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If g is of type ADE, then the representation theory of U;(ﬁ) is
intimately connected with the representation theory of a Dynkin
quiver @ of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of
Rep(Q) and D’(Rep(Q)) have been generalized to study Uy ()

m Oh-Suh '19: Introduced twisted AR quivers.
m Fujita-Oh "21: Introduced Q-data to better study such quivers.

Problem

Can we categorify these combinatorics? Is there a “category of
representations’ for a Q-datum?
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Twisted AR quiver: type Go

Highlighted subquiver: a twisted AR quiver of type Gs.

G\p) =6 -5 —4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

1 . .

2 ) o/ \o ) o/ \o

; \./ \/ \./ \
4 . .

The vertices are in bijection with the positive roots of Dy.
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Unfoldings

Let (A, o) be the unfolding of g, where A is a simply-laced Dynkin
diagram and o is an automorphism of A.
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Unfoldings

Let (A, o) be the unfolding of g, where A is a simply-laced Dynkin
diagram and o is an automorphism of A.

1 2
, 3 1 2 3
(A57V) // (D4a\/)
f o 1 a4

Bs

Denote I = Ag/(0). Quotient map: + € Ag—7 € I.

If i € I, we define d; = |i| € {1, 7}, where r is the order of o.
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Definition [Fujita-Oh "21]

A Q-datum for g is a triple Q = (A, 0,) where (A, 0) is the
unfolding of g and £ : Ay — Z satisfies:

m For adjacent ¢, 5 € Ag with d; = dj, we have
|§z - §J| =d; = di-

m For adjacent ¢, € I with d; =1 < d; = r, there is a unique
J € j such that |§, — | =1 and &,x(;) = &, — 2k for any
1 <k <r, where i = {1}.
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Definition [Fujita-Oh "21]

A Q-datum for g is a triple @ = (A, 0,§) where (A, o) is the
unfolding of g and £ : Ag — Z is a “generalized” height function.

If 0 =id, a Q-datum is the same as a Dynkin quiver of type A with
a classical height function (i.e. & =&, + 1 for an arrow ¢ — ).

For example, the following height function defines a Q-datum of
type Bs:
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Repetition quivers and twisted AR quivers

Let @ = (A, 0,&) be a Q-datum. The repetition quiver A has
vertices: ~

§ ={(,p) € Ao X Z | p—¢& € 2d;Z}.
There is an arrow (2,p) — (7, s) if 2 and 7 are adjacent in A and

s — p = min(dz, dj).

The twisted Auslander-Reiten quiver I'g is the full subquiver of A°
with vertex set

{(1,p) € AF | & —rhY < p <&},

where:
m 1Y: dual Coxeter number of g.

m 2 — 2" involution on Ag induced by the longest element wq of
the Weyl group associated with A.
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Assigning positive roots

A compatible reading of I'g is an ordering (21,p1),. .., (an,pN) Of
(T'g)o such that

d a path (Zk,pk) ~ (’Ll,pl) in FQ = k>I.
Let R be the root system of A. To the vertex (1, px), we assign
SuySag t S'Lk—l(alk) €R,

where «, € R is the simple root associated with » € Ay and s, is
the corresponding simple reflection in the Weyl group W of R.

Theorem [Oh-Suh 19°, Fujita-Oh 217]

The sequence 2 = (11, ...,1x) gives a reduced word for the longest
element wy € W, hence the roots defined above are all the positive
roots of R, without repetition. Moreover, the assignment independs
on the choice of compatible reading of I'g.
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Example: type Bj

If O is the Q-datum of type B3 from the previous example, then
I'g is given as follows:

(t\p) -4 -3 —2 -1 0 1 2 3 4

=
o
-
o

1 11111
e S
2 11110 01111
b N b ~

3 00100 11000 00110 01000 00111

N A N A ~
4 11100 01110 00011
5 10000 01100 00010 00001

In each vertex, we indicate the corresponding positive root of As.
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The ambient category

We fix a field K and an orientation Q° of A.

Let IT be the 2-Calabi-Yau completion of the path algebra KQ°
(see Keller, 2011).

It is a smooth and connective dg algebra whose perfectly valued
derived category pvd(II) is a 2-Calabi-Yau triangulated category.

For example, if A = Ag, then II is the dg path algebra given by

t1 to ts
e (L 8 (Y
[ J «—— [ ] — [ ]
@ B
where black arrows have degree 0 and red arrows have degree —1.
The differential is determined by d(t; + t2 + t3) = [, @] + [5, B].
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A categorification of the root system

Let S, denote the simple TI-module corresponding to © € Ag. It is
2-spherical and gives rise to the spherical twist functor (see
Seidel-Thomas, 2001)

T, : pvd(II) — pvd(II)
The map sending [S;] to «, defines an isomorphism between

Ko(pvd(IT)) and the root lattice of A. The action of T, is
identified with the action of the simple reflection s,.

We can use pvd(II) to categorify the previous constructions.
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“Representations” of a Q-datum

Let Q = (A, 0,&) be a Q-datum for g and take a reduced word
2= (21,...,2n) for wy coming from a compatible reading of I'g.

For 1 <k < N, define
Ml% = T11Tl2 e 'leq(slk) € de(H)-

We define the category of representations C(Q) to be the strictly
full additive subcategory generated by these objects. It depends
only on Q.

Proposition

If @ =@ is a Dynkin quiver of type ADE, then C(Q) is equivalent
to mod K@ (as a K-linear category).
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Proposition [C.]

The objects of C(Q) are dg modules whose cohomology is
concentrated in degree zero. In particular, C(Q) can be viewed as a
full subcategory of mod HO(II).

Notice that H°(II) is isomorphic to the preprojective algebra of
type A.
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“Representations” of a Q-datum

Proposition [C.]

The objects of C(Q) are dg modules whose cohomology is
concentrated in degree zero. In particular, C(Q) can be viewed as a
full subcategory of mod HO(II).

Notice that H°(II) is isomorphic to the preprojective algebra of
type A.

Theorem [C ]

The twisted AR quiver I'g is isomorphic to the quiver obtained
from the Gabriel quiver of C(Q) by removing all arrows parallel to
paths of length > 2.
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Example: the category C(Q)

If Q is the Q-datum of type B3 from previous examples, then C(Q)
can be described by the following picture.

(t\p -4 -3 =2 -1 0 1 2 3 4 5 6 7 8

1 KKKKK

e
/’ \,4

2 KKKKOQ 0KKKK

e R

7 ~ A N
3 00K00 KK000 00KKO 0K000 0 0KKK

“ < e
N b N s N
= =
4 KKK00 0KKKO 000KK
<~ “— «~

5 KO0O0OO 0KKO0O0 000KO0 0000K

Objects are depicted as preprojective representations. Arrows
between objects correspond to irreducible morphisms in C(Q).
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Example: the category C(Q)

If Q is the Q-datum of type B3 from previous examples, then C(Q)
can be described by the following picture.

(t\p -4 -3 =2 -1 0 1 2 3 4 5 6 7 8

1 KKKKK

B
/’ \,4
2 KKKKOQ 0KKKK
P P
U A,
3 00K00 KK000 00KKO 0K000 0 0KKK
“ e e
N b TN s N
= =
4 KKK00 0KKKO 000KK
P = P
5 KO0O0OO 0KKO0O0 000KO0 0000K

Objects are depicted as preprojective representations. Arrows
between objects correspond to irreducible morphisms in C(Q).
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The quantum Cartan matrix C(q) is a certain deformation of the
Cartan matrix C' of the simple Lie algebra g.

For example, if g = s05(C), we have

_ 2 -2 _
0—[_22 21] and C(g)=|THa7

—q—q !

q+q

Let C(q) = (Cij(q)) be the inverse of C(q).
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The quantum Cartan matrix C(q) is a certain deformation of the
Cartan matrix C' of the simple Lie algebra g.

For example, if g = s05(C), we have

2 -1 [P+ -1
C_[—2 2] nd O =21 gig

Let C(q) = (Cij(q)) be the inverse of C'(q). Each entry has a
power series expansion: Cj;(q) = >~ Cij(u)g™.
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The inverse quantum Cartan matrix

The quantum Cartan matrix C(q) is a certain deformation of the
Cartan matrix C' of the simple Lie algebra g.

For example, if g = s05(C), we have

2 -1 [P+ -1
C_[—2 2] nd O =21 gig

Let C(q) = (Cij(q)) be the inverse of C'(q). Each entry has a
power series expansion: Cj;(q) = >~ Cij(u)g™.

=~ 2 4
Example: Co1(q) = quq% S ST L. S URIpn C I
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Each (i,p) € Ao gives an indecomposable object Hg(i,p).
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The simply-laced case

Suppose g is of type ADE and let Q be an orientation of its Dynkin
diagram. Let £ : Qo — Z be a height function on Q.

One can naturally identify ind(D?(mod KQ)) with the set
Ao ={(i.p) €I Z|p~& €22}.

Each (i,p) € Ao gives an indecomposable object Hg(i,p).

Theorem [Hernandez-Leclerc '15, Fujita '22]

For (i,p), (j, s) € Ao with 5 > p, we have

ij(s —p+1) = (Hq(i,p), Ha(J, 5))

where (—, —) is the Euler form on D?(mod KQ).
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The simply-laced case

Suppose g is of type ADE and let Q be an orientation of its Dynkin
diagram. Let £ : Qo — Z be a height function on Q.

One can naturally identify ind(D?(mod KQ)) with the set
Ao ={(i.p) €I Z|p~& €22}.

Each (i,p) € Ao gives an indecomposable object Hg(i,p).

Theorem [Hernandez-Leclerc '15, Fujita '22]

For (i,p), (j, s) € Ao with 5 > p, we have

ij(s —p+1) = (Hq(i,p), Ha(J, 5))

where (—, —) is the Euler form on D’(mod K Q). Every nonzero
coefficient ¢;;(u) can be written in this way.
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The “derived category” of a Q-datum

For the general case, Fujita-Oh use twisted AR quivers to give a
combinatorial formula for the coefficients ¢;;(u), which we
categorify as follows.
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The “derived category” of a Q-datum
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The “derived category” of a Q-datum

For the general case, Fujita-Oh use twisted AR quivers to give a
combinatorial formula for the coefficients ¢;;(u), which we
categorify as follows.

Let R(Q) be the full additive subcategory of pvd(II) generated by
objects of the form XXM for M € C(Q) and k € Z.

We construct a certain ideal Z of R(Q) and define the derived
category D(Q) as the quotient R(Q)/Z.
Proposition

If @ =@ is a Dynkin quiver of type ADE, then D(Q) is equivalent
to D°(mod KQ) (as a K-linear category).




Quantum Cartan matrix
[e]ele] o]

Final ingredients

m “Euler form™ for M, N € D(Q), we define

(M,N)o =Y (~1)"dimg Ext$(M, N),
kEZ

where Extf) (M, N) = Homp(g) (M, S*N).
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m Fujita-Oh define a twisted Coxeter element 79 € Wo. We can
lift it to an equivalence 1o : D(Q) — D(Q).
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m “Euler form™ for M, N € D(Q), we define

(M,N)o =Y (~1)"dimg Ext$(M, N),
kEZ
where Extf) (M, N) = Homp(g) (M, S*N).

m Fujita-Oh define a twisted Coxeter element 79 € Wo. We can
lift it to an equivalence 1o : D(Q) — D(Q).
m Folded repetition quiver: we define

T={(i,p) € I xZ|3(,p) € Af,7 =i}
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Final ingredients

m “Euler form™ for M, N € D(Q), we define

(M,N)o =Y (~1)"dimg Ext$(M, N),
kEZ

where Extf) (M, N) = Homp(g) (M, S*N).

m Fujita-Oh define a twisted Coxeter element 79 € Wo. We can
lift it to an equivalence 1o : D(Q) — D(Q).
m Folded repetition quiver: we define

T={(i,p) € I xZ|3(,p) € A, =i}.

We can construct bijections I — ﬁg and 38 — ind(D(Q)).
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Final ingredients

m “Euler form™ for M, N € D(Q), we define

(M,N)o =Y (~1)"dimg Ext$(M, N),
kEZ
where Extf) (M, N) = Homp(g) (M, S*N).

m Fujita-Oh define a twisted Coxeter element 79 € Wo. We can
lift it to an equivalence 1o : D(Q) — D(Q).

m Folded repetition quiver: we define
T={(,p) €I xZ|3(,p) € AZ,7=1}.

We can construct bijections I — ﬁg and 38 — ind(D(Q)).
Let Hg : I — ind(D(Q)) be their composition.
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Reinterpreting Fujita-Oh’s formula

Theorem [Fujita-Oh 21, C/]

For (,p), (j, s) € I with p > s and max{d;,d;} = r, we have

[d; /di]—1
Eij(p_5+di):<HQ(j73)v &P TS(HQ(LP))> :
Q

k=0
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For (,p), (j, s) € I with p > s and max{d;,d;} = r, we have

[d; /di]—1
Eij(p_5+di):<HQ(j73)v &P TS(HQ(LP))> :
Q

k=0

Every nonzero coefficient ¢;;(u) (where max{d;,d;} = r) can be
written in this way.
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Reinterpreting Fujita-Oh’s formula

Theorem [Fujita-Oh 21, C/]

For (,p), (j, s) € I with p > s and max{d;,d;} = r, we have

[d; /di]—1
Eij(p_5+di):<HQ(j73)v &P TS(HQ(LP))> :
Q

k=0

Every nonzero coefficient ¢;;(u) (where max{d;,d;} = r) can be
written in this way.

Remarks:

m Fujita-Oh’s formula works without any restriction on d; and d;.
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Reinterpreting Fujita-Oh’s formula

Theorem [Fujita-Oh 21, C/]

For (i,p), (j, s) € T with p > s and max{d;,d;} = r, we have

k=0

[d;/di]—1
Eij(p_5‘|‘di) = <HQ(j7S)7 @ TS(HQ(Z,]?))> :
Q

Every nonzero coefficient ¢;;(u) (where max{d;,d;} = r) can be
written in this way.

Remarks:
m Fujita-Oh’s formula works without any restriction on d; and d;.

m In type B, the formula above also works in general.



Thank you for your attention!
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