INZTOxT
TU ¥ sSU A XU v \ PT
Z9-1)—~U ——U~->2Y(-1) Vp——Ip——T-"=>Vr
O L O O O l @) s O
A
ZU<—1>‘>IZU‘>ZU —Z;]ZU<—1> VTHIZT*)T+77>VT
l O L l O LTT
su sv Zr(1) = Z7(1)
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Lemma

o () : U—U isa right adjoint functor of i~ : U- —Uu.
® ()": T — T+ is a left adjoint functor of it: T+ — T
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Lemma

o () : U—U isa right adjoint functor of i~ : U- —Uu.
® ()t: T — T+ is a left adjoint functor of it: T+ — T.

Definition
Let (S, Z,V) be a MT.
(MT4) (i) Z(1)~ c T+.
(i) Z(-1)*T cuU-.

N

e Note that if U~ = T+, then (MT4) holds. (it is denoted by (MT4")).
e (MT4) is equivalent to Z(1)™ = Z(—1)*.
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The condition (MT4)

Example : (MT4)

® (IY'08) Z(1)~ = Z(-1)* = 0.
® (SP'20)
« U~ = CoConeg(0, (M[1])) = (M).
« T+ = Coneg({(M[-1]),0) = (M).
© (NP'19)
. ZZ_ = CoConeg(ProjC,ProjC) = ProjC.
« 7% = Coneg(InjC,InjC) = InjC = ProjC.
© (Nak'18) For any concentric twin cotorsion pair ((S,7), (U, V)),
Hovey = (MT4) holds.
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The condition (MT4)

Example : (MT4)

® (IY'08) Z(1)~ = Z(-1)T =0.
® (SP20)
« U~ = CoConeg(0, (M[1]))
« Tt = Coneg({(M[-1]),0)
© (NP'19)
. ZZ_ = CoConeg(ProjC,ProjC) = ProjC.
« 7% = Coneg(InjC,InjC) = InjC = ProjC.
© (Nak'18) For any concentric twin cotorsion pair ((S,7), (U, V)),
Hovey = (MT4) holds.

(M),
(M).

Theorem 2

Let (S, Z,V) be a MT satisfying (MT4).
Then X is an equiv., in particular, (£,3,Q,V,A) is a tri. cat.
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Sketch of proof

We only prove Id = 3.
e From (ET4) and (MT4), we obtain the following sZ-tri.

1 Z 1Z ,
Z(-1) 5 17 P w(z) X5 Z(-1)

RQZ)(1)
RCANBEAREY

(Q2)(1) U(Z)—=S--+(Q2)(1)

where I'? € T, U(Z) € Z and S € S.
e W induces a functor ¥: Z — Z.
e Natural iso. ¢: Id = ¥ and ¢: ¥ = X0 are defined as follows.

Z<—1>Z$IZL27>\7Z> Z< > R(22)(1) LA Z)

iz & K(Q2)(1)

2(-1) % pz ow(z) ¥ z(-1) 07
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