Triangulated structures induced by mutations a simultaneous generalization of twin cotorsion pairs and mutation pairs

Ryota litsuka

ICRA21, Shanghai

August 8, 2024

Motivation

In this talk,

```
"subcategory" = additive full subcategory which is closed under isomorphisms and direct summands.
```

Fact

- (Iyama-Yoshino'08) \mathcal{D} -mutation pair $(\mathcal{Z}, \mathcal{Z})$ where \mathcal{Z} is extension closed induces a triangulated category $\mathcal{Z}/[\mathcal{D}]$.
- **2** (Simões-Pauksztello'20) $\langle \mathcal{M} \rangle$ -mutation pair $(\mathcal{Z}, \mathcal{Z})$ which satisfies some conditions induces a tri. cat. \mathcal{Z} .
- **3** (Nakaoka-Palu'19) A Frobenius extriangulated (ET) cat. \mathcal{C} induces a tri. cat. $\mathcal{C}/[\operatorname{Proj} \mathcal{C}]$.
- **4** (Nakaoka'18) A Hovey twin cotorsion pair $((\mathcal{S}, \mathcal{T}), (\mathcal{U}, \mathcal{V}))$ induces a triangulated cat. $\mathcal{T} \cap \mathcal{U}/[\mathcal{S} \cap \mathcal{V}]$.

Motivation

These triangulated structures are induced by mutations.

- (Iyama-Yoshino'08) Mutations of cluster-tilting / silting subcategory.
- ② (Simões-Pauksztello'20) Mutations of simple-minded system / collection.
- (Nakaoka-Palu'19) Special case of (1) in ET categories.
- 4 (Nakaoka'18) The shift functor is exactly the right mutation in 2.

Question

Is there a simultaneous generalization of previous four facts?

Motivation

These triangulated structures are induced by mutations.

- (Iyama-Yoshino'08) Mutations of cluster-tilting / silting subcategory.
- ② (Simões-Pauksztello'20) Mutations of simple-minded system / collection.
- (Nakaoka-Palu'19) Special case of (1) in ET categories.
- (Nakaoka'18) The shift functor is exactly the right mutation in 2.

Question

Is there a simultaneous generalization of previous four facts?

Answer

It is exactly a mutation triple satisfying (MT4).

Mutation triple

Definition

Let $(\mathcal{C}, \mathbb{E}, \mathfrak{s})$ be an ET cat. and $\mathcal{S}, \mathcal{Z}, \mathcal{V}$ be subcategories of \mathcal{C} .

- A triplet (S, Z, V) is called mutation triple (MT) if it satisfies the conditions from (MT1) to (MT3).
- We introduce an additional condition for MTs: (MT4).

Mutation triple

Definition

Let $(C, \mathbb{E}, \mathfrak{s})$ be an ET cat. and $S, \mathcal{Z}, \mathcal{V}$ be subcategories of C.

- A triplet (S, Z, V) is called mutation triple (MT) if it satisfies the conditions from (MT1) to (MT3).
- We introduce an additional condition for MTs: (MT4).

Example

- **1** (IY'08) $(\mathcal{D}, \mathcal{Z}, \mathcal{D})$ is a MT satisfying (MT4).
- **2** (SP'20) $(\langle \mathcal{M}[1] \rangle, \mathcal{Z}, \langle \mathcal{M}[-1] \rangle)$ is a MT satisfying (MT4).
- (NP'19) $(\operatorname{Proj} \mathcal{C}, \mathcal{C}, \operatorname{Proj} \mathcal{C})$ is a MT satisfying (MT4).
- **4** (Nak'18) $(S, T \cap U, V)$ is a MT satisfying (MT4).

Main theorem

Theorem 1 [I, arXiv'24:2406.19625v2]

Mutation triple $(\mathcal{S}, \mathcal{Z}, \mathcal{V})$ induces a pretriangulated category $\mathcal{Z}/[\mathcal{S} \cap \mathcal{V}]$.

Theorem 2 [I, arXiv'24]

Moreover, if $(\mathcal{S}, \mathcal{Z}, \mathcal{V})$ satisfies (MT4), then it induces a tri. cat. $\mathcal{Z}/[\mathcal{S} \cap \mathcal{V}]$.

Corollary

- ① (IY'08) $\mathcal{Z}/[\mathcal{D}]$ is a tri. cat.
- 2 (SP'20) \mathcal{Z} is a tri. cat.
- 3 (NP'19) $\mathcal{C}/[\operatorname{Proj}\mathcal{C}]$ is a tri. cat.
- **4** (Nak'18) $\mathcal{T} \cap \mathcal{U}/[S \cap \mathcal{V}]$ is a tri. cat.

Relative structure

Let $\mathcal{I} \subset \mathcal{C}$ be a subcategory. For $f \colon X \to Y$,

- $f: \mathcal{I}$ -monic $\iff \mathcal{C}(f,\mathcal{I}) \colon \mathcal{C}(Y,\mathcal{I}) \to \mathcal{C}(X,\mathcal{I})$ is surjective.
- $f: \mathcal{I}$ -epic $\iff \mathcal{C}(\mathcal{I}, f) \colon \mathcal{C}(\mathcal{I}, X) \to \mathcal{C}(\mathcal{I}, Y)$ is surjective.

Relative structure

Let $\mathcal{I} \subset \mathcal{C}$ be a subcategory. For $f \colon X \to Y$,

- $f: \mathcal{I}$ -monic $\iff \mathcal{C}(f,\mathcal{I}) : \mathcal{C}(Y,\mathcal{I}) \to \mathcal{C}(X,\mathcal{I})$ is surjective.
- $\bullet \ f: \ {\mathcal I}\text{-epic} \iff \mathcal C(\mathcal I,f)\colon \mathcal C(\mathcal I,X) \to \mathcal C(\mathcal I,Y) \ \text{is surjective}.$

Definition [Herschend-Liu-Nakaoka'21, Dräxler-Reiten-Smalø-Solberg-Keller'99]

Let $\mathcal{I} \subset \mathcal{C}$ be a subcategory.

- $\mathbb{E}^{\mathcal{I}}(Y,X) = \{ \delta \in \mathbb{E}(Y,X); X \xrightarrow{f} E \xrightarrow{g} Y \xrightarrow{\delta} X \text{ where } f \text{ is } \mathcal{I}\text{-monic.} \}$
- $\mathbb{E}_{\mathcal{I}}(Y,X) = \{ \delta \in \mathbb{E}(Y,X); X \xrightarrow{f} E \xrightarrow{g} Y \xrightarrow{\delta} X \text{ where } g \text{ is } \mathcal{I}\text{-epic.} \}$

We define $\mathfrak{s}^{\mathcal{I}}$ (resp. $\mathfrak{s}_{\mathcal{I}}$) by $\mathfrak{s}|_{\mathbb{E}^{\mathcal{I}}}$ (resp. $\mathfrak{s}|_{\mathbb{E}_{\mathcal{I}}}$).

Proposition [Herschend-Liu-Nakaoka'21]

 $(\mathcal{C}, \mathbb{E}^{\mathcal{I}}, \mathfrak{s}^{\mathcal{I}})$ and $(\mathcal{C}, \mathbb{E}_{\mathcal{I}}, \mathfrak{s}_{\mathcal{I}})$ are ET cat.

Definition [Zhou-Zhu'18]

Let $\mathcal{I} \subset \mathcal{Z}$ be subcategories of \mathcal{C} .

- **1** $\mathcal{I} \subset \mathcal{Z}$ is strongly covariantly finite if $\forall Z \in \mathcal{Z} \ ^\exists \mathfrak{s}$ -inflation $Z \xrightarrow{f} I^Z$ where f is a left \mathcal{I} -approximation.
- 2 Dually, we define strongly contravariantly finite.
- 3 $\mathcal{I} \subset \mathcal{Z}$ is strongly functorially finite if $\mathcal{I} \subset \mathcal{Z}$ is both strongly cov.fin. and strongly cont.fin.

Note that "strongly" is not necessary in tri. cat.

Definition [Zhou-Zhu'18]

Let $\mathcal{I} \subset \mathcal{Z}$ be subcategories of \mathcal{C} .

- **1** $\mathcal{I} \subset \mathcal{Z}$ is strongly covariantly finite if $\forall Z \in \mathcal{Z} \ ^\exists \mathfrak{s}$ -inflation $Z \xrightarrow{f} I^Z$ where f is a left \mathcal{I} -approximation.
- 2 Dually, we define strongly contravariantly finite.
- 3 $\mathcal{I} \subset \mathcal{Z}$ is strongly functorially finite if $\mathcal{I} \subset \mathcal{Z}$ is both strongly cov.fin. and strongly cont.fin.

Note that "strongly" is not necessary in tri. cat.

Definition (MT1)

Let (S, Z, V) be a triplet of subcat. of C.

(MT1) (i)
$$S \cap Z = Z \cap V$$
, denoted by I .

(ii) $\mathcal{I} \subset \mathcal{Z}$ is strongly funct.fin.

- (MT1) (i) $S \cap Z = Z \cap V$, denoted by I.
 - (ii) $\mathcal{I} \subset \mathcal{Z}$ is strongly funct.fin.

Example: (MT1)

- **1** (IY'08) From $\mathcal{D} \subset \mathcal{Z}$, $\mathcal{I} = \mathcal{D}$.
- (SP'20) From $\mathcal{Z} \subset {}^{\perp}\mathcal{M}[-1], \mathcal{M}[1]^{\perp}, \mathcal{I} = 0.$
- **3** (NP'19) $\mathcal{I} = \operatorname{Proj} \mathcal{C}$, which is strongly funct. fin. in \mathcal{C} .
- (Nak'18) Because ((S, T), (U, V)) is concentric, $S \cap Z = Z \cap V = I$.

Let (S, Z, V) be a triplet of subcat. satisfying (MT1).

- For a subcat. \mathcal{X} , $\mathcal{X}/[\mathcal{I}]$ is denoted by $\underline{\mathcal{X}}$.
- From (MT1), for $Z \in \mathcal{Z}$, there exists the following $\mathfrak{s}^{\mathcal{I}}$ -tri. and fix it. $Z \to I^Z \to Z(1) \stackrel{\lambda^Z}{\longrightarrow} Z \quad (I^Z \in \mathcal{I})$

Lemma 1

$$Z_1\langle 1 \rangle \xrightarrow{\lambda^{Z_1}} Z_1$$

$$\exists z' \colon Z_1\langle 1 \rangle \to Z_2\langle 1 \rangle \text{ s.t. } \underset{Z_2\langle 1 \rangle}{z'} \bigcirc \underset{- \to \infty}{\bigvee} z \text{ (we denote } z' \text{ by } \underset{z\langle 1 \rangle}{z\langle 1 \rangle}.)$$

2 $\langle 1 \rangle$ induces a functor $\langle 1 \rangle : \underline{\mathcal{Z}} \to \underline{\mathcal{C}}$ and does not depend on the choices of $\mathfrak{s}^{\mathcal{I}}$ -tri. up to iso.

Dually, we define a functor $\langle -1 \rangle : \underline{\mathcal{Z}} \to \underline{\mathcal{C}}$ by the following $\mathfrak{s}_{\mathcal{I}}$ -tri. $Z \xrightarrow{\lambda_Z} \underline{Z} \langle -1 \rangle \to I_Z \to Z \quad (I_Z \in \mathcal{I})$

Example : $\langle 1 \rangle, \langle -1 \rangle$

- **1** (IY'08) $\langle 1 \rangle$ (resp. $\langle -1 \rangle$) is called left (resp. right) mutation there.
- ② (SP'20) Since $\mathcal{I} = 0$, $\langle 1 \rangle = [1]$.
- (NP'19) $\langle 1 \rangle$ (resp. $\langle -1 \rangle$) is so-called cosyzygy (resp. syzygy) functor.
- **4** (Nak'18) $\langle 1 \rangle$ is defined in the same way.

Notations

Let \mathcal{X}, \mathcal{Y} be subcat.

•
$$CoCone_{\mathbb{E}}(\mathcal{X}, \mathcal{Y})$$

$$:= \left\{ Z' \in \mathcal{C} \;\middle|\; \begin{array}{c} \text{There exists an } \mathfrak{s}\text{-tri.} \\ X \dashrightarrow Z' \to X \to Y \text{ where } X \in \mathcal{X}, Y \in \mathcal{Y} \end{array} \right\}.$$

- $\mathbb{Z}\langle 1 \rangle := \operatorname{Cone}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z}, \mathcal{I})$
- $\mathcal{Z}\langle -1 \rangle := \operatorname{CoCone}_{\mathbb{E}_{\mathcal{T}}}(\mathcal{I}, \mathcal{Z})$

Notations

Let \mathcal{X}, \mathcal{Y} be subcat.

- $CoCone_{\mathbb{E}}(\mathcal{X}, \mathcal{Y})$

$$:= \left\{ Z' \in \mathcal{C} \;\middle|\; \begin{array}{c} \text{There exists an } \mathfrak{s}\text{-tri.} \\ X \dashrightarrow Z' \to X \to Y \text{ where } X \in \mathcal{X}, Y \in \mathcal{Y} \end{array} \right\}.$$

- $\mathbb{Z}\langle 1 \rangle := \operatorname{Cone}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z}, \mathcal{I})$
- $\mathcal{Z}\langle -1 \rangle := \operatorname{CoCone}_{\mathbb{E}_{\mathcal{T}}}(\mathcal{I}, \mathcal{Z})$

Definition

Let (S, Z, V) be a triplet of subcat. satisfying (MT1).

(MT2) (i)
$$\mathbb{E}^{\mathcal{I}}(\mathcal{S}, \mathcal{Z}) = 0$$
 and $\mathbb{E}_{\mathcal{I}}(\mathcal{S}, \mathcal{Z}\langle -1 \rangle) = 0$.
(ii) $\mathbb{E}_{\mathcal{I}}(\mathcal{Z}, \mathcal{V}) = 0$ and $\mathbb{E}^{\mathcal{I}}(\mathcal{Z}\langle 1 \rangle, \mathcal{V}) = 0$.

We use the following notations.

- $\widetilde{\mathcal{U}} := \operatorname{CoCone}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z}, \mathcal{S})$
- $\widetilde{\mathcal{T}} := \operatorname{Cone}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{V}, \mathcal{Z})$

For $U \in \widetilde{\mathcal{U}}$, there exists the following $\mathfrak{s}^{\mathcal{I}}$ -tri. and fix it.

$$U \xrightarrow{h^U} \sigma U \to S^U \dashrightarrow U \quad (\sigma U \in \mathcal{Z}, S^U \in \mathcal{S})$$

(For $Z \in \mathcal{Z} \subset \widetilde{\mathcal{U}}$, we choose $Z = \sigma Z$ and $\mathrm{id}_Z = h^Z$.)

Lemma 2

Let $(\mathcal{S}, \mathcal{Z}, \mathcal{V})$ be a triplet of subcat. satisfying (MT1) and (MT2).

Then $- \circ \underline{h}^{\underline{U}} \colon \underline{\mathcal{Z}}(\sigma U, \mathcal{Z}) \to \underline{\mathcal{U}}(U, \mathcal{Z})$ is a natural iso.

Corollary

 σ induces a functor $\sigma \colon \underline{\widetilde{\mathcal{U}}} \to \underline{\mathcal{Z}}$, which is a left adjoint functor of the inclusion functor $i \colon \underline{\mathcal{Z}} \to \underline{\widetilde{\mathcal{U}}}$.

On the other hand, for $T\in\widetilde{\mathcal{T}}$, there exists the following $\mathfrak{s}_{\mathcal{I}}$ -tri. and fix it.

$$T \longrightarrow V_T \longrightarrow \omega T \xrightarrow{h_T} T \quad (\omega T \in \mathcal{Z}, V_T \in \mathcal{V})$$

Dually, we may define a functor $\omega \colon \widetilde{\mathcal{T}} \to \underline{\mathcal{Z}}$, which is a right adjoint functor of the inclusion functor $j \colon \underline{\mathcal{Z}} \to \widetilde{\mathcal{T}}$.

Example : σ

- **1** (IY'08) Since $\mathcal{Z} = \mathcal{Z}\langle 1 \rangle$, $\sigma|_{\mathcal{Z}\langle 1 \rangle} = \mathrm{Id}$.
- **2** (SP'20) For $Z \in \mathcal{Z}$, $\sigma(Z[1])$ is defined by choosing the following tri.

$$M \xrightarrow{m} Z[1] \to \sigma(Z[1]) \to M[1] \quad \text{$(m:$ minimal right $\langle \mathcal{M} \rangle$-approx.)}$$

Note that $(\langle \mathcal{M}[1] \rangle, \mathcal{Z}, \langle \mathcal{M}[-1] \rangle)$ is a MT and $M[1] \in \langle \mathcal{M}[1] \rangle$.

- **3** (NP'19) Since $\mathcal{Z} = \widetilde{\mathcal{U}} = \mathcal{C}$, $\sigma = \mathrm{Id}$.
- **4** (Nak'18) σ is defined in the same way.

Let (S, Z, V) be a triplet of subcat.

Definition

Assume that (S, Z, V) satisfies (MT1) and (MT2).

(MT3) (i) $\mathrm{Cone}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) \subset \widetilde{\mathcal{U}}$ and \mathcal{S},\mathcal{Z} are closed under extensions in $\mathbb{E}^{\mathcal{I}}$. (ii) $\mathrm{CoCone}_{\mathbb{E}_{\mathcal{I}}}(\mathcal{Z},\mathcal{Z}) \subset \widetilde{\mathcal{T}}$ and \mathcal{Z},\mathcal{V} are closed under ext. in $\mathbb{E}_{\mathcal{I}}$.

Definition

(S, Z, V) is a mutation triple if it satisfies (MT1), (MT2) and (MT3).

Definition

- **1** $\Sigma := \sigma \circ \langle 1 \rangle : \underline{\mathcal{Z}} \to \underline{\mathcal{Z}}$ is called right mutation.
- **2** $\Omega := \omega \circ \langle -1 \rangle : \underline{\mathcal{Z}} \to \underline{\mathcal{Z}}$ is called left mutation.

Definition

- **1** $\Sigma := \sigma \circ \langle 1 \rangle : \underline{\mathcal{Z}} \to \underline{\mathcal{Z}}$ is called right mutation.
- **2** $\Omega := \omega \circ \langle -1 \rangle : \underline{\mathcal{Z}} \to \underline{\mathcal{Z}}$ is called left mutation.

Example : Σ, Ω

- (IY'08) $\Sigma = \langle 1 \rangle$ (resp. $\Omega = \langle -1 \rangle$) is called left (resp. right) mutation there.
- **2** (SP'20) Σ (resp. Ω) is called right (resp. left) mutation there.
- (NP'19) $\Sigma = \langle 1 \rangle \text{ (resp. } \Omega = \langle -1 \rangle \text{) is a so-called cosyzygy (resp. syzygy)}$ functor.
- **4** (Nakaoka'18) Σ (resp. Ω) is defined in the same way.

Let (S, Z, V) be a MT.

• For $a \colon X \to Y$ in \mathcal{Z} , there exists the following comm. diag. in $\mathbb{E}^{\mathcal{I}}$ from [Liu-Nakaoka'19].

$$X \xrightarrow{\begin{bmatrix} a \\ i^X \end{bmatrix}} Y \oplus I^X \xrightarrow{b} C^a - \frac{\widetilde{\delta}}{\delta} > X$$

$$\parallel & \Diamond & \downarrow_{[0 \ 1]} \Diamond & \downarrow_{c^a} \Diamond & \parallel \\
X \xrightarrow{i^X} I^X \xrightarrow{p^X} X \langle 1 \rangle \xrightarrow{\lambda^X} > X$$

$$\bullet \quad \nabla = \left(\begin{array}{c} \text{seq. in } \underline{\mathcal{Z}} \text{ iso. to one in} \\ \{ X \xrightarrow{\underline{a}} Y \xrightarrow{\underline{h^{C^a} \circ b}} \sigma C^a \xrightarrow{\sigma(\underline{c^a})} \Sigma X \mid a : \text{morph. in } \mathcal{Z} \}. \end{array} \right)$$

We define Δ , dually.

Proposition

Let (S, Z, V) be a MT.

Then $(\underline{\mathcal{Z}}, \Sigma, \nabla)$ is a right triangulated category in Beligiannis-Reiten'07.

Proposition

Let (S, Z, V) be a MT.

Then $(\underline{\mathcal{Z}}, \Sigma, \nabla)$ is a right triangulated category in Beligiannis-Reiten'07.

[Sketch of proof] (RT0) and (RT1) are clear.

(RT2) Let
$$b' = h^{C^a} \circ b$$
. Then a standard right tri. of b'

$$Y \xrightarrow{b'} \sigma C^a \longrightarrow \sigma C^{b'} \longrightarrow \Sigma Y \text{ is iso. to the right rotated seq.}$$

$$Y \xrightarrow{b'} \sigma C^a \xrightarrow{\sigma(\underline{c}^a)} \Sigma X \xrightarrow{\Sigma(\underline{a})} \Sigma Y$$

(RT3) Let
$$X_i, Y_i \in \mathcal{Z}$$
, $\delta_i \in \mathbb{E}^{\mathcal{I}}$ for $i = 1, 2$.

$$X_{1} \xrightarrow{a_{1}} Y_{1} \xrightarrow{b_{1}} U_{1} - \xrightarrow{\delta_{1}} X_{1} \qquad X_{1} \xrightarrow{\underline{a_{1}}} Y_{1} \xrightarrow{\underline{h^{U_{1}}b_{1}}} \sigma U_{1} \xrightarrow{\sigma(\underline{c^{a_{1}}})} \Sigma X_{1}$$

$$\downarrow x \quad \Diamond \quad \downarrow y \quad \Diamond \quad \downarrow u \quad \Diamond \quad \downarrow x \Rightarrow \quad \downarrow \underline{x} \quad \Diamond \quad \downarrow \underline{y} \quad \Diamond \quad \downarrow \sigma(\underline{u}) \quad \Diamond \quad \downarrow \underline{\Sigma}\underline{x}$$

$$X_{2} \xrightarrow{a_{2}} Y_{2} \xrightarrow{b_{2}} U_{2} - \xrightarrow{\delta_{1}} X_{2} \qquad X_{2} \xrightarrow{\underline{a_{2}}} Y_{2} \xrightarrow{\underline{h^{U_{2}}b_{2}}} \sigma U_{2} \xrightarrow{\sigma(\underline{c^{a_{2}}})} \Sigma X_{2}$$

(RT4)
$$U_1 \xrightarrow{a} U_2 \xrightarrow{b} U_3 \xrightarrow{-\delta} U_1 : \mathfrak{s}^{\mathcal{I}} - \text{tri.} (U_i \in \text{Cone}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{Z}, \mathcal{Z}) \text{ for } 1 \leq i \leq 3)$$

Then $\sigma U_1 \xrightarrow{\sigma(\underline{a})} \sigma U_2 \xrightarrow{\sigma(\underline{b})} \sigma U_3 \to \Sigma(\sigma U_1)$ is a right tri.

Dually, one can show the following proposition.

Proposition

Let $(\mathcal{S},\mathcal{Z},\mathcal{V})$ be a MT.

Then $(\underline{\mathcal{Z}},\Omega,\Delta)$ is a left triangulated category.

Dually, one can show the following proposition.

Proposition

Let (S, Z, V) be a MT.

Then $(\underline{\mathcal{Z}}, \Omega, \Delta)$ is a left triangulated category.

By checking the compatibility of right triangles and left triangles, we get Theorem 1.

Theorem 1

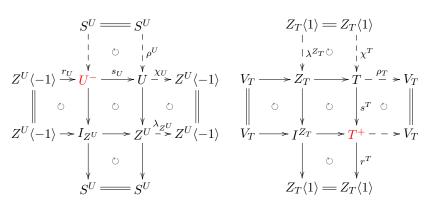
Let (S, Z, V) be a MT.

Then $(\underline{\mathcal{Z}}, \Sigma, \Omega, \nabla, \Delta)$ is a pretriangulated category.

Before we define (MT4), we introduce new cones and cocones.

- $\widetilde{\mathcal{U}}^- = \operatorname{CoCone}_{\mathbb{E}^{\mathcal{I}}}(\mathcal{I}, \mathcal{S}) \subset \widetilde{\mathcal{U}}.$
- $\widetilde{\mathcal{T}}^+ = \operatorname{Cone}_{\mathbb{E}_{\mathcal{T}}}(\mathcal{V}, \mathcal{I}) \subset \widetilde{\mathcal{T}}.$

For $U \in \widetilde{\mathcal{U}}$ and $T \in \widetilde{\mathcal{T}}$, $U^- \in \widetilde{\mathcal{U}}^-$ and $T^+ \in \widetilde{\mathcal{T}}^+$ are defined by:



Lemma

- $\textbf{1} \ (\cdot)^- \colon \underline{\widetilde{\mathcal{U}}} \to \underline{\widetilde{\mathcal{U}}^-} \text{ is a right adjoint functor of } i^- \colon \underline{\widetilde{\mathcal{U}}^-} \to \underline{\widetilde{\mathcal{U}}}.$
- $② \ (\cdot)^+ \colon \widetilde{\underline{\mathcal{T}}} \to \widetilde{\underline{\mathcal{T}}}{}^+ \text{ is a left adjoint functor of } i^+ \colon \widetilde{\underline{\mathcal{T}}}{}^+ \to \widetilde{\underline{\mathcal{T}}}.$

Lemma

- $\textbf{1} \ (\cdot)^- \colon \underline{\widetilde{\mathcal{U}}} \to \underline{\widetilde{\mathcal{U}}^-} \text{ is a right adjoint functor of } i^- \colon \underline{\widetilde{\mathcal{U}}^-} \to \underline{\widetilde{\mathcal{U}}}.$
- $② (\cdot)^+ \colon \widetilde{\mathcal{T}} \to \widetilde{\mathcal{T}}^+ \text{ is a left adjoint functor of } i^+ \colon \widetilde{\mathcal{T}}^+ \to \widetilde{\mathcal{T}}.$

Definition

Let $(S, \mathcal{Z}, \mathcal{V})$ be a MT.

(MT4) (i)
$$\underline{\mathcal{Z}\langle 1\rangle^-}\subset\widetilde{\mathcal{T}}^+$$
.
(ii) $\underline{\mathcal{Z}\langle -1\rangle^+}\subset\widetilde{\mathcal{U}}^-$.

- Note that if $\underline{\widetilde{\mathcal{U}}^-} = \underline{\widetilde{\mathcal{T}}^+}$, then (MT4) holds. (it is denoted by (MT4⁺)).
- (MT4) is equivalent to $\mathcal{Z}\langle 1\rangle^- = \mathcal{Z}\langle -1\rangle^+$.

Example: (MT4)

- 2 (SP'20)
 - $\widetilde{\mathcal{U}}^- = \operatorname{CoCone}_{\mathbb{E}}(0, \langle \mathcal{M}[1] \rangle) = \langle \mathcal{M} \rangle.$
 - $\widetilde{\mathcal{T}}^+ = \operatorname{Cone}_{\mathbb{E}}(\langle \mathcal{M}[-1] \rangle, 0) = \langle \mathcal{M} \rangle.$
- **6** (NP'19)
 - $\widetilde{\mathcal{U}}^- = \operatorname{CoCone}_{\mathbb{E}}(\operatorname{Proj} \mathcal{C}, \operatorname{Proj} \mathcal{C}) = \operatorname{Proj} \mathcal{C}.$
 - $\widetilde{\mathcal{T}}^+ = \operatorname{Cone}_{\mathbb{E}}(\operatorname{Inj} \mathcal{C}, \operatorname{Inj} \mathcal{C}) = \operatorname{Inj} \mathcal{C} = \operatorname{Proj} \mathcal{C}.$
- **4** (Nak'18) For any concentric twin cotorsion pair ((S, T), (U, V)), Hovey ⇒ (MT4) holds.

Example: (MT4)

- 2 (SP'20)
 - $\widetilde{\mathcal{U}}^- = \operatorname{CoCone}_{\mathbb{E}}(0, \langle \mathcal{M}[1] \rangle) = \langle \mathcal{M} \rangle.$
 - $\widetilde{\mathcal{T}}^+ = \operatorname{Cone}_{\mathbb{E}}(\langle \mathcal{M}[-1] \rangle, 0) = \langle \mathcal{M} \rangle.$
- **3** (NP'19)
 - $\widetilde{\mathcal{U}}^- = \operatorname{CoCone}_{\mathbb{E}}(\operatorname{Proj} \mathcal{C}, \operatorname{Proj} \mathcal{C}) = \operatorname{Proj} \mathcal{C}.$
 - $\widetilde{\mathcal{T}}^+ = \operatorname{Cone}_{\mathbb{E}}(\operatorname{Inj} \mathcal{C}, \operatorname{Inj} \mathcal{C}) = \operatorname{Inj} \mathcal{C} = \operatorname{Proj} \mathcal{C}.$
- **4** (Nak'18) For any concentric twin cotorsion pair ((S, T), (U, V)), Hovey ⇒ (MT4) holds.

Theorem 2

Let (S, Z, V) be a MT satisfying (MT4).

Then Σ is an equiv., in particular, $(\underline{\mathcal{Z}}, \Sigma, \Omega, \nabla, \Delta)$ is a tri. cat.

Sketch of proof

We only prove $\operatorname{Id} \stackrel{\sim}{\Rightarrow} \Sigma\Omega$.

• From (ET4) and (MT4), we obtain the following $\mathfrak{s}^{\mathcal{I}}$ -tri.

$$\begin{split} Z\langle -1\rangle &\xrightarrow{i'^Z} {I'}^Z \xrightarrow{p'^Z} \Psi(Z) \xrightarrow{\lambda'^Z} Z\langle -1\rangle \\ (\Omega Z)\langle 1\rangle &\xrightarrow{\hbar^{(\Omega Z)\langle 1\rangle}} \Psi(Z) \to S \xrightarrow{} (\Omega Z)\langle 1\rangle \end{split}$$

where ${I'}^Z \in \mathcal{I}$, $\Psi(Z) \in \mathcal{Z}$ and $S \in \mathcal{S}$.

- Ψ induces a functor $\Psi: \underline{\mathcal{Z}} \to \underline{\mathcal{Z}}$.
- Natural iso. $\psi \colon \operatorname{Id} \stackrel{\sim}{\Rightarrow} \Psi$ and $\varphi \colon \Psi \stackrel{\sim}{\Rightarrow} \Sigma \Omega$ are defined as follows.

$$\begin{split} Z\langle -1\rangle & \xrightarrow{i_Z} I_Z \xrightarrow{p_Z} Z \xrightarrow{-\lambda_Z} Z\langle -1\rangle & (\Omega Z)\langle 1\rangle \xrightarrow{-\hbar^{(\Omega Z)\langle 1\rangle}} \Psi(Z) \\ \parallel & \circlearrowright & \downarrow & \psi_Z & \circlearrowright & \parallel & \circlearrowleft & \psi_Z \\ Z\langle -1\rangle & \xrightarrow{i'^Z} I'^Z \xrightarrow{p'^Z} \Psi(Z) \xrightarrow{\lambda'^Z} Z\langle -1\rangle & (\Omega Z)\langle 1\rangle \xrightarrow{-\hbar^{(\Omega Z)\langle 1\rangle}} \Sigma \Omega Z \end{split}$$