Dualizable Grothendieck categories and idempotent rings

Ryo Kanda

Osaka Metropolitan University

August 8, 2024 ICRA 21 Conference @ Shanghai Jiao Tong University

arXiv:2405.16468

1 Dualizability

Cocontinuous functors

 \mathcal{C}, \mathcal{D} : locally presentable additive category (e.g. Mod R, QCoh X)

Definition

- A functor F: C → D is called cocontinuous if it preserves all (small) colimits.
 (By the special adjoint functor theorem, F is cocontinuous if and only if it has a right adjoint.)
- $\mathsf{Cocont}(\mathcal{C}, \mathcal{D}) := \{ \mathsf{cocontinuous functors } \mathcal{C} \to \mathcal{D} \}.$
- $\mathcal{C}^* := \mathsf{Cocont}(\mathcal{C}, \mathsf{Mod}\,\mathbb{Z}).$

Example (Eilenberg-Watts)

Let R, T be rings.

- Cocont(Mod R, Mod T) \cong { R-T-bimodules } = Mod($R^{op} \otimes_{\mathbb{Z}} T$).
- $(\operatorname{Mod} R)^* = \operatorname{Cocont}(\operatorname{Mod} R, \operatorname{Mod} \mathbb{Z}) \cong \operatorname{Mod}(R^{\operatorname{op}} \otimes_{\mathbb{Z}} \mathbb{Z}) = \operatorname{Mod}(R^{\operatorname{op}}).$

Dualizable categories

 \mathcal{C}, \mathcal{D} : locally presentable additive category

Definition

 \mathcal{C} is **dualizable** if $\mathcal{C}^* \boxtimes \mathcal{C} \xrightarrow{\sim} \mathsf{Cocont}(\mathcal{C}, \mathcal{C})$.

Fact

- \mathcal{C} is dualizable if and only if $\mathcal{C}^* \boxtimes \mathcal{D} \xrightarrow{\sim} \mathsf{Cocont}(\mathcal{C}, \mathcal{D})$ for all \mathcal{D} .
- If \mathcal{C} is dualizable, then $\mathcal{C} \xrightarrow{\sim} (\mathcal{C}^*)^*$ (reflexive).

Compare

If V is a finite-dimensional vector space, then $V^* \otimes V \xrightarrow{\sim} Hom(V, V)$, where V^* is the dual vector space.

Example (Module categories are dualizable)

 $(\operatorname{\mathsf{Mod}} R)^* \boxtimes (\operatorname{\mathsf{Mod}} R) \cong \operatorname{\mathsf{Mod}}(R^{\operatorname{op}}) \boxtimes (\operatorname{\mathsf{Mod}} R) \cong \operatorname{\mathsf{Mod}}(R^{\operatorname{op}} \otimes_{\mathbb{Z}} R)$ $\cong \operatorname{\mathsf{Cocont}}(\operatorname{\mathsf{Mod}} R, \operatorname{\mathsf{Mod}} R).$

Conjecture

Proposition (Functor categories are dualizable)

For every small $\mathbb Z$ -linear category $\mathcal I,$ the **functor category** of additive functors $\mathcal I\to \mathsf{Mod}\,\mathbb Z$ is dualizable.

 $\ensuremath{\mathcal{C}}$: locally presentable additive category

Conjecture (Brandenburg, Chirvasitu, and Johnson-Freyd, 2015)

 ${\mathcal C}$ is dualizable if and only if ${\mathcal C}$ is equivalent to a functor category.

Theorem (BCJF 2015)

The conjecture holds for the category of right comodules over a coassociative coalgebra $C.(\text{dualizable} \iff C \text{ is right semiperfect})$

Theorem (BCJF 2015)

The conjecture holds for QCoh X when X is a scheme that has a closed projective subscheme of positive dimension. (never dualizable)

Observation (Roos 1966 + BCJF 2015; Stefanich 2023)

- Jan-Erik Roos investigated a class of Grothendieck categories (containing all functor categories), which we call Roos categories.
- BCJF 2015: Roos categories are dualizable.
- Roos 1966 or Stefanich 2023: There is a nonzero Roos category that has no nonzero projectives (hence not a functor category).

Modified Conjecture

 ${\mathcal C}$ is dualizable if and only if ${\mathcal C}$ is a Roos category.

Theorem (Stefanich 2023 + Kanda 2024)

The modified conjecture is true.

2 Roos Categories

Theorem (Gabriel-Popescu 1964)

Let C be a Grothendieck cat. Fix a generator $U \in C$ and R := End(U).

- Hom(U, -): $C \rightarrow Mod R$ is fully faithful and has a left adjoint Q.
- $Q: \operatorname{Mod} R \to C$ is exact, (cocontinuous,) and essentially surjective.
- $\mathcal{X} := \operatorname{Ker} Q \subset \operatorname{Mod} R$ is a localizing subcat and $\mathcal{C} \cong (\operatorname{Mod} R) / \mathcal{X}$.

Theorem (Roos 1965)

In the above setting, TFAE:

- **1** Q has left adjoint (that is, Q preserves direct products).
- **2** \mathcal{X} is closed under direct products (\mathcal{X} is bilocalizing).
- **3** C satisfies Grothendieck's Ab6 & Ab4* ($\Leftrightarrow: C$ is a **Roos category**).

Remark

- Ab4* : ⇐⇒ direct products are exact ⇐= enough projectives
- Ab6 ⇐ functor category or locally noetherian

Observation

Let $\ensuremath{\mathcal{C}}$ be a Roos category.

• $\mathcal{C} \cong (\operatorname{Mod} R) / \mathcal{X}$ for some bilocalizing $\mathcal{X} \subset \operatorname{Mod} R$.

Gabriel 1962: Every bilocalizing \mathcal{X} is of the form

 $\mathcal{X} = \mathsf{Mod}(R/I) = \{ M \in \mathsf{Mod} R \mid MI = 0 \}$

for some ideal $I \subset R$ such that $I^2 = I$.

• Quillen 1996: $\frac{\text{Mod } R}{\text{Mod}(R/I)}$ is equivalent to

Mod $I := \{ (non-unital) \ I-module \ M \text{ such that } M \otimes_I I \xrightarrow{\sim} M \}.$

where *I* is regarded as a **non-unital ring**.

Corollary

For a Grothendieck category C, TFAE:

 $\blacksquare C$ is a Roos category.

•
$$C \cong \frac{\operatorname{Mod} R}{\operatorname{Mod}(R/I)}$$
 for some ring R and $I \subset R$ with $I^2 = I$.

• $C \cong \text{Mod } I$ for some non-unital ring I with $I^2 = I$.

Modified Conjecture

 ${\mathcal C}$ is dualizable if and only if ${\mathcal C}$ is a Roos category.

The modified conjecture follows from the following two theorems:

Theorem (Stefanich 2023 on arXiv)

If C is dualizable, then C is a Grothendieck category satisfying Ab4* and \mathcal{C}^* is also a Grothendieck category.

Theorem (Kanda 2024 on arXiv)

If C is a dualizable and both C, C^* are Grothendieck categories, then C is a Roos category (Ab6 & Ab4*).

Disclaimer: There is a possibility that Stefanich's argument (which I'm not going to talk about) also implies Ab6. In that case, my argument will be an alternative proof (but I believe it's still worthwhile). In the next slide, I will give a sketch of the proof of my theorem.

Theorem (Kanda 2024 on arXiv)

If C is a dualizable and both C, C^* are Grothendieck categories, then C is a Roos category (Ab6 & Ab4*).

Sketch of the Proof

■ Gabriel-Popescu. Q: Mod R → C, S := Hom(U, -): C → Mod R. Since C is dualizable, we have:

Q is ess surj \rightsquigarrow id $\boxtimes Q$ is ess surj $\rightsquigarrow Q_*$ is ess surj $\rightsquigarrow \exists H \in \text{Cocont}(\mathcal{C}, \text{Mod } R)$ such that $Q \circ H \cong \text{id}_{\mathcal{C}}$.

- Now $H \circ Q \in \text{Cocont}(\text{Mod } R, \text{Mod } R)$. By Eilenberg-Watts, $H \circ Q \cong - \otimes_R B$ for some **bimodule** $_RB_R$.
- Let *I* be the image of the **bimodule map**

$$B \rightarrow SQ(B) = SQ(R \otimes_R B) \cong SQHQ(R) \cong SQ(R) \cong R.$$

Then $I^2 = I$ and $C \cong \frac{\text{Mod } R}{\text{Mod}(R/I)}$, hence a Roos cat.

Consequences

X: noetherian divisorial scheme (e.g. quasi-proj over comm noeth ring).

Theorem (Kanda 2019)

QCoh X satisifes Ab4* if and only if X is an affine scheme.

Corollary (Generalization of BCJF)

 $\operatorname{QCoh} X$ is dualizable if and only if X is an affine scheme.

Summary

For a locally presentable additive category C, TFAE:

- **1** C is a Roos category (Grothendieck cat with Ab6 & Ab4*).
- 2 $C \cong \frac{\operatorname{Mod} R}{\operatorname{Mod}(R/I)}$ for some ring R and $I \subset R$ with $I^2 = I$.

3 $C \cong \text{Mod } I$ for some non-unital ring I with $I^2 = I$.

4 C is dualizable.