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Quantum a�ne algebras and quiver representations

Let g be a �nite-dimensional complex simple Lie algebra

and let
U ′
q(ĝ) be its quantum a�ne algebra.

If g is of type ADE, then the representation theory of U ′
q(ĝ) is

intimately connected with the representation theory of a Dynkin
quiver Q of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of
Rep(Q) and Db(Rep(Q)) have been generalized to study U ′

q(ĝ).

Oh-Suh '19: Introduced twisted AR quivers.

Fujita-Oh '21: Introduced Q-data to better study such quivers.

Problem

Can we categorify these combinatorics? Is there a �category of
representations� for a Q-datum?
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q(ĝ).

Oh-Suh '19: Introduced twisted AR quivers.

Fujita-Oh '21: Introduced Q-data to better study such quivers.

Problem

Can we categorify these combinatorics? Is there a �category of
representations� for a Q-datum?



Motivation Q-data combinatorics Categori�cation Quantum Cartan matrix

Quantum a�ne algebras and quiver representations

Let g be a �nite-dimensional complex simple Lie algebra and let
U ′
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Twisted AR quiver: type B3

Highlighted subquiver: a twisted AR quiver of type B3.

(ı \ p) −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

1 • • • • •

2 • • • •

3 • • • • • • • •

4 • • • • •

5 • • • •

The vertices are in bijection with the positive roots of A5.



Motivation Q-data combinatorics Categori�cation Quantum Cartan matrix

Twisted AR quiver: type C4

Highlighted subquiver: a twisted AR quiver of type C4.

(ı \ p) −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

1 • • • • • • • •

2 • • • • • • • • •

3 • • • • • • • •

4 • • • •

5 • • • • •

The vertices are in bijection with the positive roots of D5.
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Twisted AR quiver: type G2

Highlighted subquiver: a twisted AR quiver of type G2.

(ı \ p) −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10

1 • •

2 • • • • • • • • •

3 • • •

4 • • •

The vertices are in bijection with the positive roots of D4.
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Unfoldings

Let (∆, σ) be the unfolding of g, where ∆ is a simply-laced Dynkin
diagram and σ is an automorphism of ∆.

(A5,∨)

1 2

3

45

B3
1 2 3

(D4,∨)
1 2 3

4

C3
1 2 3

Denote I = ∆0/⟨σ⟩. Quotient map: ı ∈ ∆0 7→ ı ∈ I.

If i ∈ I, we de�ne di = |i| ∈ {1, r}, where r is the order of σ.
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Q-data

De�nition [Fujita-Oh '21]

A Q-datum for g is a triple Q = (∆, σ, ξ) where (∆, σ) is the
unfolding of g and ξ : ∆0 → Z satis�es:

For adjacent ı, ȷ ∈ ∆0 with dı = dȷ, we have
|ξı − ξȷ| = dı = dȷ.

For adjacent i, j ∈ I with di = 1 < dj = r, there is a unique
ȷ ∈ j such that |ξı − ξȷ| = 1 and ξσk(ȷ) = ξȷ − 2k for any
1 ≤ k < r, where i = {ı}.

If σ = id, a Q-datum is the same as a Dynkin quiver of type ∆ with
a classical height function (i.e. ξı = ξȷ + 1 for an arrow ı → ȷ).

For example, the following height function de�nes a Q-datum of
type B3:

2 4 5 6 8
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Repetition quivers and twisted AR quivers

Let Q = (∆, σ, ξ) be a Q-datum. The repetition quiver ∆̂σ has
vertices:

∆̂σ
0 = {(ı, p) ∈ ∆0 × Z | p− ξı ∈ 2dıZ}.

There is an arrow (ı, p) −→ (ȷ, s) if ı and ȷ are adjacent in ∆ and
s− p = min(dı, dȷ).

The twisted Auslander-Reiten quiver ΓQ is the full subquiver of ∆̂σ

with vertex set

{(ı, p) ∈ ∆̂σ
0 | ξı∗ − rh∨ < p ≤ ξı},

where:

h∨: dual Coxeter number of g.

ı 7→ ı∗: involution on ∆0 induced by the longest element w0 of
the Weyl group associated with ∆.
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Assigning positive roots

A compatible reading of ΓQ is an ordering (ı1, p1), . . . , (ıN , pN ) of
(ΓQ)0 such that

∃ a path (ık, pk)⇝ (ıl, pl) in ΓQ =⇒ k > l.

Let R be the root system of ∆. To the vertex (ık, pk), we assign

sı1sı2 · · · sık−1
(αık) ∈ R,

where αı ∈ R is the simple root associated with ı ∈ ∆0 and sı is
the corresponding simple re�ection in the Weyl group W of R.

Theorem [Oh-Suh 19', Fujita-Oh 21']

The sequence i = (ı1, . . . , ıN ) gives a reduced word for the longest
element w0 ∈ W, hence the roots de�ned above are all the positive
roots of R, without repetition. Moreover, the assignment independs
on the choice of compatible reading of ΓQ.
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Example: type B3

If Q is the Q-datum of type B3 from the previous example, then
ΓQ is given as follows:

(ı \ p) −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

1 1 1 1 1 1

2 1 1 1 1 0 0 1 1 1 1

3 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1

4 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1

5 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1

In each vertex, we indicate the corresponding positive root of A5.
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The ambient category

We �x a �eld K and an orientation Q◦ of ∆.

Let Π be the 2-Calabi-Yau completion of the path algebra KQ◦

(see Keller, 2011).

It is a smooth and connective dg algebra whose perfectly valued
derived category pvd(Π) is a 2-Calabi-Yau triangulated category.

For example, if ∆ = A3, then Π is the dg path algebra given by

• • •

t1

α

α

t2

β

β

t3

where black arrows have degree 0 and red arrows have degree −1.
The di�erential is determined by d(t1 + t2 + t3) = [α, α] + [β, β].
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A categori�cation of the root system

Let Sı denote the simple Π-module corresponding to ı ∈ ∆0.

It is
2-spherical and gives rise to the spherical twist functor (see
Seidel-Thomas, 2001)

Tı : pvd(Π) −→ pvd(Π)

The map sending [Sı] to αı de�nes an isomorphism between
K0(pvd(Π)) and the root lattice of ∆. The action of Tı is
identi�ed with the action of the simple re�ection sı.

We can use pvd(Π) to categorify the previous constructions.
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We can use pvd(Π) to categorify the previous constructions.
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�Representations� of a Q-datum

Let Q = (∆, σ, ξ) be a Q-datum for g and take a reduced word
i = (ı1, . . . , ıN ) for w0 coming from a compatible reading of ΓQ.

For 1 ≤ k ≤ N , de�ne

M
i
k = Tı1Tı2 · · ·Tık−1

(Sık) ∈ pvd(Π).

We de�ne the category of representations C(Q) to be the strictly
full additive subcategory generated by these objects. It depends
only on Q.

Proposition

If Q = Q is a Dynkin quiver of type ADE, then C(Q) is equivalent
to modKQ (as a K-linear category).
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�Representations� of a Q-datum

Proposition [C.]

The objects of C(Q) are dg modules whose cohomology is
concentrated in degree zero.

In particular, C(Q) can be viewed as a
full subcategory of modH0(Π).

Notice that H0(Π) is isomorphic to the preprojective algebra of
type ∆.

Theorem [C.]

The twisted AR quiver ΓQ is isomorphic to the quiver obtained
from the Gabriel quiver of C(Q) by removing all arrows parallel to
paths of length ≥ 2.
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Example: the category C(Q)

If Q is the Q-datum of type B3 from previous examples, then C(Q)
can be described by the following picture.

(ı \ p) −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

1 KKKKK

2 KKKK0 0KKKK

3 0 0K0 0 KK0 0 0 0 0KK0 0K0 0 0 0 0KKK

4 KKK0 0 0KKK0 0 0 0KK

5 K0 0 0 0 0KK0 0 0 0 0K0 0 0 0 0K

Objects are depicted as preprojective representations. Arrows
between objects correspond to irreducible morphisms in C(Q).
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The inverse quantum Cartan matrix

The quantum Cartan matrix C(q) is a certain deformation of the
Cartan matrix C of the simple Lie algebra g.

For example, if g = so5(C), we have

C =

[
2 −1
−2 2

]
and C(q) =

[
q2 + q−2 −1
−q − q−1 q + q−1

]
Let C̃(q) = (C̃ij(q)) be the inverse of C(q). Each entry has a

power series expansion: C̃ij(q) =
∑

u≥0 c̃ij(u)q
u.

Example: C̃21(q) =
q2+q4

1+q6
= q2 + q4 − q8 − q10 + q14 + · · · .
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The simply-laced case

Suppose g is of type ADE

and let Q be an orientation of its Dynkin
diagram. Let ξ : Q0 → Z be a height function on Q.

One can naturally identify ind(Db(modKQ)) with the set

∆̂0 = {(i, p) ∈ I × Z | p− ξi ∈ 2Z}.

Each (i, p) ∈ ∆̂0 gives an indecomposable object HQ(i, p).

Theorem [Hernandez-Leclerc '15, Fujita '22]

For (i, p), (j, s) ∈ ∆̂0 with s ≥ p, we have

c̃ij(s− p+ 1) = ⟨HQ(i, p), HQ(j, s)⟩

where ⟨−,−⟩ is the Euler form on Db(modKQ). Every nonzero
coe�cient c̃ij(u) can be written in this way.
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The �derived category� of a Q-datum

For the general case, Fujita-Oh use twisted AR quivers to give a
combinatorial formula for the coe�cients c̃ij(u), which we
categorify as follows.

Let R(Q) be the full additive subcategory of pvd(Π) generated by
objects of the form ΣkM for M ∈ C(Q) and k ∈ Z.

We construct a certain ideal I of R(Q) and de�ne the derived
category D(Q) as the quotient R(Q)/I.

Proposition

If Q = Q is a Dynkin quiver of type ADE, then D(Q) is equivalent
to Db(modKQ) (as a K-linear category).
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Final ingredients

�Euler form�: for M,N ∈ D(Q), we de�ne

⟨M,N⟩Q =
∑
k∈Z

(−1)k dimK ExtkQ(M,N),

where ExtkQ(M,N) = HomD(Q)(M,ΣkN).

Fujita-Oh de�ne a twisted Coxeter element τQ ∈ Wσ. We can
lift it to an equivalence τQ : D(Q) −→ D(Q).

Folded repetition quiver: we de�ne

Î = {(i, p) ∈ I × Z | ∃(ı, p) ∈ ∆̂σ
0 , ı = i}.

We can construct bijections Î → ∆̂σ
0 and ∆̂σ

0 → ind(D(Q)).

Let HQ : Î → ind(D(Q)) be their composition.
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Reinterpreting Fujita-Oh's formula

Theorem [Fujita-Oh '21, C.]

For (i, p), (j, s) ∈ Î with p ≥ s and max{di, dj} = r, we have

c̃ij(p− s+ di) =

〈
HQ(j, s),

⌈dj/di⌉−1⊕
k=0

τkQ(HQ(i, p))

〉
Q

.

Every nonzero coe�cient c̃ij(u) (where max{di, dj} = r) can be
written in this way.

Remarks:

Fujita-Oh's formula works without any restriction on di and dj .

In type B, the formula above also works in general.
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Thank you for your attention!
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