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Cyclotomic quiver Hecke algebra

a.k.a. cyclotomic Khovanov-Lauda-Rouquier algebra

® Ugy(g): the quantum group of certain Kac-Moody algebra g

® V(A): the integrable highest weight Ug(g)-module with the
highest weight A

e RN the cyclotomic quiver Hecke algebra
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Cyclotomic quiver Hecke algebra

a.k.a. cyclotomic Khovanov-Lauda-Rouquier algebra

® Ugy(g): the quantum group of certain Kac-Moody algebra g

® V(A): the integrable highest weight Ug(g)-module with the
highest weight A

e RN the cyclotomic quiver Hecke algebra

Lie Theory Representation Theory
Weight spaces of V/(A) Blocks of R"
Crystal graph of V/(A) Socle branching rule for R
Canonical basis in V(A) over C | Indecom. projective R -modules
Action of the Weyl group Derived equivalences
of g on V(A) between blocks of R
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Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all
morphisms between them, up to isomorphism.
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Goal of Algebraic Representation Theory

Classify all indecomposable modules of a given algebra A and all
morphisms between them, up to isomorphism.

An algebra A is said to be
e rep-finite if the number of indecomposable modules is finite.

e tame if A is not rep-finite, but all indecomposable modules
can be organized in a one-parameter family in each dimension.

e wild if there exists a faithful exact K-linear functor from the
module category of K(x, y) to mod A.
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Representation type of algebra

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of
rep-finite, tame and wild.
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Representation type of algebra

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of
rep-finite, tame and wild.

It leads to two directions:

(1) Studying mod A in-depth, such as Auslander-Reiten theory,
homological dimensions, triangulated categories, etc, for
rep-finite and tame algebras;

(2) Studying nice subcategories of mod A, such as Serre
subcategories, wide subcategories, etc, for wild algebras.
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Representation type of algebra

Trichotomy Theorem (Drozd, 1977)

The representation type of an algebra A (over K) is exactly one of
rep-finite, tame and wild.

It leads to two directions:

(1) Studying mod A in-depth, such as Auslander-Reiten theory,
homological dimensions, triangulated categories, etc, for
rep-finite and tame algebras;

(2) Studying nice subcategories of mod A, such as Serre
subcategories, wide subcategories, etc, for wild algebras.

"The representation type of symmetric algebras is preserved
under derived equivalence.”" (Rickard 1991, Krause 1998)
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Cyclotomic quiver Hecke algebras
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Lie theoretic data
Let (A, P,M, PV, 1Y) be the Cartan datum of type X(1), where

* A = (ajj)i<ij<e is the Cartan matrix;

e P=7N ®DZNL & --- D ZN; © ZJ is the weight lattice;
e M= {a;|0< i</} is the set of simple roots;

e PV =Hom(P,Z) is the coweight lattice;

e MV ={h; |0 < i</} is the set of simple coroots.
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Lie theoretic data
Let (A, P,M, PV, 1Y) be the Cartan datum of type X(1), where

* A = (ajj)i<ij<e is the Cartan matrix;
e P=7N ®DZNL & --- D ZN; © ZJ is the weight lattice;
e M= {a;|0< i</} is the set of simple roots;
e PV =Hom(P,Z) is the coweight lattice;
e MV ={h; |0 < i</} is the set of simple coroots.
We have

(hi,a) = ajj, (hi,\;) =6 for0<i,j<U.
The null root is ¢, e.g.,

5= o+ a1+ + oy if X = Ay,
o Ozo+2(0¢1—|—--~—|—0¢g_1)+ag if X = C,.
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Cyclotomic quiver Hecke algebra
The cyclotomic quiver Hecke algebra R"(3) with

N=aoNo+ -+ al\e, B=boag+ -+ by, aj,bi € Z>o,
is the K-algebra generated by
{e(w) |v=(vi,va,...,vn) €1}, {x|1<i<n}, {¢|1<j<n—1},

subject to the following relations:
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Cyclotomic quiver Hecke algebra
The cyclotomic quiver Hecke algebra R"(3) with

N=aoNo+ -+ al\e, B=boag+ -+ by, aj,bi € Z>o,
is the K-algebra generated by
{e(w) |v=(vi,va,...,vn) €1}, {x|1<i<n}, {¢|1<j<n—1},

subject to the following relations:

® c(v)e(V) =bye(v), D,eme(v)=1
L4 xfh"l’me(u) =0, xje(v)=e(v)xi, XxiXj=xjXi.

® WPe(v) = Quuna (i, xiv1)e(v),  wie(v) = elsi(v))vi, ity = vy if |i —j| > 1.
—e(v) ifj=iand v =vi,

® (g —xse) =€) ifj=i+land v =y,
0 otherwise.

Quj vy (XiXit1) = Qup iy g (Xi2 Xi41) e(v)

O (Yir1tiviv — Yivizavi)e(v) = { Xi—Xir2 Wi = viva,

0 otherwise.
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(1) RMN(B) is a finite-dimensional symmetric algebra, see
[Shan-Varagnolo-Vasserot, 2017].
(2) RM(B) ~derived RMNB') if both A — 3 and A — 3’ lie in
{—mé | p € max™(N),m e Zxo},
see [Chuang-Rouquier, 2008].

(3) There is a bijection ¢p = tp 0~ maxT(A) = PF(A), see
[Kim-Oh-Oh, 2020].
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(1) RMN(B) is a finite-dimensional symmetric algebra, see
[Shan-Varagnolo-Vasserot, 2017].

(2) RM(B) ~derived RMNB') if both A — 3 and A — 3’ lie in

{—mé | p € max™(N),m e Zxo},

see [Chuang-Rouquier, 2008].

(3) There is a bijection ¢p = tp 0~ maxT(A) = PF(A), see
[Kim-Oh-Oh, 2020].
Set A = m,'l/\,'1 + m,-2/\,-2 + -+ m,-n/\,-n, m;; 75 0. Then,

IAl:==mj +---+mj and ev(A) =i+ +ip

In type Agl),

PE(N) = {N € PT | |A| = |N| = k,ev(A) =1 ev(N) }.
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Recall that (h;,A;) = d;;. We define y; := (h;, A — N) and

Y/\’ = (yOa.ylv v 7y€) € ZE—H-'
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Recall that (h;,A;) = d;;. We define y; := (h;, A — N) and
Yn = (y07}/17 v 7y€) € ZZ—H-'

Theorem (Ariki-Song-W., 2023)

The equation AX® = Y}, has a unique solution X = (xo,x1,...,Xp)
satisfying
x; >0 and min{x; —d} <O.

Set By = xpap + x1a1 + - - - + xpap. Then,
Opt PN — maxt(A)

N i—)/\*ﬁ/\/.
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Constructions in affine type A

N =N+ N +RePIN) = N o= Ais + A+ A € PN
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Constructions in affine type A
N=N+N+AcPFA) = N_ . =N_1+Ns1+AcPH(A)

e.g.. P§ (Ao + A3 + Ag) in type ALV
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We define

(Oi, 1j—i+170€—j) if i SJ,

Aj- jr = (UF1, 001, 161y i i > .
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We define
AL [ (0T ) if i < J,
oy = . L . . 3
=y (lj+1701 j 17 ]_Z /+1) if > .

We draw an arrow A" — /\f.,d.+ if

X/\/ —|— Ai7J+ = X/\{_

St

References
00000000
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We define

AL [ (0T ) if i < J,
i—gt = (1j+170i—j—17 1[—i+1) if i > .

We draw an arrow A" — Ai’*u’* if

X/\/ + A,’—J+ == X/\;_ "+

p

¢8-

A0

(2,13,0,1,2)

(2,1,0%,1,2)

- (3,2,1,0,1,2,3)

(2,1,0,13,2)

)
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Key Lemmas

Lemma 1
The quiver C(A) of P;(A) is a finite connected quiver.
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Key Lemmas

Lemma 1
The quiver C(A) of P,"(A) is a finite connected quiver.

Lemma 2 ;
Suppose A = A+ A. There is a directed path

A A@) . Am € C(A)

if and only if there is a directed path

AD L RA—— A@ LR Am 1 & € C(N).
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Lemma 3 )
Write A = A+ A. If RMN(B) is representation-infinite (resp. wild),
then R7(B3) is representation-infinite (resp. wild).
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Lemma 3 )
Write A = A+ A. If RMN(B) is representation-infinite (resp. wild),
then R7(B3) is representation-infinite (resp. wild).

Lemma 4
Suppose that there is an arrow A" — A” in C(A). If RMNBn) is
representation-infinite (resp. wild), then so is RS ).
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Rep-finite and tame sets in affine type A
Set ip := iy, iht1 =0 and write

N= m,-1/\,-1 + -+ m,]/\,] + m,'Hl/\,'j+1 4+ -+ m;h/\;h
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Rep-finite and tame sets in affine type A
Set ip := iy, ih+1 := 1 and write

/\ = ml]_/\l]_ + e + m’_[/\'J + mij+1/\ij+1 + [ _|_ mlh/\lh
For any 1 < j < h, we define

F(N)o = {Aif ol mi = 2}

’

F(A) = {A: ,1;11 | mi; = L, mj, = 1}
T(A)1 :{JJ+1|m,1_1m,+1>lorm,>1m,”1_1}
T(A)2 :{ i G0 G | my = 2051 Fern = L Fe o+ 1} if char K # 2
T(N)s :{ i im Gy or (-1t | My = 35 Fen fHLor Gy Fep - 1}
if charK7é3
T(A)s = {(/\, i | my 74}.f char K # 2
T(N)s = {(A )iy | My = mi, =200 Ze1 5 £1.) # p)
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Set
EF(/\) = {,B/\/ | N e {/\} U F(/\)o U F(/\)l},

‘.T(/\) = {6/\/ | = Ui<j<s T(/\)j}.

Theorem (Ariki-Song-W., 2023)

Suppose |A| > 3. Then, RM\(3) is representation-finite if 3 € F(A),
tame if one of the following holds:

e 3=05, N=kA;, £ =1with t # +2,
® B=20, N=kA;, £>2with t # (—1)"*,
e 3 T(N).

Otherwise, it is wild.
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e.g., rep-type of 5(/\0 + A3+ N¢) in type Aél) is displayed as

Aa+ 206 | (64— [?/,\5 + {\ﬁ]w

| 7
/ ©6) /<o,4>

0.3) L
] e
///“ T — 4

(1[3) (5,3) (2.3)

(o s T, 60— [Fa T A = A, o0 {A + s A, 02— {35},

N\ 1 |
\5) (3.1), (3.4)
T~

L
[As+ Ao+ Aoy ——61——=12 +As
(36) [~

(00) (2.6)
\ ‘ ~ .

2o + R, ——(O——iRo 120,
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e.g., rep-type of 5(2/\2) in type Cil) is displayed as

2oy
. P .
12y Mot hayy,
oo -
r M+ A3 Po+ ey

N
e
&

[

25,
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Affine Type A
Let RN(B) be the cyclotomic quiver Hecke algebra of type Agl).
Theorem (Ariki-Song-W., 2023)

(1) If RN(B) is representation-finite, then it is derived equivalent
to either K[X]/(X™) for m > 1 or a Brauer tree algebra
whose Brauer tree is displayed as

o—O0—A0—C00O0——=0

(2) If RMN(B) is tame, then it is derived equivalent to one of

o KX, Y]/(X3 = Y3,XY), K[X, Y]/(X* — Y2, XY),
KIX, Y]/(X2, Y?), K[X, Y]/(XK = Y*, XY) for k > 3.
® Brauer graph algebra associated with
B—0—k—® - —®
where k = |A] and #vertices = £ + 1.
® Brauer graph algebra associated with

O——(m—(m——m)
where m and #vertices could be calculated explicitly.
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Brauer graph algebra

Let A be a Brauer graph algebra with Brauer graph I 4.
Theorem (Antipov-Zvonareva, 2022)

If B is derived equivalent to A, then B is Morita equivalent to a
Brauer graph algebra.

Theorem (Opper-Zvonareva, 2022)
A ~yerived B if and only if the following conditions hold.
(1) T4 and I'g share the same number of vertices, edges, faces,

(2) the multisets of multiplicities and the multisets of perimeters
of faces of ['4 and g coincide,

(3) either both or none of ['4 and I'g are bipartite.
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Affine Type C

Let RN(B) be the cyclotomic quiver Hecke algebra of type Ce(l),
where
N=No+2N, B=ag+ a;.

Proposition (Ariki-Hudak-Song-W., 2024)
In this case, RN(j3) is tame and it is Morita equivalent to the bound
quiver algebra A with

aCoHoQB
bounded by a? =0, 3% = vy, ap = pB, Brv = va.

This is not a Brauer graph algebral
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Tilting quiver of A

Ko,
/ ’ — ..
B

#1 (1 (A))

T N
/ vz 0 G ()
T
29, IROIA
1 12 iz (1 (e ()],
L - ~— .
Ha (11 (11 (A)))
\[1]\ N
pa (g (g (e (e (D)) ],
A -
/1 1\ e,
1]
. -~ R

et

#1 (12 (A))

R a1z ()],

~
{1l
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Recall that

Q: aCoHoQﬁ
and define

° A= KQ/(a? % —vp,ap — pf, fv — va).
° B:= KQ/<042—MV752—Vﬂaaﬂ_ﬂﬁaﬁV—VaaHVﬂaV,uw-

Proposition (Ariki-Hudak-Song-W., 2024)
If C is derived equivalent to A, then C is isomorphic to A or B.
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Thank you! Any questions?
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Rule to draw arrows

Let Affn be the set of positive roots of the root system of type X.
o If X =A, A ={ei—¢|1<i<j<l+1}.
e If X =8B, AL ={e|1<i<ufeLe|1<i<j< L}
e IfX=C, AL ={2|1<i<liU{ete|1<i<j<{}
e f X =Dy, Af ={eite|1<i<j<(}
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Rule to draw arrows

Let Aa’n be the set of positive roots of the root system of type X.
o If X =A, A ={ei—¢|1<i<j<l+1}.
e If X =8B, AL ={e|1<i<ufeLe|1<i<j< L}
e IfX=C, AL ={2|1<i<liU{ete|1<i<j<{}
e f X =Dy, Af ={eite|1<i<j<(}

Then, the set AL U (5 — Af ) gives all arrows A — N
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Arrows in affine type A

Recall that 6 = ap+ a1 +---+ay = (1,1,...,1). Then,

Agnl_l((;—Ag')—{e,—ej, —(ei—¢)|1<i<j<t+1}.

We have A;- j+ =

(01, UV=*1 0) = ¢; — ¢j41 fo<i<j<¢,
(VH,09) = 6 — (g41 — €r11) ifo=i<j<(-1,
(UL 0115 =5 — (41 —¢) ifO<j<i</
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Arrows in affine type C
Recall that 6 = ag + 201 + -+ - + 200p—1 + ap = (1,2,...,2,1).
hd Ai+ = (17 2i7 17 027"71) = 6 - (EH‘]- + 6f+2)'

={0—(ei+e€41)|1<i<l-1}.
e Ai- = (0L 1,25 1) = €1 + e
={eit+ep1|1<i<l-1}
o Ajjro= (1,20, 1770°) with i +1 # j.
=>{0—(e6i+¢)|1<i<j<l-1,i+1#j}.
© A - = (0L, U7 250 1) with i + 1 # .
=S {e+e|1<i<j<l-1i+1#]}

© Aj-jewith i #£0,j# L4 —1#].

=>{ei—€,0—(ei—¢)|1<i<j<l—1}.
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We define
® AiJr = (172i7 1a0£7i71)7 Ai* = (01’717 17267"’ 1)
hd Ai+7j+ = (172i71j—i70Z—j)’ Ai_,j_ = (0i71j_i72€_j’1)'
A [y i<,
YT (L, U 2 ) i P> 42,

Set A and A for A, Ai'i,ji’ /\f.,ﬁ, respectively.
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We define
o A= (1,211,005, A= (071,1,20 1),

o Ajyei=(1,20,V7,07Y), A o= (00, V7, 250,1),

oA L @Y i<,
AT (L2, 1 2 ) i i > 42

Set A and A for A, Ai'i,ji’ N, respectively.

-t
We draw an arrow A/ — A" if

Xn + A = Xy,
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e.g., the quiver for Py (2/\;) in type Cil) is displayed as

(0,2,42,1)

A

[(@ 22 )}—"—{(0.1.221)]

4
2- 22— Al’ 3

— ot A
= ()22 {02 1.0 —"{(0,1,2,1,0)]

Dyt ot Dyt 3+

[1,22.0?) }L{ (1,22.1.0)]

Azt 3t

o

(1,42,2,0)
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