Representation type of cyclotomic quiver Hecke algebras¹

Derived equivalence class

Qi WANG

Yau Mathematical Sciences Center Tsinghua University

International Conference on Representations of Algebras **@Shanghai Jiao Tong University** August 8, 2024.

¹Collaborations with Susumu Ariki, Berta Hudak, and Linliang Song.

Outline

Background

Rep-type of KLR algebras

Derived equivalence class

References

Background

Background

Cyclotomic quiver Hecke algebra

a.k.a. cyclotomic Khovanov-Lauda-Rouquier algebra

- ullet $U_q(\mathfrak{g})$: the quantum group of certain Kac-Moody algebra \mathfrak{g}
- $V(\Lambda)$: the integrable highest weight $U_q(\mathfrak{g})$ -module with the highest weight Λ
- \mathcal{R}^{Λ} : the cyclotomic quiver Hecke algebra

Cyclotomic quiver Hecke algebra

a.k.a. cyclotomic Khovanov-Lauda-Rouquier algebra

- $U_q(\mathfrak{g})$: the quantum group of certain Kac-Moody algebra \mathfrak{g}
- $V(\Lambda)$: the integrable highest weight $U_q(\mathfrak{g})$ -module with the highest weight Λ
- \mathcal{R}^{Λ} : the cyclotomic quiver Hecke algebra

Lie Theory	Representation Theory
Weight spaces of $V(\Lambda)$	Blocks of \mathcal{R}^{Λ}
Crystal graph of $V(\Lambda)$	Socle branching rule for \mathcal{R}^{Λ}
Canonical basis in $V(\Lambda)$ over $\mathbb C$	Indecom. projective \mathcal{R}^{Λ} -modules
Action of the Weyl group	Derived equivalences
of $\mathfrak g$ on $V(\Lambda)$	between blocks of \mathcal{R}^{Λ}

Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all morphisms between them, up to isomorphism.

Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all morphisms between them, up to isomorphism.

An algebra A is said to be

- rep-finite if the number of indecomposable modules is finite.
- tame if A is not rep-finite, but all indecomposable modules can be organized in a one-parameter family in each dimension.
- wild if there exists a faithful exact K-linear functor from the module category of $K\langle x, y \rangle$ to mod A.

Representation type of algebra

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of rep-finite, tame and wild.

Representation type of algebra

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of rep-finite, tame and wild.

It leads to two directions:

- (1) Studying mod A in-depth, such as Auslander-Reiten theory, homological dimensions, triangulated categories, etc, for rep-finite and tame algebras;
- (2) Studying nice subcategories of mod *A*, such as Serre subcategories, wide subcategories, etc, for wild algebras.

Representation type of algebra

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of rep-finite, tame and wild.

It leads to two directions:

- (1) Studying mod A in-depth, such as Auslander-Reiten theory, homological dimensions, triangulated categories, etc, for rep-finite and tame algebras;
- (2) Studying nice subcategories of mod *A*, such as Serre subcategories, wide subcategories, etc, for wild algebras.

"The representation type of symmetric algebras is preserved under derived equivalence." (Rickard 1991, Krause 1998)

Lie theoretic data

Let $(A, P, \Pi, P^{\vee}, \Pi^{\vee})$ be the **Cartan datum** of type $X^{(1)}$, where

- A = $(a_{ij})_{1 \le i,j \le \ell}$ is the Cartan matrix;
- $P = \mathbb{Z}\Lambda_0 \oplus \mathbb{Z}\Lambda_1 \oplus \cdots \oplus \mathbb{Z}\Lambda_\ell \oplus \mathbb{Z}\delta$ is the weight lattice;
- $\Pi = \{\alpha_i \mid 0 \le i \le \ell\}$ is the set of simple roots;
- P[∨] = Hom(P, Z) is the coweight lattice;
- $\Pi^{\vee} = \{h_i \mid 0 \le i \le \ell\}$ is the set of simple coroots.

Let $(A, P, \Pi, P^{\vee}, \Pi^{\vee})$ be the **Cartan datum** of type $X^{(1)}$, where

- A = $(a_{ii})_{1 \le i,j \le \ell}$ is the Cartan matrix;
- $P = \mathbb{Z}\Lambda_0 \oplus \mathbb{Z}\Lambda_1 \oplus \cdots \oplus \mathbb{Z}\Lambda_\ell \oplus \mathbb{Z}\delta$ is the weight lattice:
- $\Pi = \{\alpha_i \mid 0 < i < \ell\}$ is the set of simple roots:
- $P^{\vee} = \text{Hom}(P, \mathbb{Z})$ is the coweight lattice;
- $\Pi^{\vee} = \{h_i \mid 0 < i < \ell\}$ is the set of simple coroots.

We have

$$\langle h_i, \alpha_j \rangle = a_{ij}, \quad \langle h_i, \Lambda_j \rangle = \delta_{ij} \quad \text{for } 0 \le i, j \le \ell.$$

The null root is δ , e.g.,

$$\delta = \begin{cases} \alpha_0 + \alpha_1 + \dots + \alpha_{\ell} & \text{if } X = A_{\ell}, \\ \alpha_0 + 2(\alpha_1 + \dots + \alpha_{\ell-1}) + \alpha_{\ell} & \text{if } X = C_{\ell}. \end{cases}$$

Cyclotomic quiver Hecke algebra

The cyclotomic quiver Hecke algebra $R^{\Lambda}(\beta)$ with

$$\Lambda = a_0 \Lambda_0 + \dots + a_\ell \Lambda_\ell, \ \beta = b_0 \alpha_0 + \dots + b_\ell \alpha_\ell, \quad a_i, b_i \in \mathbb{Z}_{\geq 0},$$

is the K-algebra generated by

$$\{e(\nu) \mid \nu = (\nu_1, \nu_2, \dots, \nu_n) \in I^n\}, \quad \{x_i \mid 1 \leq i \leq n\}, \quad \{\psi_j \mid 1 \leq j \leq n-1\},$$

subject to the following relations:

Cyclotomic quiver Hecke algebra

The cyclotomic quiver Hecke algebra $R^{\Lambda}(\beta)$ with

$$\Lambda = a_0 \Lambda_0 + \dots + a_\ell \Lambda_\ell, \ \beta = b_0 \alpha_0 + \dots + b_\ell \alpha_\ell, \quad a_i, b_i \in \mathbb{Z}_{\geq 0},$$

is the K-algebra generated by

$$\{e(\nu) \mid \nu = (\nu_1, \nu_2, \dots, \nu_n) \in I^n\}, \quad \{x_i \mid 1 \le i \le n\}, \quad \{\psi_j \mid 1 \le j \le n-1\},$$

subject to the following relations:

- $e(\nu)e(\nu') = \delta_{\nu,\nu'}e(\nu), \quad \sum_{\nu \in I^n} e(\nu) = 1.$
- $x_1^{\langle h_{\nu_1}, \Lambda \rangle} e(\nu) = 0$, $x_i e(\nu) = e(\nu) x_i$, $x_i x_j = x_j x_i$.
- $\psi_i^2 e(\nu) = Q_{\nu_i,\nu_{i+1}}(x_i, x_{i+1})e(\nu), \quad \psi_i e(\nu) = e(s_i(\nu))\psi_i, \quad \psi_i \psi_j = \psi_j \psi_i \text{ if } |i-j| > 1.$
- $\bullet \quad (\psi_i \mathsf{x}_j \mathsf{x}_{\mathsf{s}_i(j)} \psi_i) e(\nu) = \left\{ \begin{array}{ll} -e(\nu) & \text{if } j = i \text{ and } \nu_i = \nu_{i+1}, \\ e(\nu) & \text{if } j = i+1 \text{ and } \nu_i = \nu_{i+1}, \\ 0 & \text{otherwise}. \end{array} \right.$
- $(\psi_{i+1}\psi_i\psi_{i+1} \psi_i\psi_{i+1}\psi_i)e(\nu) = \begin{cases} \frac{Q_{\nu_i,\nu_{i+1}}(x_i,x_{i+1}) Q_{\nu_i,\nu_{i+1}}(x_{i+2},x_{i+1})}{x_i x_{i+2}}e(\nu) & \text{if } \nu_i = \nu_{i+2}, \\ 0 & \text{otherwise.} \end{cases}$

- (1) $R^{\Lambda}(\beta)$ is a finite-dimensional symmetric algebra, see [Shan-Varagnolo-Vasserot, 2017].
- (2) $R^{\Lambda}(\beta) \sim_{\text{derived}} R^{\Lambda}(\beta')$ if both $\Lambda \beta$ and $\Lambda \beta'$ lie in $\{\mu m\delta \mid \mu \in \max^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\}$, see [Chuang-Rouquier, 2008].
- (3) There is a bijection $\phi_{\Lambda} = \iota_{\Lambda} \circ \bar{} : \max^+(\Lambda) \to P_k^+(\Lambda)$, see [Kim-Oh-Oh, 2020].

- (1) $R^{\Lambda}(\beta)$ is a finite-dimensional symmetric algebra, see [Shan-Varagnolo-Vasserot, 2017].
- (2) $R^{\Lambda}(\beta) \sim_{\mathsf{derived}} R^{\Lambda}(\beta')$ if both $\Lambda \beta$ and $\Lambda \beta'$ lie in $\{\mu m\delta \mid \mu \in \mathsf{max}^+(\Lambda), m \in \mathbb{Z}_{\geq 0}\}$, see [Chuang-Rouquier, 2008].
- (3) There is a bijection $\phi_{\Lambda} = \iota_{\Lambda} \circ \bar{} : \max^+(\Lambda) \to P_k^+(\Lambda)$, see [Kim-Oh-Oh, 2020].

Set
$$\Lambda=m_{i_1}\Lambda_{i_1}+m_{i_2}\Lambda_{i_2}+\cdots+m_{i_n}\Lambda_{i_n}, m_{i_j}\neq 0$$
. Then, $|\Lambda|:=m_{i_1}+\cdots+m_{i_j}$ and $\operatorname{ev}(\Lambda):=i_1+\cdots+i_n$. In type $A_\ell^{(1)}$,

$$P_k^+(\Lambda) := \left\{ \Lambda' \in P^+ \mid |\Lambda| = |\Lambda'| = k, \operatorname{ev}(\Lambda) \equiv_{\ell+1} \operatorname{ev}(\Lambda') \right\}.$$

Background

Recall that $\langle h_i, \Lambda_i \rangle = \delta_{ij}$. We define $y_i := \langle h_i, \Lambda - \Lambda' \rangle$ and $Y_{\Lambda'} := (y_0, y_1, \dots, y_{\ell}) \in \mathbb{Z}^{\ell+1}.$

$$Y_{\Lambda'}:=(y_0,y_1,\ldots,y_\ell)\in\mathbb{Z}^{\ell+1}.$$

Theorem (Ariki-Song-W., 2023)

The equation $AX^t = Y_{\Lambda'}^t$ has a unique solution $X = (x_0, x_1, \dots, x_\ell)$ satisfying

$$x_i \ge 0$$
 and $\min\{x_i - \delta\} < 0$.

Set $\beta_{\Lambda'} := x_0 \alpha_0 + x_1 \alpha_1 + \cdots + x_\ell \alpha_\ell$. Then,

$$\phi_{\Lambda}^{-1}: P_k^+(\Lambda) \rightarrow \max^+(\Lambda)$$

$$\Lambda' \mapsto \Lambda - \beta_{\Lambda'}$$
.

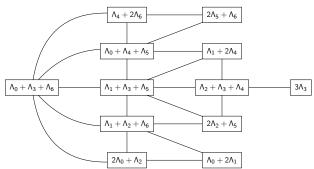
Constructions in affine type A

$$\Lambda' = \Lambda_i + \Lambda_j + \tilde{\Lambda} \in P_k^+(\Lambda) \Rightarrow \Lambda'_{i^-,j^+} := \Lambda_{i-1} + \Lambda_{j+1} + \tilde{\Lambda} \in P_k^+(\Lambda)$$

Constructions in affine type A

$$\Lambda' = \Lambda_i + \Lambda_j + \tilde{\Lambda} \in P_k^+(\Lambda) \Rightarrow \Lambda'_{i^-,j^+} := \Lambda_{i-1} + \Lambda_{j+1} + \tilde{\Lambda} \in P_k^+(\Lambda)$$

e.g.,
$$P_3^+(\Lambda_0 + \Lambda_3 + \Lambda_6)$$
 in type $A_6^{(1)}$



$$\Delta_{i^-,j^+} := \left\{ \begin{array}{ll} (0^i,1^{j-i+1},0^{\ell-j}) & \text{if } i \leq j, \\ (1^{j+1},0^{i-j-1},1^{\ell-i+1}) & \text{if } i > j. \end{array} \right.$$

We define

$$\Delta_{i^-,j^+} := \left\{ \begin{array}{ll} (0^i,1^{j-i+1},0^{\ell-j}) & \text{if } i \leq j, \\ (1^{j+1},0^{i-j-1},1^{\ell-i+1}) & \text{if } i > j. \end{array} \right.$$

Derived equivalence class

We draw an arrow $\Lambda' \longrightarrow \Lambda'_{i-,i^+}$ if

$$X_{\Lambda'} + \Delta_{i^-,j^+} = X_{\Lambda'_{i^-,j^+}}$$

We define

Background

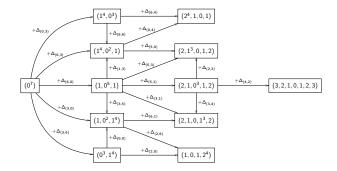
$$\Delta_{i^-,j^+} := \left\{ \begin{array}{ll} \left(0^i,1^{j-i+1},0^{\ell-j}\right) & \text{if } i \leq j, \\ \left(1^{j+1},0^{i-j-1},1^{\ell-i+1}\right) & \text{if } i > j. \end{array} \right.$$

Derived equivalence class

We draw an arrow $\Lambda' \longrightarrow \Lambda'_{i-j+}$ if

$$X_{\Lambda'} + \Delta_{i^-,j^+} = X_{\Lambda'_{i^-,j^+}}$$

e.g.,



Derived equivalence class

Lemma 1

Background

The quiver $\vec{C}(\Lambda)$ of $P_k^+(\Lambda)$ is a finite connected quiver.

Lemma 1

Background

The quiver $\vec{C}(\Lambda)$ of $P_k^+(\Lambda)$ is a finite connected quiver.

Lemma 2

Suppose $\Lambda = \bar{\Lambda} + \tilde{\Lambda}$. There is a directed path

$$\Lambda^{(1)} \longrightarrow \Lambda^{(2)} \longrightarrow \dots \longrightarrow \Lambda^{(m)} \in \vec{C}(\bar{\Lambda})$$

if and only if there is a directed path

$$\Lambda^{(1)} + \tilde{\Lambda} \longrightarrow \Lambda^{(2)} + \tilde{\Lambda} \longrightarrow \cdots \longrightarrow \Lambda^{(m)} + \tilde{\Lambda} \in \vec{C}(\Lambda).$$

Lemma 3

Write $\Lambda = \bar{\Lambda} + \tilde{\Lambda}$. If $R^{\bar{\Lambda}}(\beta)$ is representation-infinite (resp. wild), then $R^{\Lambda}(\beta)$ is representation-infinite (resp. wild).

Write $\Lambda = \bar{\Lambda} + \tilde{\Lambda}$. If $R^{\bar{\Lambda}}(\beta)$ is representation-infinite (resp. wild), then $R^{\Lambda}(\beta)$ is representation-infinite (resp. wild).

Lemma 4

Suppose that there is an arrow $\Lambda' \longrightarrow \Lambda''$ in $\vec{C}(\Lambda)$. If $R^{\Lambda}(\beta_{\Lambda'})$ is representation-infinite (resp. wild), then so is $R^{\Lambda}(\beta_{\Lambda''})$.

Rep-finite and tame sets in affine type A

Set $i_0 := i_h$, $i_{h+1} := i_1$ and write

$$\Lambda = m_{i_1}\Lambda_{i_1} + \cdots + m_{i_i}\Lambda_{i_i} + m_{i_{i+1}}\Lambda_{i_{i+1}} + \cdots + m_{i_h}\Lambda_{i_h}$$

 $T(\Lambda)_5 := \left\{ (\Lambda_{i_p^-, i_p^+})_{i_p^-, i_p^+} \mid m_{i_j} = m_{i_p} = 2, i_p \not\equiv_{\ell+1} i_j \pm 1, j \neq p \right\}$

Rep-finite and tame sets in affine type A

Set $i_0 := i_h$, $i_{h+1} := i_1$ and write

$$\Lambda = m_{i_1}\Lambda_{i_1} + \cdots + m_{i_i}\Lambda_{i_i} + m_{i_{i+1}}\Lambda_{i_{i+1}} + \cdots + m_{i_b}\Lambda_{i_b}$$

For any 1 < i < h, we define

$$\begin{split} F(\Lambda)_0 &:= \left\{ \Lambda_{i_j^-,i_j^+} \mid m_{i_j} = 2 \right\} \\ F(\Lambda)_1 &:= \left\{ \Lambda_{i_j^-,i_{j+1}^+} \mid m_{i_j} = 1, m_{i_{j+1}} = 1 \right\} \\ T(\Lambda)_1 &:= \left\{ \Lambda_{i_j^-,i_{j+1}^+} \mid m_{i_j} = 1, m_{i_{j+1}} > 1 \text{ or } m_{i_j} > 1, m_{i_{j+1}} = 1 \right\} \\ T(\Lambda)_2 &:= \left\{ (\Lambda_{i_j^-,i_j^+})_{(i_j-1)^-,(i_j+1)^+} \mid m_{i_j} = 2, i_{j-1} \not\equiv_{\ell+1} i_j - 1, i_{j+1} \not\equiv_{\ell+1} i_j + 1 \right\} \text{ if } \operatorname{char} K \neq 2 \\ T(\Lambda)_3 &:= \left\{ (\Lambda_{i_j^-,i_j^+})_{i_j^-,(i_j+1)^+} \operatorname{or} (i_{j-1})_{-,i_j^+} \mid m_{i_j} = 3, i_{j+1} \not\equiv_{\ell+1} i_j + 1 \text{ or } i_{j-1} \not\equiv_{\ell+1} i_j - 1 \right\} \\ & \text{ if } \operatorname{char} K \neq 3 \\ T(\Lambda)_4 &:= \left\{ (\Lambda_{i_j^-,i_j^+})_{i_j^-,i_j^+} \mid m_{i_j} = 4 \right\} \text{ if } \operatorname{char} K \neq 2 \end{split}$$

Set

$$\mathfrak{F}(\Lambda) := \{\beta_{\Lambda'} \mid \Lambda' \in \{\Lambda\} \cup F(\Lambda)_0 \cup F(\Lambda)_1\},$$

$$\mathfrak{T}(\Lambda) := \{\beta_{\Lambda'} \mid \Lambda' \in \cup_{1 \le j \le 5} T(\Lambda)_j\}.$$

Theorem (Ariki-Song-W., 2023)

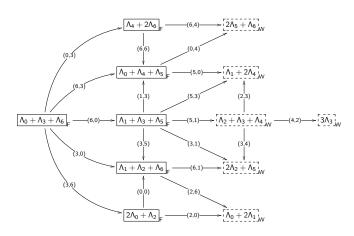
Suppose $|\Lambda| \geq 3$. Then, $R^{\Lambda}(\beta)$ is representation-finite if $\beta \in \mathcal{F}(\Lambda)$, tame if one of the following holds:

- $\beta = \delta$, $\Lambda = k\Lambda_i$, $\ell = 1$ with $t \neq \pm 2$,
- $\beta = \delta$, $\Lambda = k\Lambda_i$, $\ell \geq 2$ with $t \neq (-1)^{\ell+1}$,
- $\beta \in \mathfrak{T}(\Lambda)$.

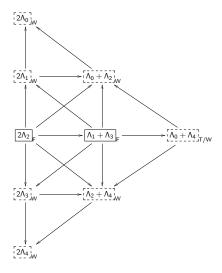
Otherwise, it is wild.

Background

e.g., rep-type of $\vec{C}(\Lambda_0 + \Lambda_3 + \Lambda_6)$ in type $A_6^{(1)}$ is displayed as



e.g., rep-type of $\vec{C}(2\Lambda_2)$ in type $C_4^{(1)}$ is displayed as



Background

Derived Equivalence Class

Derived equivalence class

•00000

Affine Type \mathbb{A}

Derived equivalence class

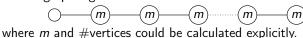
Let $R^{\Lambda}(\beta)$ be the cyclotomic quiver Hecke algebra of type $A_{\alpha}^{(1)}$.

Theorem (Ariki-Song-W., 2023)

(1) If $R^{\Lambda}(\beta)$ is representation-finite, then it is derived equivalent to either $K[X]/(X^m)$ for m > 1 or a Brauer tree algebra whose Brauer tree is displayed as

- (2) If $R^{\Lambda}(\beta)$ is tame, then it is derived equivalent to one of
 - $K[X,Y]/(X^3-Y^3,XY)$, $K[X,Y]/(X^4-Y^2,XY)$, $K[X, Y]/(X^2, Y^2)$, $K[X, Y]/(X^k - Y^k, XY)$ for k > 3.
 - Brauer graph algebra associated with

Brauer graph algebra associated with



Brauer graph algebra

Let A be a Brauer graph algebra with Brauer graph Γ_A .

Theorem (Antipov-Zvonareva, 2022)

If B is derived equivalent to A, then B is Morita equivalent to a Brauer graph algebra.

Theorem (Opper-Zvonareva, 2022)

 $A \sim_{\sf derived} B$ if and only if the following conditions hold.

- (1) Γ_A and Γ_B share the same number of vertices, edges, faces,
- (2) the multisets of multiplicities and the multisets of perimeters of faces of Γ_A and Γ_B coincide,
- (3) either both or none of Γ_A and Γ_B are bipartite.

Affine Type \mathbb{C}

Let $R^{\Lambda}(\beta)$ be the cyclotomic quiver Hecke algebra of type $C_{\ell}^{(1)}$, where

$$\Lambda = \Lambda_0 + 2\Lambda_1, \quad \beta = \alpha_0 + \alpha_1.$$

Proposition (Ariki-Hudak-Song-W., 2024)

In this case, $R^{\Lambda}(\beta)$ is tame and it is Morita equivalent to the bound quiver algebra A with

$$\alpha \bigcirc \circ \xrightarrow{\mu} \circ \bigcirc \beta$$

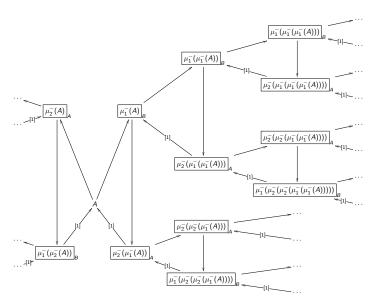
bounded by $\alpha^2=$ 0, $\beta^2=\nu\mu, \alpha\mu=\mu\beta, \beta\nu=\nu\alpha.$

This is not a Brauer graph algebra!

Background

Tilting quiver of A

Derived equivalence class ○○○○●○



Recall that

$$Q: \alpha \bigcirc \circ \xrightarrow{\mu} \circ \bigcirc \beta$$
,

00000

and define

- $A := KQ/\langle \alpha^2, \beta^2 \nu \mu, \alpha \mu \mu \beta, \beta \nu \nu \alpha \rangle$.
- $B := KQ/\langle \alpha^2 \mu\nu, \beta^2 \nu\mu, \alpha\mu \mu\beta, \beta\nu \nu\alpha, \mu\nu\mu, \nu\mu\nu \rangle$.

Proposition (Ariki-Hudak-Song-W., 2024)

If C is derived equivalent to A, then C is isomorphic to A or B.

References

- [A17] S. Ariki, Representation type for block algebras of Hecke algebras of classical type. Adv. Math. 317 (2017), 823-845.
- [AP16] S. Ariki and E. Park, Representation type of finite quiver Hecke algebras of type $D_{\ell+1}^{(2)}$. Trans. Amer. Math. Soc. **368** (2016), 3211-3242.
- [KK12] S.-J. Kang and M. Kashiwara, Categorification of highest weight modules via Khovanov-Lauda-Rouquier algebras. Invent. Math. 190 (3) (2012), 699-742.
- [KOO20] Young-Hun Kim, se-jin Oh and Young-Tak Oh, Cyclic sieving phenomenon on dominant maximal weights over affine Kac-Moody algebras. Adv. Math. 374 (2020), 107336.

- [KL09] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups, I. *Represent. Theory* 13 (2009), 309–347.
- [R08] R. Rouquier, 2-Kac-Moody algebras. Preprint (2008), arXiv: 0812.5023.
- [S06] A. Skowroński, Selfinjective algebras: finite and tame type, Trends in Representation Theory of Algebras and Related Topics, 169–238, Contemp. Math. Amer. Math. Soc. 406, 2006.

Thank you! Any questions?

Derived equivalence class

Rule to draw arrows

Let Δ_{fin}^+ be the set of positive roots of the root system of type X.

- If $X = A_{\ell}$, $\Delta_{\epsilon_n}^+ = \{ \epsilon_i \epsilon_i \mid 1 \le i < j \le \ell + 1 \}$.
- If $X = B_{\ell}$, $\Delta_{\text{fin}}^+ = \{ \epsilon_i \mid 1 \le i \le \ell \} \sqcup \{ \epsilon_i \pm \epsilon_i \mid 1 \le i < j \le \ell \}$.
- If $X = C_{\ell}$, $\Delta_{6n}^+ = \{2\epsilon_i \mid 1 \le i \le \ell\} \sqcup \{\epsilon_i \pm \epsilon_i \mid 1 \le i < j \le \ell\}$.
- If $X = D_{\ell}$, $\Delta_{\text{fin}}^+ = \{ \epsilon_i \pm \epsilon_i \mid 1 \le i < j \le \ell \}$.

Rule to draw arrows

Let Δ_{fin}^+ be the set of positive roots of the root system of type X.

- If $X = A_{\ell}$, $\Delta_{\text{fin}}^+ = \{ \epsilon_i \epsilon_j \mid 1 \le i < j \le \ell + 1 \}$.
- If $X = B_{\ell}$, $\Delta_{\text{fin}}^+ = \{\epsilon_i \mid 1 \le i \le \ell\} \sqcup \{\epsilon_i \pm \epsilon_j \mid 1 \le i < j \le \ell\}$.
- If $X = C_{\ell}$, $\Delta_{\text{fin}}^+ = \{2\epsilon_i \mid 1 \le i \le \ell\} \sqcup \{\epsilon_i \pm \epsilon_j \mid 1 \le i < j \le \ell\}$.
- If $X = D_{\ell}$, $\Delta_{\text{fin}}^+ = \{ \epsilon_i \pm \epsilon_j \mid 1 \le i < j \le \ell \}$.

Then, the set $\Delta_{\rm fin}^+ \sqcup (\delta - \Delta_{\rm fin}^+)$ gives all arrows $\Lambda' \longrightarrow \Lambda''$.

Arrows in affine type A

Recall that
$$\delta = \alpha_0 + \alpha_1 + \dots + \alpha_\ell = (1, 1, \dots, 1)$$
. Then,
$$\Delta_{6n}^+ \sqcup (\delta - \Delta_{6n}^+) = \{\epsilon_i - \epsilon_i, \delta - (\epsilon_i - \epsilon_i) \mid 1 < i < j < \ell + 1\}.$$

We have $\Delta_{i^-,i^+} =$

$$\begin{cases} (0^{i}, 1^{j-i+1}, 0^{\ell-j}) = \epsilon_{i} - \epsilon_{j+1} & \text{if } 0 < i \le j \le \ell, \\ (1^{j+1}, 0^{\ell-j}) = \delta - (\epsilon_{j+1} - \epsilon_{\ell+1}) & \text{if } 0 = i \le j \le \ell - 1, \\ (1^{j+1}, 0^{i-j-1}, 1^{\ell-i+1}) = \delta - (\epsilon_{j+1} - \epsilon_{i}) & \text{if } 0 \le j < i \le \ell. \end{cases}$$

Arrows in affine type C

Recall that $\delta = \alpha_0 + 2\alpha_1 + \cdots + 2\alpha_{\ell-1} + \alpha_{\ell} = (1, 2, \dots, 2, 1)$.

•
$$\Delta_{i+} = (1, 2^i, 1, 0^{\ell-i-1}) = \delta - (\epsilon_{i+1} + \epsilon_{i+2}).$$

$$\Rightarrow \{\delta - (\epsilon_i + \epsilon_{i+1}) \mid 1 \leq i \leq \ell - 1\}.$$

•
$$\Delta_{i^-} = (0^{i-1}, 1, 2^{\ell-i}, 1) = \epsilon_{i-1} + \epsilon_i$$
.

$$\Rightarrow \{\epsilon_i + \epsilon_{i+1} \mid 1 \leq i \leq \ell - 1\}.$$

•
$$\Delta_{i^+,j^+} = (1,2^i,1^{j-i},0^{\ell-j})$$
 with $i+1 \neq j$.

•
$$\Delta_{i^-} = (0^i, 1^{j-i}, 2^{\ell-j}, 1)$$
 with $i + 1 \neq j$.

$$\Rightarrow \{\epsilon_i + \epsilon_j \mid 1 \le i \le j \le \ell - 1, i + 1 \ne j\}.$$

 $\Rightarrow \{\delta - (\epsilon_i + \epsilon_i) \mid 1 < i < j < \ell - 1, i + 1 \neq i\}.$

•
$$\Delta_{i^-,j^+}$$
 with $i \neq 0, j \neq \ell, i-1 \neq j$.

$$\Rightarrow \{\epsilon_i - \epsilon_j, \delta - (\epsilon_i - \epsilon_j) \mid 1 \le i < j \le \ell - 1\}.$$

We define

•
$$\Delta_{i^+} := (1, 2^i, 1, 0^{\ell-i-1}), \quad \Delta_{i^-} := (0^{i-1}, 1, 2^{\ell-i}, 1).$$

•
$$\Delta_{i^+,j^+} := (1,2^i,1^{j-i},0^{\ell-j}), \quad \Delta_{i^-,j^-} := (0^i,1^{j-i},2^{\ell-j},1).$$

•
$$\Delta_{i^-,j^+} := \left\{ \begin{array}{ll} (0^i,1^{j-i+1},0^{\ell-j}) & \text{if } i \leq j, \\ (1,2^j,1^{i-j-1},2^{\ell-i},1) & \text{if } i \geq j+2. \end{array} \right.$$

Set Δ and Λ'' for $\Lambda'_{i\pm}$, $\Lambda'_{i\pm}$, $\Lambda'_{i-j\pm}$, respectively.

•
$$\Delta_{i^+} := (1, 2^i, 1, 0^{\ell-i-1}), \quad \Delta_{i^-} := (0^{i-1}, 1, 2^{\ell-i}, 1).$$

•
$$\Delta_{i^+,j^+} := (1,2^i,1^{j-i},0^{\ell-j}), \quad \Delta_{i^-,j^-} := (0^i,1^{j-i},2^{\ell-j},1).$$

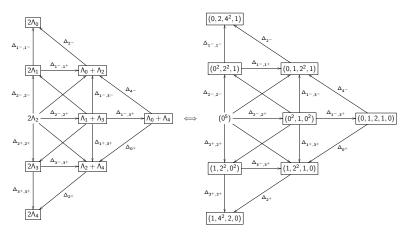
•
$$\Delta_{i^-,j^+} := \left\{ \begin{array}{ll} (0^i,1^{j-i+1},0^{\ell-j}) & \text{if } i \leq j, \\ (1,2^j,1^{i-j-1},2^{\ell-i},1) & \text{if } i \geq j+2. \end{array} \right.$$

Set Δ and Λ'' for $\Lambda'_{i^{\pm}}$, $\Lambda'_{i^{\pm},j^{\pm}}$, $\Lambda'_{i^{-},j^{+}}$, respectively.

We draw an arrow $\Lambda' \longrightarrow \Lambda''$ if

$$X_{\Lambda'} + \Delta = X_{\Lambda''}$$
.

e.g., the quiver for $P_2^+(2\Lambda_2)$ in type $C_4^{(1)}$ is displayed as



Derived equivalence class