Categorifying twisted Auslander-Reiten quivers ICRA 21 - Shanghai

Ricardo Canesin

Université Paris Cité

August 8, 2024

Motivation 0000

Quantum affine algebras and quiver representations

Let g be a finite-dimensional complex simple Lie algebra

Motivation

0000

Let $\mathfrak g$ be a finite-dimensional complex simple Lie algebra and let $U_a'(\widehat{\mathfrak g})$ be its quantum affine algebra.

Let g be a finite-dimensional complex simple Lie algebra and let $U_q'(\widehat{\mathfrak{g}})$ be its quantum affine algebra.

If g is of type ADE, then the representation theory of $U'_a(\widehat{\mathfrak{g}})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc '15).

Let g be a finite-dimensional complex simple Lie algebra and let $U_q'(\widehat{\mathfrak{g}})$ be its quantum affine algebra.

If g is of type ADE, then the representation theory of $U'_a(\widehat{\mathfrak{g}})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of $\operatorname{Rep}(Q)$ and $\mathcal{D}^b(\operatorname{Rep}(Q))$ have been generalized to study $U'_q(\widehat{\mathfrak{g}})$.

Let g be a finite-dimensional complex simple Lie algebra and let $U_q'(\widehat{\mathfrak{g}})$ be its quantum affine algebra.

If g is of type ADE, then the representation theory of $U'_a(\widehat{\mathfrak{g}})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of $\operatorname{Rep}(Q)$ and $\mathcal{D}^b(\operatorname{Rep}(Q))$ have been generalized to study $U'_q(\widehat{\mathfrak{g}})$.

Oh-Suh '19: Introduced twisted AR guivers.

Let g be a finite-dimensional complex simple Lie algebra and let $U_q'(\widehat{\mathfrak{g}})$ be its quantum affine algebra.

If g is of type ADE, then the representation theory of $U'_a(\widehat{\mathfrak{g}})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of $\operatorname{Rep}(Q)$ and $\mathcal{D}^b(\operatorname{Rep}(Q))$ have been generalized to study $U_q'(\widehat{\mathfrak{g}})$.

- Oh-Suh '19: Introduced twisted AR guivers.
- Fujita-Oh '21: Introduced Q-data to better study such guivers.

Let g be a finite-dimensional complex simple Lie algebra and let $U_q'(\widehat{\mathfrak{g}})$ be its quantum affine algebra.

If g is of type ADE, then the representation theory of $U'_a(\widehat{\mathfrak{g}})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of $\operatorname{Rep}(Q)$ and $\mathcal{D}^b(\operatorname{Rep}(Q))$ have been generalized to study $U_q'(\widehat{\mathfrak{g}})$.

- Oh-Suh '19: Introduced twisted AR guivers.
- Fujita-Oh '21: Introduced Q-data to better study such guivers.

Problem

Can we categorify these combinatorics?

Let g be a finite-dimensional complex simple Lie algebra and let $U_q'(\widehat{\mathfrak{g}})$ be its quantum affine algebra.

If g is of type ADE, then the representation theory of $U'_a(\widehat{\mathfrak{g}})$ is intimately connected with the representation theory of a Dynkin quiver Q of the same type (cf. Hernandez-Leclerc '15).

For general type, the combinatorics coming from the AR theory of $\operatorname{Rep}(Q)$ and $\mathcal{D}^b(\operatorname{Rep}(Q))$ have been generalized to study $U_q'(\widehat{\mathfrak{g}})$.

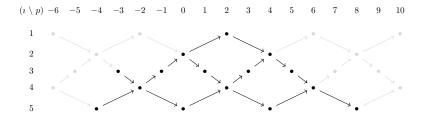
- Oh-Suh '19: Introduced twisted AR guivers.
- Fujita-Oh '21: Introduced Q-data to better study such guivers.

Problem

Can we categorify these combinatorics? Is there a "category of representations" for a Q-datum?

Twisted AR quiver: type B₃

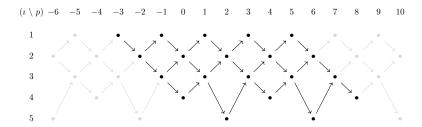
Highlighted subquiver: a twisted AR quiver of type B₃.



The vertices are in bijection with the positive roots of A_5 .

Twisted AR quiver: type C_4

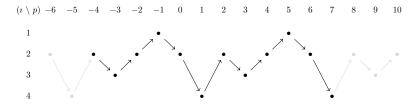
Highlighted subquiver: a twisted AR quiver of type C₄.



The vertices are in bijection with the positive roots of D_5 .

Twisted AR quiver: type G₂

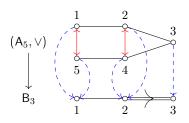
Highlighted subquiver: a twisted AR quiver of type G_2 .

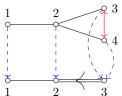


The vertices are in bijection with the positive roots of D_4 .

Unfoldings

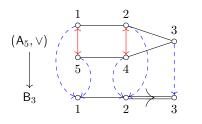
Let (Δ, σ) be the unfolding of \mathfrak{g} , where Δ is a simply-laced Dynkin diagram and σ is an automorphism of Δ .

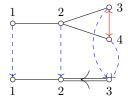




Unfoldings

Let (Δ, σ) be the unfolding of \mathfrak{g} , where Δ is a simply-laced Dynkin diagram and σ is an automorphism of Δ .

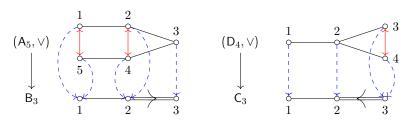




Denote $I = \Delta_0/\langle \sigma \rangle$.

Unfoldings

Let (Δ, σ) be the unfolding of \mathfrak{g} , where Δ is a simply-laced Dynkin diagram and σ is an automorphism of Δ .

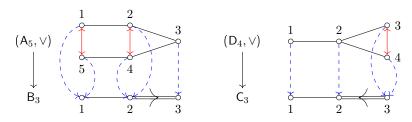


Denote $I = \Delta_0/\langle \sigma \rangle$. Quotient map: $i \in \Delta_0 \mapsto \bar{\imath} \in I$.

Q-data combinatorics

Unfoldings

Let (Δ, σ) be the unfolding of \mathfrak{g} , where Δ is a simply-laced Dynkin diagram and σ is an automorphism of Δ .



Denote $I = \Delta_0/\langle \sigma \rangle$. Quotient map: $i \in \Delta_0 \mapsto \bar{i} \in I$.

If $i \in I$, we define $d_i = |i| \in \{1, r\}$, where r is the order of σ .

Definition [Fujita-Oh '21]

A Q-datum for g is a triple $Q=(\Delta,\sigma,\xi)$ where (Δ,σ) is the unfolding of g and $\xi:\Delta_0\to\mathbb{Z}$ satisfies:

Definition [Fujita-Oh '21]

A Q-datum for $\mathfrak g$ is a triple $\mathcal Q=(\Delta,\sigma,\xi)$ where (Δ,σ) is the unfolding of $\mathfrak g$ and $\xi:\Delta_0\to\mathbb Z$ satisfies:

- For adjacent $i, j \in \Delta_0$ with $d_{\bar{\imath}} = d_{\bar{\jmath}}$, we have $|\xi_i \xi_j| = d_{\bar{\imath}} = d_{\bar{\jmath}}$.
- For adjacent $i, j \in I$ with $d_i = 1 < d_j = r$, there is a unique $j \in j$ such that $|\xi_i \xi_j| = 1$ and $\xi_{\sigma^k(j)} = \xi_j 2k$ for any $1 \le k < r$, where $i = \{i\}$.

Definition [Fujita-Oh '21]

A Q-datum for $\mathfrak g$ is a triple $\mathcal Q=(\Delta,\sigma,\xi)$ where (Δ,σ) is the unfolding of $\mathfrak g$ and $\xi:\Delta_0\to\mathbb Z$ is a "generalized" height function.

Definition [Fujita-Oh '21]

A Q-datum for $\mathfrak g$ is a triple $\mathcal Q=(\Delta,\sigma,\xi)$ where (Δ,σ) is the unfolding of $\mathfrak g$ and $\xi:\Delta_0\to\mathbb Z$ is a "generalized" height function.

If $\sigma=\mathrm{id}$, a Q-datum is the same as a Dynkin quiver of type Δ with a classical height function

Definition [Fujita-Oh '21]

A Q-datum for $\mathfrak g$ is a triple $\mathcal Q=(\Delta,\sigma,\xi)$ where (Δ,σ) is the unfolding of $\mathfrak g$ and $\xi:\Delta_0\to\mathbb Z$ is a "generalized" height function.

If $\sigma=\mathrm{id}$, a Q-datum is the same as a Dynkin quiver of type Δ with a classical height function (i.e. $\xi_i=\xi_j+1$ for an arrow $i\to j$).

Motivation

Definition [Fujita-Oh '21]

A Q-datum for $\mathfrak g$ is a triple $\mathcal Q=(\Delta,\sigma,\xi)$ where (Δ,σ) is the unfolding of $\mathfrak g$ and $\xi:\Delta_0\to\mathbb Z$ is a "generalized" height function.

If $\sigma=\mathrm{id}$, a Q-datum is the same as a Dynkin quiver of type Δ with a classical height function (i.e. $\xi_i=\xi_j+1$ for an arrow $i\to j$).

For example, the following height function defines a Q-datum of type B_3 :

Repetition guivers and twisted AR guivers

Let $\mathcal{Q}=(\Delta,\sigma,\xi)$ be a Q-datum. The repetition quiver $\widehat{\Delta}^{\sigma}$ has vertices:

$$\widehat{\Delta}_0^{\sigma} = \{(i, p) \in \Delta_0 \times \mathbb{Z} \mid p - \xi_i \in 2d_{\overline{\imath}}\mathbb{Z}\}.$$

There is an arrow $(i,p) \longrightarrow (j,s)$ if i and j are adjacent in Δ and $s-p=\min(d_{\overline{i}},d_{\overline{i}}).$

Repetition quivers and twisted AR quivers

Let $\mathcal{Q}=(\Delta,\sigma,\xi)$ be a Q-datum. The repetition quiver $\widehat{\Delta}^{\sigma}$ has vertices:

$$\widehat{\Delta}_0^{\sigma} = \{(i, p) \in \Delta_0 \times \mathbb{Z} \mid p - \xi_i \in 2d_{\overline{\imath}}\mathbb{Z}\}.$$

There is an arrow $(i, p) \longrightarrow (j, s)$ if i and j are adjacent in Δ and $s - p = \min(d_{\overline{i}}, d_{\overline{j}})$.

The twisted Auslander-Reiten quiver $\Gamma_{\mathcal{Q}}$ is the full subquiver of $\widehat{\Delta}^{\sigma}$ with vertex set

$$\{(i, p) \in \widehat{\Delta}_0^{\sigma} \mid \xi_{i^*} - rh^{\vee}$$

where:

- h^{\vee} : dual Coxeter number of \mathfrak{g} .
- $i \mapsto i^*$: involution on Δ_0 induced by the longest element w_0 of the Weyl group associated with Δ .

A compatible reading of Γ_Q is an ordering $(\imath_1,p_1),\ldots,(\imath_N,p_N)$ of $(\Gamma_Q)_0$ such that

 \exists a path $(i_k, p_k) \leadsto (i_l, p_l)$ in $\Gamma_{\mathcal{Q}} \implies k > l$.

A compatible reading of Γ_Q is an ordering $(\imath_1,p_1),\ldots,(\imath_N,p_N)$ of $(\Gamma_Q)_0$ such that

$$\exists$$
 a path $(i_k, p_k) \leadsto (i_l, p_l)$ in $\Gamma_{\mathcal{Q}} \implies k > l$.

Let R be the root system of Δ .

A compatible reading of Γ_Q is an ordering $(\imath_1,p_1),\ldots,(\imath_N,p_N)$ of $(\Gamma_Q)_0$ such that

$$\exists$$
 a path $(i_k, p_k) \leadsto (i_l, p_l)$ in $\Gamma_{\mathcal{Q}} \implies k > l$.

Let R be the root system of Δ . To the vertex (i_k, p_k) , we assign

$$s_{i_1}s_{i_2}\cdots s_{i_{k-1}}(\alpha_{i_k})\in\mathsf{R},$$

where $\alpha_i \in \mathbb{R}$ is the simple root associated with $i \in \Delta_0$ and s_i is the corresponding simple reflection in the Weyl group W of R.

A compatible reading of Γ_Q is an ordering $(\imath_1,p_1),\ldots,(\imath_N,p_N)$ of $(\Gamma_Q)_0$ such that

$$\exists$$
 a path $(i_k, p_k) \leadsto (i_l, p_l)$ in $\Gamma_{\mathcal{Q}} \implies k > l$.

Let R be the root system of Δ . To the vertex (i_k, p_k) , we assign

$$s_{i_1}s_{i_2}\cdots s_{i_{k-1}}(\alpha_{i_k})\in\mathsf{R},$$

where $\alpha_i \in \mathbb{R}$ is the simple root associated with $i \in \Delta_0$ and s_i is the corresponding simple reflection in the Weyl group W of R.

Theorem [Oh-Suh 19', Fujita-Oh 21']

The sequence $\underline{i}=(\imath_1,\ldots,\imath_N)$ gives a reduced word for the longest element $w_0\in \mathsf{W}$

A compatible reading of Γ_Q is an ordering $(\imath_1,p_1),\ldots,(\imath_N,p_N)$ of $(\Gamma_Q)_0$ such that

$$\exists$$
 a path $(i_k, p_k) \leadsto (i_l, p_l)$ in $\Gamma_{\mathcal{Q}} \implies k > l$.

Let R be the root system of Δ . To the vertex (i_k, p_k) , we assign

$$s_{i_1}s_{i_2}\cdots s_{i_{k-1}}(\alpha_{i_k})\in\mathsf{R},$$

where $\alpha_i \in \mathbb{R}$ is the simple root associated with $i \in \Delta_0$ and s_i is the corresponding simple reflection in the Weyl group W of R.

Theorem [Oh-Suh 19', Fujita-Oh 21']

The sequence $\underline{i} = (i_1, \dots, i_N)$ gives a reduced word for the longest element $w_0 \in W$, hence the roots defined above are all the positive roots of R, without repetition.

A compatible reading of Γ_Q is an ordering $(\imath_1,p_1),\ldots,(\imath_N,p_N)$ of $(\Gamma_Q)_0$ such that

$$\exists$$
 a path $(i_k, p_k) \leadsto (i_l, p_l)$ in $\Gamma_{\mathcal{Q}} \implies k > l$.

Let R be the root system of Δ . To the vertex (i_k, p_k) , we assign

$$s_{i_1}s_{i_2}\cdots s_{i_{k-1}}(\alpha_{i_k})\in \mathsf{R},$$

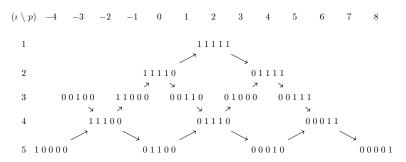
where $\alpha_i \in \mathbb{R}$ is the simple root associated with $i \in \Delta_0$ and s_i is the corresponding simple reflection in the Weyl group W of R.

Theorem [Oh-Suh 19', Fujita-Oh 21']

The sequence $\underline{i} = (i_1, \dots, i_N)$ gives a reduced word for the longest element $w_0 \in W$, hence the roots defined above are all the positive roots of R, without repetition. Moreover, the assignment independs on the choice of compatible reading of $\Gamma_{\mathcal{O}}$.

Example: type B_3

If Q is the Q-datum of type B_3 from the previous example, then Γ_Q is given as follows:



In each vertex, we indicate the corresponding positive root of A_5 .

We fix a field K and an orientation Q° of Δ .

We fix a field K and an orientation Q° of Δ .

Let Π be the 2-Calabi-Yau completion of the path algebra KQ° (see Keller, 2011).

We fix a field K and an orientation Q° of Δ .

Let Π be the 2-Calabi-Yau completion of the path algebra KQ° (see Keller, 2011).

It is a smooth and connective dg algebra whose perfectly valued derived category $pvd(\Pi)$ is a 2-Calabi-Yau triangulated category.

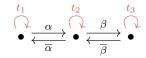
We fix a field K and an orientation Q° of Δ .

Let Π be the 2-Calabi-Yau completion of the path algebra KQ° (see Keller, 2011).

Categorification

It is a smooth and connective dg algebra whose perfectly valued derived category $\operatorname{pvd}(\Pi)$ is a 2-Calabi-Yau triangulated category.

For example, if $\Delta = A_3$, then Π is the dg path algebra given by



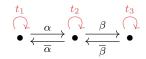
where black arrows have degree 0 and red arrows have degree -1.

We fix a field K and an orientation Q° of Δ .

Let Π be the 2-Calabi-Yau completion of the path algebra KQ° (see Keller, 2011).

It is a smooth and connective dg algebra whose perfectly valued derived category $pvd(\Pi)$ is a 2-Calabi-Yau triangulated category.

For example, if $\Delta=\mathsf{A}_3$, then Π is the dg path algebra given by



where black arrows have degree 0 and red arrows have degree -1. The differential is determined by $d(t_1 + t_2 + t_3) = [\alpha, \overline{\alpha}] + [\beta, \overline{\beta}]$.

Let S_i denote the simple Π -module corresponding to $i \in \Delta_0$.

Let S_i denote the simple Π -module corresponding to $i \in \Delta_0$. It is 2-spherical and gives rise to the spherical twist functor (see Seidel-Thomas, 2001)

Categorification

$$T_i:\operatorname{pvd}(\Pi)\longrightarrow\operatorname{pvd}(\Pi)$$

Let S_i denote the simple Π -module corresponding to $i \in \Delta_0$. It is 2-spherical and gives rise to the spherical twist functor (see Seidel-Thomas, 2001)

Categorification

$$T_i : \operatorname{pvd}(\Pi) \longrightarrow \operatorname{pvd}(\Pi)$$

The map sending $[S_i]$ to α_i defines an isomorphism between $K_0(\operatorname{pvd}(\Pi))$ and the root lattice of Δ .

Let S_i denote the simple Π -module corresponding to $i \in \Delta_0$. It is 2-spherical and gives rise to the spherical twist functor (see Seidel-Thomas, 2001)

Categorification

$$T_i:\operatorname{pvd}(\Pi)\longrightarrow\operatorname{pvd}(\Pi)$$

The map sending $[S_i]$ to α_i defines an isomorphism between $K_0(\operatorname{pvd}(\Pi))$ and the root lattice of Δ . The action of T_i is identified with the action of the simple reflection s_i .

Let S_i denote the simple Π -module corresponding to $i \in \Delta_0$. It is 2-spherical and gives rise to the spherical twist functor (see Seidel-Thomas, 2001)

Categorification

$$T_i:\operatorname{pvd}(\Pi)\longrightarrow\operatorname{pvd}(\Pi)$$

The map sending $[S_i]$ to α_i defines an isomorphism between $K_0(\operatorname{pvd}(\Pi))$ and the root lattice of Δ . The action of T_i is identified with the action of the simple reflection s_i .

We can use $\operatorname{pvd}(\Pi)$ to categorify the previous constructions.

Let $Q = (\Delta, \sigma, \xi)$ be a Q-datum for g and take a reduced word $i = (i_1, \dots, i_N)$ for w_0 coming from a compatible reading of $\Gamma_{\mathcal{O}}$.

Categorification

Let $Q = (\Delta, \sigma, \xi)$ be a Q-datum for g and take a reduced word $i = (i_1, \dots, i_N)$ for w_0 coming from a compatible reading of $\Gamma_{\mathcal{O}}$.

For $1 \le k \le N$, define

Motivation

$$M_{\overline{k}}^{\underline{i}} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}(S_{i_k}) \in \operatorname{pvd}(\Pi).$$

Let $Q = (\Delta, \sigma, \xi)$ be a Q-datum for \mathfrak{g} and take a reduced word $\underline{i} = (i_1, \dots, i_N)$ for w_0 coming from a compatible reading of Γ_Q .

For $1 \le k \le N$, define

$$M_{\overline{k}}^{\underline{i}} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}(S_{i_k}) \in \operatorname{pvd}(\Pi).$$

We define the category of representations C(Q) to be the strictly full additive subcategory generated by these objects.

Let $\mathcal{Q}=(\Delta,\sigma,\xi)$ be a Q-datum for \mathfrak{g} and take a reduced word $\underline{\boldsymbol{i}}=(\imath_1,\ldots,\imath_N)$ for w_0 coming from a compatible reading of $\Gamma_{\mathcal{Q}}$.

For $1 \le k \le N$, define

Motivation

$$M_{\overline{k}}^{\underline{i}} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}(S_{i_k}) \in \operatorname{pvd}(\Pi).$$

We define the category of representations $\mathcal{C}(\mathcal{Q})$ to be the strictly full additive subcategory generated by these objects. It depends only on \mathcal{Q} .

Let $Q = (\Delta, \sigma, \xi)$ be a Q-datum for \mathfrak{g} and take a reduced word $\underline{i} = (i_1, \dots, i_N)$ for w_0 coming from a compatible reading of Γ_Q .

For $1 \le k \le N$, define

$$M_{\overline{k}}^{\underline{i}} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}(S_{i_k}) \in \operatorname{pvd}(\Pi).$$

We define the category of representations $\mathcal{C}(\mathcal{Q})$ to be the strictly full additive subcategory generated by these objects. It depends only on \mathcal{Q} .

Proposition

If $\mathcal{Q}=Q$ is a Dynkin quiver of type ADE, then $\mathcal{C}(\mathcal{Q})$ is equivalent to $\operatorname{mod} KQ$ (as a K-linear category).

Proposition [C.]

The objects of $\mathcal{C}(\mathcal{Q})$ are dg modules whose cohomology is concentrated in degree zero.

Proposition [C.]

The objects of $\mathcal{C}(\mathcal{Q})$ are dg modules whose cohomology is concentrated in degree zero. In particular, $\mathcal{C}(\mathcal{Q})$ can be viewed as a full subcategory of $\operatorname{mod} H^0(\Pi)$.

Categorification

Proposition [C.]

The objects of $\mathcal{C}(\mathcal{Q})$ are dg modules whose cohomology is concentrated in degree zero. In particular, $\mathcal{C}(\mathcal{Q})$ can be viewed as a full subcategory of $\operatorname{mod} H^0(\Pi)$.

Categorification

Notice that $H^0(\Pi)$ is isomorphic to the preprojective algebra of type $\Delta.$

Proposition [C.]

The objects of $\mathcal{C}(\mathcal{Q})$ are dg modules whose cohomology is concentrated in degree zero. In particular, $\mathcal{C}(\mathcal{Q})$ can be viewed as a full subcategory of $\operatorname{mod} H^0(\Pi)$.

Categorification

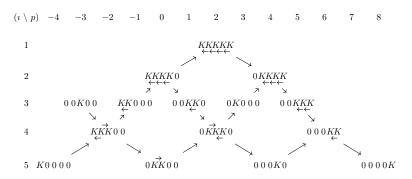
Notice that $H^0(\Pi)$ is isomorphic to the preprojective algebra of type Δ .

Theorem [C.]

The twisted AR quiver $\Gamma_{\mathcal{O}}$ is isomorphic to the quiver obtained from the Gabriel quiver of $\mathcal{C}(\mathcal{Q})$ by removing all arrows parallel to paths of length ≥ 2 .

Example: the category $\mathcal{C}(\mathcal{Q})$

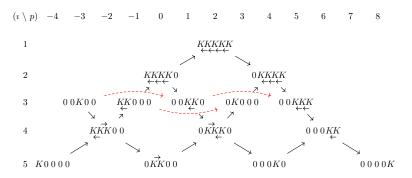
If $\mathcal Q$ is the Q-datum of type $\mathsf B_3$ from previous examples, then $\mathcal C(\mathcal Q)$ can be described by the following picture.



Objects are depicted as preprojective representations. Arrows between objects correspond to irreducible morphisms in C(Q).

Example: the category $\mathcal{C}(\mathcal{Q})$

If $\mathcal Q$ is the Q-datum of type $\mathsf B_3$ from previous examples, then $\mathcal C(\mathcal Q)$ can be described by the following picture.



Objects are depicted as preprojective representations. Arrows between objects correspond to irreducible morphisms in C(Q).

The quantum Cartan matrix C(q) is a certain deformation of the Cartan matrix C of the simple Lie algebra \mathfrak{g} .

The quantum Cartan matrix C(q) is a certain deformation of the Cartan matrix C of the simple Lie algebra \mathfrak{g} .

Categorification

For example, if $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C})$, we have

$$C = \begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix} \quad \text{and} \quad C(q) = \begin{bmatrix} q^2 + q^{-2} & -1 \\ -q - q^{-1} & q + q^{-1} \end{bmatrix}$$

The quantum Cartan matrix C(q) is a certain deformation of the Cartan matrix C of the simple Lie algebra \mathfrak{g} .

Categorification

For example, if $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C})$, we have

$$C = \begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix} \quad \text{and} \quad C(q) = \begin{bmatrix} q^2 + q^{-2} & -1 \\ -q - q^{-1} & q + q^{-1} \end{bmatrix}$$

Let $\widetilde{C}(q) = (\widetilde{C}_{ij}(q))$ be the inverse of C(q).

The quantum Cartan matrix C(q) is a certain deformation of the Cartan matrix C of the simple Lie algebra \mathfrak{g} .

Categorification

For example, if $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C})$, we have

$$C = \begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix} \quad \text{and} \quad C(q) = \begin{bmatrix} q^2 + q^{-2} & -1 \\ -q - q^{-1} & q + q^{-1} \end{bmatrix}$$

Let $\widetilde{C}(q) = (\widetilde{C}_{ii}(q))$ be the inverse of C(q). Each entry has a power series expansion: $C_{ij}(q) = \sum_{u>0} \widetilde{c}_{ij}(u)q^u$.

The quantum Cartan matrix C(q) is a certain deformation of the Cartan matrix C of the simple Lie algebra \mathfrak{g} .

Categorification

For example, if $\mathfrak{g} = \mathfrak{so}_5(\mathbb{C})$, we have

$$C = \begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix} \quad \text{and} \quad C(q) = \begin{bmatrix} q^2 + q^{-2} & -1 \\ -q - q^{-1} & q + q^{-1} \end{bmatrix}$$

Let $\widetilde{C}(q)=(\widetilde{C}_{ij}(q))$ be the inverse of C(q). Each entry has a power series expansion: $\widetilde{C}_{ij}(q)=\sum_{u\geq 0}\widetilde{c}_{ij}(u)q^u$.

Example:
$$\widetilde{C}_{21}(q) = \frac{q^2 + q^4}{1 + q^6} = q^2 + q^4 - q^8 - q^{10} + q^{14} + \cdots$$

Suppose $\mathfrak g$ is of type ADE

Suppose ${\mathfrak g}$ is of type ADE and let Q be an orientation of its Dynkin diagram.

Quantum Cartan matrix ○●○○○

The simply-laced case

Suppose $\mathfrak g$ is of type ADE and let Q be an orientation of its Dynkin diagram. Let $\xi:Q_0\to\mathbb Z$ be a height function on Q.

Suppose g is of type ADE and let Q be an orientation of its Dynkin diagram. Let $\xi: Q_0 \to \mathbb{Z}$ be a height function on Q.

One can naturally identify $\operatorname{ind}(\mathcal{D}^b(\operatorname{mod} KQ))$ with the set

$$\widehat{\Delta}_0 = \{ (i, p) \in I \times \mathbb{Z} \mid p - \xi_i \in 2\mathbb{Z} \}.$$

Each $(i,p) \in \widehat{\Delta}_0$ gives an indecomposable object $H_Q(i,p)$.

Suppose $\mathfrak g$ is of type ADE and let Q be an orientation of its Dynkin diagram. Let $\xi:Q_0\to\mathbb Z$ be a height function on Q.

One can naturally identify $\operatorname{ind}(\mathcal{D}^b(\operatorname{mod} KQ))$ with the set

$$\widehat{\Delta}_0 = \{ (i, p) \in I \times \mathbb{Z} \mid p - \xi_i \in 2\mathbb{Z} \}.$$

Each $(i,p)\in \widehat{\Delta}_0$ gives an indecomposable object $H_Q(i,p)$.

Theorem [Hernandez-Leclerc '15, Fujita '22]

For $(i, p), (j, s) \in \widehat{\Delta}_0$ with $s \ge p$, we have

$$\widetilde{c}_{ij}(s-p+1) = \langle H_Q(i,p), H_Q(j,s) \rangle$$

where $\langle -, - \rangle$ is the Euler form on $\mathcal{D}^b(\operatorname{mod} KQ)$.

Suppose $\mathfrak g$ is of type ADE and let Q be an orientation of its Dynkin diagram. Let $\xi:Q_0\to\mathbb Z$ be a height function on Q.

One can naturally identify $\operatorname{ind}(\mathcal{D}^b(\operatorname{mod} KQ))$ with the set

$$\widehat{\Delta}_0 = \{ (i, p) \in I \times \mathbb{Z} \mid p - \xi_i \in 2\mathbb{Z} \}.$$

Each $(i,p)\in \widehat{\Delta}_0$ gives an indecomposable object $H_Q(i,p)$.

Theorem [Hernandez-Leclerc '15, Fujita '22]

For $(i, p), (j, s) \in \widehat{\Delta}_0$ with $s \ge p$, we have

$$\widetilde{c}_{ij}(s-p+1) = \langle H_Q(i,p), H_Q(j,s) \rangle$$

where $\langle -, - \rangle$ is the Euler form on $\mathcal{D}^b(\operatorname{mod} KQ)$. Every nonzero coefficient $\widetilde{c}_{ij}(u)$ can be written in this way.

For the general case, Fujita-Oh use twisted AR quivers to give a combinatorial formula for the coefficients $\widetilde{c}_{ij}(u)$, which we categorify as follows.

For the general case, Fujita-Oh use twisted AR guivers to give a combinatorial formula for the coefficients $\tilde{c}_{ij}(u)$, which we categorify as follows.

Let $\mathcal{R}(\mathcal{Q})$ be the full additive subcategory of $\operatorname{pvd}(\Pi)$ generated by objects of the form $\Sigma^k M$ for $M \in \mathcal{C}(\mathcal{Q})$ and $k \in \mathbb{Z}$.

For the general case, Fujita-Oh use twisted AR quivers to give a combinatorial formula for the coefficients $\widetilde{c}_{ij}(u)$, which we categorify as follows.

Let $\mathcal{R}(\mathcal{Q})$ be the full additive subcategory of $\operatorname{pvd}(\Pi)$ generated by objects of the form $\Sigma^k M$ for $M \in \mathcal{C}(\mathcal{Q})$ and $k \in \mathbb{Z}$.

We construct a certain ideal \mathcal{I} of $\mathcal{R}(\mathcal{Q})$

For the general case, Fujita-Oh use twisted AR guivers to give a combinatorial formula for the coefficients $\tilde{c}_{ij}(u)$, which we categorify as follows.

Let $\mathcal{R}(\mathcal{Q})$ be the full additive subcategory of $\operatorname{pvd}(\Pi)$ generated by objects of the form $\Sigma^k M$ for $M \in \mathcal{C}(\mathcal{Q})$ and $k \in \mathbb{Z}$.

We construct a certain ideal \mathcal{I} of $\mathcal{R}(\mathcal{Q})$ and define the derived category $\mathcal{D}(\mathcal{Q})$ as the quotient $\mathcal{R}(\mathcal{Q})/\mathcal{I}$.

For the general case, Fujita-Oh use twisted AR guivers to give a combinatorial formula for the coefficients $\tilde{c}_{ij}(u)$, which we categorify as follows.

Let $\mathcal{R}(\mathcal{Q})$ be the full additive subcategory of $\operatorname{pvd}(\Pi)$ generated by objects of the form $\Sigma^k M$ for $M \in \mathcal{C}(\mathcal{Q})$ and $k \in \mathbb{Z}$.

We construct a certain ideal \mathcal{I} of $\mathcal{R}(\mathcal{Q})$ and define the derived category $\mathcal{D}(\mathcal{Q})$ as the quotient $\mathcal{R}(\mathcal{Q})/\mathcal{I}$.

Proposition

If Q = Q is a Dynkin quiver of type ADE, then $\mathcal{D}(Q)$ is equivalent to $\mathcal{D}^b(\operatorname{mod} KQ)$ (as a K-linear category).

• "Euler form": for $M, N \in \mathcal{D}(\mathcal{Q})$, we define

$$\langle M, N \rangle_{\mathcal{Q}} = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Ext}_{\mathcal{Q}}^k(M, N),$$

where $\operatorname{Ext}_{\mathcal{Q}}^k(M,N) = \operatorname{Hom}_{\mathcal{D}(\mathcal{Q})}(M,\Sigma^k N)$.

• "Euler form": for $M, N \in \mathcal{D}(\mathcal{Q})$, we define

$$\langle M, N \rangle_{\mathcal{Q}} = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Ext}_{\mathcal{Q}}^k(M, N),$$

where
$$\operatorname{Ext}_{\mathcal{O}}^k(M,N) = \operatorname{Hom}_{\mathcal{D}(\mathcal{Q})}(M,\Sigma^k N)$$
.

■ Fujita-Oh define a twisted Coxeter element $\tau_{\mathcal{O}} \in \mathsf{W}\sigma$.

• "Euler form": for $M, N \in \mathcal{D}(\mathcal{Q})$, we define

$$\langle M, N \rangle_{\mathcal{Q}} = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Ext}_{\mathcal{Q}}^k(M, N),$$

where $\operatorname{Ext}_{\mathcal{Q}}^k(M,N) = \operatorname{Hom}_{\mathcal{D}(\mathcal{Q})}(M,\Sigma^k N)$.

■ Fujita-Oh define a twisted Coxeter element $\tau_{\mathcal{Q}} \in \mathsf{W}\sigma$. We can lift it to an equivalence $\tau_{\mathcal{Q}} : \mathcal{D}(\mathcal{Q}) \longrightarrow \mathcal{D}(\mathcal{Q})$.

• "Euler form": for $M, N \in \mathcal{D}(\mathcal{Q})$, we define

$$\langle M, N \rangle_{\mathcal{Q}} = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Ext}_{\mathcal{Q}}^k(M, N),$$

where $\operatorname{Ext}_{\mathcal{Q}}^k(M,N) = \operatorname{Hom}_{\mathcal{D}(\mathcal{Q})}(M,\Sigma^k N)$.

- Fujita-Oh define a twisted Coxeter element $\tau_{\mathcal{Q}} \in \mathsf{W}\sigma$. We can lift it to an equivalence $\tau_{\mathcal{Q}} : \mathcal{D}(\mathcal{Q}) \longrightarrow \mathcal{D}(\mathcal{Q})$.
- Folded repetition quiver: we define

$$\widehat{I} = \{(i, p) \in I \times \mathbb{Z} \mid \exists (i, p) \in \widehat{\Delta}_0^{\sigma}, \overline{i} = i\}.$$

• "Euler form": for $M, N \in \mathcal{D}(\mathcal{Q})$, we define

$$\langle M, N \rangle_{\mathcal{Q}} = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Ext}_{\mathcal{Q}}^k(M, N),$$

where $\operatorname{Ext}_{\mathcal{Q}}^k(M,N) = \operatorname{Hom}_{\mathcal{D}(\mathcal{Q})}(M,\Sigma^k N)$.

- Fujita-Oh define a twisted Coxeter element $\tau_{\mathcal{Q}} \in \mathsf{W}\sigma$. We can lift it to an equivalence $\tau_{\mathcal{Q}} : \mathcal{D}(\mathcal{Q}) \longrightarrow \mathcal{D}(\mathcal{Q})$.
- Folded repetition quiver: we define

$$\widehat{I} = \{ (i, p) \in I \times \mathbb{Z} \mid \exists (i, p) \in \widehat{\Delta}_0^{\sigma}, \overline{i} = i \}.$$

We can construct bijections $\widehat{I} \to \widehat{\Delta}_0^{\sigma}$ and $\widehat{\Delta}_0^{\sigma} \to \operatorname{ind}(\mathcal{D}(\mathcal{Q}))$.

• "Euler form": for $M, N \in \mathcal{D}(\mathcal{Q})$, we define

$$\langle M, N \rangle_{\mathcal{Q}} = \sum_{k \in \mathbb{Z}} (-1)^k \dim_K \operatorname{Ext}_{\mathcal{Q}}^k(M, N),$$

where $\operatorname{Ext}_{\mathcal{Q}}^k(M,N) = \operatorname{Hom}_{\mathcal{D}(\mathcal{Q})}(M,\Sigma^k N)$.

- Fujita-Oh define a twisted Coxeter element $\tau_{\mathcal{Q}} \in \mathsf{W}\sigma$. We can lift it to an equivalence $\tau_{\mathcal{Q}} : \mathcal{D}(\mathcal{Q}) \longrightarrow \mathcal{D}(\mathcal{Q})$.
- Folded repetition quiver: we define

$$\widehat{I} = \{(i, p) \in I \times \mathbb{Z} \mid \exists (i, p) \in \widehat{\Delta}_0^{\sigma}, \overline{i} = i\}.$$

We can construct bijections $\widehat{I} \to \widehat{\Delta}_0^{\sigma}$ and $\widehat{\Delta}_0^{\sigma} \to \operatorname{ind}(\mathcal{D}(\mathcal{Q}))$. Let $H_{\mathcal{Q}}: \widehat{I} \to \operatorname{ind}(\mathcal{D}(\mathcal{Q}))$ be their composition.

Theorem [Fujita-Oh '21, C.]

For $(i, p), (j, s) \in \widehat{I}$ with $p \ge s$ and $\max\{d_i, d_i\} = r$, we have

$$\widetilde{c}_{ij}(p-s+d_i) = \left\langle H_{\mathcal{Q}}(j,s), \bigoplus_{k=0}^{\lceil d_j/d_i \rceil - 1} \tau_{\mathcal{Q}}^k(H_{\mathcal{Q}}(i,p)) \right\rangle_{\mathcal{Q}}.$$

Theorem [Fujita-Oh '21, C.]

For $(i, p), (j, s) \in \widehat{I}$ with $p \ge s$ and $\max\{d_i, d_i\} = r$, we have

$$\widetilde{c}_{ij}(p-s+d_i) = \left\langle H_{\mathcal{Q}}(j,s), \bigoplus_{k=0}^{\lceil d_j/d_i \rceil - 1} \tau_{\mathcal{Q}}^k(H_{\mathcal{Q}}(i,p)) \right\rangle_{\mathcal{Q}}.$$

Every nonzero coefficient $\widetilde{c}_{ij}(u)$ (where $\max\{d_i,d_j\}=r$) can be written in this way.

Theorem [Fujita-Oh '21, C.]

For $(i, p), (j, s) \in \widehat{I}$ with $p \geq s$ and $\max\{d_i, d_i\} = r$, we have

$$\widetilde{c}_{ij}(p-s+d_i) = \left\langle H_{\mathcal{Q}}(j,s), \bigoplus_{k=0}^{\lceil d_j/d_i \rceil - 1} \tau_{\mathcal{Q}}^k(H_{\mathcal{Q}}(i,p)) \right\rangle_{\mathcal{Q}}.$$

Every nonzero coefficient $\widetilde{c}_{ij}(u)$ (where $\max\{d_i,d_j\}=r$) can be written in this way.

Remarks:

■ Fujita-Oh's formula works without any restriction on d_i and d_j .

Theorem [Fujita-Oh '21, C.]

For $(i, p), (j, s) \in \widehat{I}$ with $p \geq s$ and $\max\{d_i, d_i\} = r$, we have

$$\widetilde{c}_{ij}(p-s+d_i) = \left\langle H_{\mathcal{Q}}(j,s), \bigoplus_{k=0}^{\lceil d_j/d_i \rceil - 1} \tau_{\mathcal{Q}}^k(H_{\mathcal{Q}}(i,p)) \right\rangle_{\mathcal{Q}}.$$

Categorification

Every nonzero coefficient $\widetilde{c}_{ij}(u)$ (where $\max\{d_i,d_j\}=r$) can be written in this way.

Remarks:

- Fujita-Oh's formula works without any restriction on d_i and d_j .
- In type B, the formula above also works in general.

Thank you for your attention!

References

- [Can] Ricardo Canesin. "Categorifying twisted Auslander-Reiten quivers". In preparation.
- [FO21] Ryo Fujita and Se-jin Oh. "Q-data and representation theory of untwisted quantum affine algebras". In: Comm. Math. Phys. 384.2 (2021), pp. 1351-1407.
- Ryo Fujita. "Graded quiver varieties and singularities of normalized [Fuj22] R-matrices for fundamental modules". In: Selecta Math. (N.S.) 28.1 (2022), Paper No. 2, 45.
- [HL15] David Hernandez and Bernard Leclerc. "Quantum Grothendieck rings and derived Hall algebras". In: J. Reine Angew. Math. 701 (2015), pp. 77-126.
- [Kel11] Bernhard Keller. "Deformed Calabi-Yau completions". In: J. Reine Angew. Math. 654 (2011). With an appendix by Michel Van den Bergh, pp. 125-180.
- [OS19] Se-jin Oh and Uhi Rinn Suh. "Twisted and folded Auslander-Reiten quivers and applications to the representation theory of quantum affine algebras". In: J. Algebra 535 (2019), pp. 53-132.
- [ST01] Paul Seidel and Richard Thomas. "Braid group actions on derived categories of coherent sheaves". In: Duke Math. J. 108.1 (2001). pp. 37-108.