F-invariant in cluster algebras

Peigen Cao

University of Science and Technology of China

August 6, 2024

The 21st International Conference on Representations of Algebras July 31-August 9, 2024, Shanghai

- Oluster algebras: Definition and Laurent phenomenon
- 2 Two mutation invariants: tropical invariant and F-invariant
- Oriented exchange graphs of cluster algebras

- Oluster algebras: Definition and Laurent phenomenon
- Q Two mutation invariants: tropical invariant and F-invariant
- Oriented exchange graphs of cluster algebras

Compatible pair

• Fix
$$m, n \in \mathbb{Z}$$
 with $m \ge n > 0$
• $\widetilde{B} = \begin{bmatrix} B_{n \times n} \\ P \end{bmatrix}$: $m \times n$ integer matrix

• A: $m \times m$ integer skew-symmetric matrix

Definition (Compatible pair, Berenstein-Zelevinsky)

Call (\widetilde{B}, Λ) a compatible pair, if there exists a diagonal matrix $S = diag(s_1, \ldots, s_n)$ with $s_i \in \mathbb{Z}_{>0}$ such that

 $\widetilde{B}^{T}\Lambda = (S \mid \mathbf{0})_{n \times m},$

where **0** is the zero matrix of size $n \times (m - n)$.

Remark: The condition $\widetilde{B}^T \Lambda = (S \mid \mathbf{0})_{n \times m}$ implies \widetilde{B} has the full rank n and $\widetilde{B}^T \Lambda \widetilde{B} = SB$ is skew-symmetric. Thus B is skew-symmetrizable.

Seed and Mutation

Call
$$t_0 = (X, \widetilde{B}, \Lambda)$$
 a seed in $\mathbb{F} := \mathbb{Q}(z_1, \ldots, z_m)$, if

•
$$X = (x_1, \ldots, x_m)$$
 is a free generating set of \mathbb{F} ;

• (B, Λ) is a compatible pair.

In this case, call X a cluster and x_1, \ldots, x_m cluster variables.

We have mutations μ_1, \ldots, μ_n to produce new seeds:

$$\mu_k: (X, \widetilde{B}, \Lambda) \mapsto (X', \widetilde{B}', \Lambda'),$$

where $X' = (X \setminus \{x_k\}) \cup \{x'_k\}$ and the new cluster variable x'_k is determined by the *k*-th column of $\widetilde{B} = (b_{ij})$:

$$x'_{k} = x_{k}^{-1}(\prod_{b_{ik}>0} x_{i}^{b_{ik}} + \prod_{b_{ik}<0} x_{i}^{-b_{ik}}) = rac{ ext{a binomial}}{x_{k}}.$$

• μ_k is an involution, i.e.,

$$(X,\widetilde{B},\Lambda) \stackrel{\mu_k}{\longmapsto} (X',\widetilde{B}',\Lambda') \stackrel{\mu_k}{\longmapsto} (X,\widetilde{B},\Lambda)$$

• $(\widetilde{B}', \Lambda')$ is still a compatible pair for the same diagonal matrix, i.e., $\widetilde{B}^T \Lambda = (S \mid \mathbf{0}) = (\widetilde{B}')^T \Lambda'.$

• For the case of m = n = 2, $\mu_k : (\widetilde{B}, \Lambda) \mapsto (-\widetilde{B}, -\Lambda)$.

Example: Type A_2

Take
$$\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda$$
 and $X = (x_1, x_2)$. Clearly, $m = n = 2$ and $\widetilde{B}^T \Lambda = (S \mid \mathbf{0}) = I_2$.

$$(x_1, x_2) \xrightarrow{\mu_1} (x_3, x_2) \xrightarrow{\mu_2} (x_3, x_4) \xrightarrow{\mu_1} (x_5, x_4) \xrightarrow{\mu_2} \dots$$

By applying the mutation relations:

$$x_{k+2} = \frac{x_{k+1} + 1}{x_k},$$

all cluster variables that we can obtain are as follows:

$$x_3 = \frac{x_2 + 1}{x_1}, \quad x_4 = \frac{x_1 + x_2 + 1}{x_1 x_2}, \quad x_5 = \frac{x_1 + 1}{x_2}$$

 $x_6 = x_1, \quad x_7 = x_2 \implies x_{i+5} = x_i, \quad \forall i.$

イロト イポト イヨト イヨト

3

Cluster algebra

Fix an initial seed $t_0 = (X, \tilde{B}, \Lambda)$. We can get a collection of seeds:

 $\Delta = \{t = \overleftarrow{\mu}(t_0) \mid \overleftarrow{\mu} \text{ any sequence of mutations}\}.$

Cluster algebra $\mathcal{A} = \mathcal{A}(t_0)$ is the \mathbb{Z} -subalgebra of $\mathbb{F} = \mathbb{Q}(x_1, \ldots, x_m)$ generated by all cluster variables in Δ .

Example (Type A_2 , continued)

Take
$$\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda$$
, $X = (x_1, x_2)$. Set $t_0 = (X, \widetilde{B}, \Lambda)$. Since all cluster variables in Δ are

$$x_1$$
, x_2 , $x_3 = \frac{x_2 + 1}{x_1}$, $x_4 = \frac{x_1 + x_2 + 1}{x_1 x_2}$, $x_5 = \frac{x_1 + 1}{x_2}$,

 $\mathcal{A} = \mathbb{Z}[x_1, x_2, \tfrac{x_2+1}{x_1}, \tfrac{x_1+x_2+1}{x_1x_2}, \tfrac{x_1+1}{x_2}] \subseteq \mathbb{Q}(x_1, x_2). \text{ Actually, } \mathcal{A} \subseteq \mathbb{Z}[x_1^{\pm 1}, x_2^{\pm 1}].$

Laurent phenomenon and canonical expression

A cluster monomial u is a monomial in cluster variables from the same cluster.

Theorem (Fomin-Zelevinsky, Goss-Hacking-Keel-Kontsevich)

Let u be a cluster monomial and $t = (X_t, \tilde{B}_t, \Lambda_t)$ a seed of \mathcal{A} . Then (i) The expansion of u w.r.t. X_t is a Laurent polynomial. (ii) Set $\hat{y}_{k;t} = X_t^{\tilde{B}_t \mathbf{e}_k}$. The expansion above has a **canonical expression**

 $u = X_t^{\mathbf{g}_u^t} F_u^t(\widehat{Y}_t) = X_t^{\mathbf{g}_u^t} F_u^t(\widehat{y}_{1;t}, \ldots, \widehat{y}_{n;t}),$

where $\mathbf{g}_{u}^{t} \in \mathbb{Z}^{m}$ and $F_{u}^{t} \in \mathbb{Z}[y_{1}, \dots, y_{n}]$ with $\mathbf{y}_{i} \nmid \mathbf{F}_{u}^{t}, \forall i$. (iii) F_{u}^{t} has positive coefficients and constant term 1.

Call $\mathbf{g}_{u}^{t} \in \mathbb{Z}^{m}$ the extended *g*-vector, F_{u}^{t} the *F*-polynomial of *u* w.r.t seed *t*.

Example: canonical expression

Example (Type A_2 , canonical expression)

Take
$$\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda$$
, $X = (x_1, x_2)$. Set $t_0 = (X, \widetilde{B}, \Lambda)$. Then

$$\begin{array}{rcl} x_1 &=& x_1 \cdot 1, \\ x_2 &=& x_2 \cdot 1, \\ x_3 &=& \frac{x_2 + 1}{x_1} = x_1^{-1} x_2 \cdot (1 + \widehat{y}_1), \\ x_4 &=& \frac{x_1 + x_2 + 1}{x_1 x_2} = x_1^{-1} \cdot (1 + \widehat{y}_1 + \widehat{y}_1 \widehat{y}_2) \\ x_5 &=& \frac{x_1 + 1}{x_2} = x_2^{-1} \cdot (1 + \widehat{y}_2), \end{array}$$

where $\hat{y}_1 = X^{\tilde{B}e_1} = x_2^{-1}$, $\hat{y}_2 = X^{\tilde{B}e_2} = x_1$.

(日)

3

- **1** Cluster algebras: Definition and Laurent phenomenon
- **2** Two mutation invariants: tropical invariant and *F*-invariant
- Oriented exchange graphs of cluster algebras

Will use the canonical expressions to define two mutation invariants: $\langle -, - \rangle$ and $(- || -)_F$, called tropical invariant and *F*-invariant.

Relationship: $(u \mid \mid u')_F = \langle u, u' \rangle + \langle u', u \rangle$ take symmetrized sum.

Tropical polynomial

Given a non-zero polynomial $F = \sum_{\mathbf{v} \in \mathbb{N}^n} c_{\mathbf{v}} Y^{\mathbf{v}} \in \mathbb{Z}[y_1, \dots, y_n]$ and a vector $\mathbf{r} \in \mathbb{Z}^n$, denote by

 $\boldsymbol{F}[\mathbf{r}] := \max\{\mathbf{v}^{\mathsf{T}}\mathbf{r} \mid c_{\mathbf{v}} \neq 0\} \in \mathbb{Z}.$

Call the map $F[-]: \mathbb{Z}^n \to \mathbb{Z}$ a tropical polynomial.

Key point: Replace a monomial " $Y^{\mathbf{v}}$ " by a inner product " $\mathbf{v}^T \mathbf{r}$ " and replace "+" by taking max $\{-, -\}$.

Example

Take
$$F = 1 + y_1 + y_1 y_2$$
 and $\mathbf{r} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Then

$$F[\mathbf{r}] = \max\left\{\begin{bmatrix} 0,0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1,0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right\}$$

$$= \max\{0, -1, 0\} = 0.$$

Remark: If *F* has constant term 1, then $F[\mathbf{r}] \ge 0$, $\forall \mathbf{r} \in \mathbb{Z}^n$.

Peigen Cao (USTC)

Tropical invariant: $\langle -, - \rangle$

• Let $u = X_t^{\mathbf{g}_u^t} F_u^t(\widehat{Y}_t)$ and $u' = X_t^{\mathbf{g}_{u'}^t} F_{u'}^t(\widehat{Y}_t)$ be two cluster monomials of \mathcal{A} written their canonical expressions in a seed $t = (X_t, \widetilde{B}_t, \Lambda_t)$.

• Using the canonical expressions, we define an integer:

$\langle u, u' \rangle_t := (\mathbf{g}_u^t)^T \Lambda_t \mathbf{g}_{u'}^t + F_u^t [(S \mid \mathbf{0}) \mathbf{g}_{u'}^t],$

where the 2nd term is the tropical F-polynomial $F_u^t[-]$ valued at the modified *g*-vector $(S \mid \mathbf{0})\mathbf{g}_{u'}^t \in \mathbb{Z}^n$ of u' w.r.t. seed *t*.

Theorem (Tropical invariant, Cao)

The integer $\langle u, u' \rangle_t$ only depends on u and u', not on the choice of t.

P. Cao, F-invariant in cluster algebras, arXiv:2306.11438.

13/31

Theorem (Tropical invariant, Cao)

The integer $\langle u, u' \rangle_t := (\mathbf{g}_u^t)^T \Lambda_t \mathbf{g}_{u'}^t + F_u^t [(S \mid \mathbf{0})\mathbf{g}_{u'}^t]$ only depends on u and u', not on the choice of t.

Proof: Consider the *g*-vectors of u' w.r.t. different seeds:

$$\{ \mathbf{g}_{u'}^w \in \mathbb{Z}^m \mid w \in \Delta \} \quad \leadsto \quad \{ \Lambda_w \mathbf{g}_{u'}^w \in \mathbb{Z}^m \mid w \in \Delta \}$$

Denote by $\mathbb{Q}_{sf}(x_1, \ldots, x_m) = \{P/Q \mid 0 \neq P, Q \in \mathbb{Z}_{\geq 0}[x_1, \ldots, x_m]\}$. Clearly, $\mathbb{Q}_{sf}(x_1, \ldots, x_m) = \mathbb{Q}_{sf}(X_w), \forall w \in \Delta$. **Claim:** There exists a unique semifield homomorphism associated to u':

$$\beta_{u'}: (\mathcal{Q}_{sf}(x_1,\ldots,x_m), \cdot, +) \rightarrow (\mathbb{Z}, +, \max\{-,-\})$$

s.t. $\beta_{u'}(X_w) = (\Lambda_w \mathbf{g}_{u'}^w)^T \in \mathbb{Z}_{row}^m, \forall w \in \Delta$. Since $u = X_t^{\mathbf{g}_u^t} \bullet F_u^t(X_t^{\widetilde{B}_t})$, one has

$$\beta_{u'}(u) = (\mathbf{g}_u^t)^T \Lambda_t \mathbf{g}_{u'}^t + F_u^t[(S \mid \mathbf{0})\mathbf{g}_{u'}^t] = \langle u, u' \rangle_t$$

Notice that the left side only depends on u and u', not on the choice of t.

Peigen Cao (USTC)

Definition (F-invariant, Cao)

The *F*-invariant between two cluster monomials u and u' is defined to be the **symmetrized sum**

$$(u \mid \mid u')_{F} = \langle u, u' \rangle_{t} + \langle u', u \rangle_{t} = (\mathbf{g}_{u}^{t})^{T} \Lambda_{t} \mathbf{g}_{u'}^{t} + F_{u}^{t} [(S \mid \mathbf{0}) \mathbf{g}_{u'}^{t}] + (\mathbf{g}_{u'}^{t})^{T} \Lambda_{t} \mathbf{g}_{u}^{t} + F_{u'}^{t} [(S \mid \mathbf{0}) \mathbf{g}_{u}^{t}].$$

Since Λ_t is skew-symmetric, (1st term + 3rd term) = 0. Thus

 $(u || u')_{F} = F_{u}^{t}[(S | \mathbf{0})\mathbf{g}_{u'}^{t}] + F_{u'}^{t}[(S | \mathbf{0})\mathbf{g}_{u}^{t}].$

(trop. F-polynomial of u valued at the modified g-vector of u' plus trop. F-polynomial of u' valued at the modified g-vector of u.)

Remark: Since F_u^t and $F_{u'}^t$ have constant term 1, $(u \parallel u')_F \in \mathbb{Z}_{\geq 0}$.

≡▶ ≡ ∽੧..

Special case: If u and u' are two unfrozen cluster variables, say

$$u=x_{i;t}, \ u'=x_{j;w},$$

where "unfrozen" means $i, j \in [1, n]$. Since $\mathbf{g}_u^t = \mathbf{e}_i \in \mathbb{Z}^m$ and $F_u^t = 1$, we have

$$(u \mid \mid u')_F = F_u^t[(S \mid \mathbf{0})\mathbf{g}_{u'}^t] + F_{u'}^t[(S \mid \mathbf{0})\mathbf{g}_u^t]$$

= 0 + F_{u'}^t[(S \mid \mathbf{0})\mathbf{e}_i]
= \max\{\mathbf{v}^T(S \mid \mathbf{0})\mathbf{e}_i \mid c_{\mathbf{v}} \neq 0\} = s_i \cdot f_i',

where s_i comes from $S = diag(s_1, \ldots, s_n)$ and f'_i is the maximal exponent of y_i in $F^t_{u'} = \sum_{\mathbf{v} \in \mathbb{N}^n} c_{\mathbf{v}} \mathbf{Y}^{\mathbf{v}} \in \mathbb{Z}[y_1, \ldots, y_n]$. Thus

$$(u || u')_F = (x_{i;t} || x_{j;w})_F = s_i f'_i = s_i \cdot (x_{i;t} || x_{j;w})_f,$$

where $(x_{i;t} || x_{j;w})_f := f'_i$ is the *f*-compatibility degree defined by Fu-Gyoda using the components of **f**-vectors.

16/31

F-invariant: Special case

 $(x_{i;t} || x_{j;w})_F = s_i \cdot (x_{i;t} || x_{j;w})_f.$

- f-compatibility degree (- || -)_f is defined on the set of unfrozen cluster variables;
- *F*-invariant $(- || -)_F$ can be defined for any two cluster monomials and an important **advantage** of *F*-invariant is that we can calculate $(u || u')_F$ by using any seed *t*.
- In fact, *F*-invariant can be defined for any two "good basis elements", e.g., theta functions constructed by Goss-Hacking-Keel-Kontsevich.

Theorem (Fu-Gyoda)

 $(x_{i;t} || x_{j;w})_f = 0$ iff $x_{i;t}$ and $x_{j;w}$ are contained in the same cluster.

Corollary: $(x_{i;t} || x_{j;w})_F = 0$ iff $x_{i;t} \cdot x_{j;w}$ is a cluster monomial.

Recall that $(u \mid\mid u')_F \in \mathbb{Z}_{\geq 0}$ for any two cluster monomials u and u'.

Now we discuss when $(u \mid \mid u')_F = 0$.

Theorem (Cao)

For two cluster monomials u and u', their product $u \cdot u'$ is still a cluster monomial iff $(u \mid \mid u')_F = 0$.

Proof: " \Longrightarrow " Say $u \cdot u'$ is a cluster monomial in seed t. Then $F_u^t = 1 = F_{u'}^t$. Thus

$$(u || u)_F = F_u^t[\ldots] + F_{u'}^t[\ldots] = 0.$$

" (Not immediate!) ... and use the corollary of Fu-Gyoda's Theorem ...

イロト イポト イヨト イヨト 二日

Example: Type A_2

Take
$$\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda$$
 and $X = (x_1, x_2)$. Clearly, $\widetilde{B}^T \Lambda = (S \mid \mathbf{0}) = I_2$.

$$(x_1, x_2) \xrightarrow{\mu_1} (x_3, x_2) \xrightarrow{\mu_2} (x_3, x_4) \xrightarrow{\mu_1} (x_5, x_4) \xrightarrow{\mu_2} (x_5, x_1) \xrightarrow{\mu_1} (x_2, x_1)$$

$$x_3 = x_1^{-1} x_2 \cdot (1 + \widehat{y}_1), \quad x_4 = x_1^{-1} \cdot (1 + \widehat{y}_1 + \widehat{y}_1 \widehat{y}_2), \quad x_5 = x_2^{-1} \cdot (1 + \widehat{y}_2).$$

By using the canonical expressions, we can calculate the F-invariant, e.g.,

$$(x_3 || x_4)_F = F_{x_3}[\mathbf{g}_{x_4}] + F_{x_4}[\mathbf{g}_{x_3}] = (1+y_1) \begin{bmatrix} -1\\0 \end{bmatrix} + (1+y_1+y_1y_2) \begin{bmatrix} -1\\1 \end{bmatrix} = \max\{0, -1\} + \max\{0, -1, 0\} = 0. (x_3 || x_5)_F = F_{x_3}[\mathbf{g}_{x_5}] + F_{x_5}[\mathbf{g}_{x_3}] = (1+y_1) \begin{bmatrix} 0\\-1 \end{bmatrix} + (1+y_2) \begin{bmatrix} -1\\1 \end{bmatrix} = \max\{0, 0\} + \max\{0, 1\} = 1.$$

By the theorem, we know that x_3x_4 is a cluster monomial, while x_3x_5 is not.

Image: A matrix

- Oluster algebras: Definition and Laurent phenomenon
- I wo mutation invariants: tropical invariant and F-invariant
- Oriented exchange graphs of cluster algebras

Theorem: Oriented exchange graphs of (skew-symmetrizable) cluster algebras are acyclic.

20/31

The exchange graph of a cluster algebra \mathcal{A} is a graph Γ defined as follows:

- the vertex set of Γ is the set of seeds (up to permutations) of A;
- the edges of Γ correspond to seed mutations.

Now we fix an initial seed $t_0 = (X, B, \Lambda)$ of \mathcal{A} . By the sign-coherence of *c*-vectors, each seed mutation $t' = \mu_k(t)$ is either a green mutation or a red mutation, depending that the k-th column of the C-matrix $C_{t}^{t_{0}}$ lies in $\mathbb{Z}_{\geq 0}^n$ or $\mathbb{Z}_{<0}^n$.

Remark: If $t' = \mu_k(t)$ is red mutation, then $t = \mu_k(t')$ is green mutation.

So each edge $t \stackrel{k}{\longrightarrow} t'$ in the exchange graph Γ has an orientation defined using green mutation. Thus we obtain a **quiver** $\overrightarrow{\Gamma}$, called the oriented exchange graph of \mathcal{A} .

Theorem: Oriented exchange graphs of (skew-symmetrizable) cluster algebras are acyclic.

Remark: The above result is well-known to experts for **skew-symmetric** cluster algebras, because in this case,

- the oriented exchange graphs of cluster algebras is a connected component of some oriented exchange graphs from representation theory;
- there is a natural **partial order** on the set of "seeds" (e.g., two-term silting objects, or τ -tilting pairs) on the representation theory side and thus their oriented exchange graphs are acyclic.

Remark: The partial order on τ -tilting pairs is induced by the partial order on the torsion classes.

Key point to the proof of the theorem: give a suitable replacement of torsion class on cluster algebras side so that we can define a partial order on cluster algebras side.

э

Dominant set of a seed (replacement of torsion class in τ -tilting thory)

• Fix an initial seed $t_0 = (X, \tilde{B}, \Lambda)$. For a cluster monomial u, denote by

$$F_u := F_u^{t_0}, \quad \mathbf{g}_u := \mathbf{g}_u^{t_0},$$

the *F*-polynomial and the extended *g*-vector of *u* with respect to the initial seed t_0 .

- For a seed t = (X_t, B̃_t, Λ_t), denote by u_t = ∏ⁿ_{i=1} x_{i;t} the (basic) cluster monomial in t with full support on the unfrozen part.
- For a cluster variable z, recall $(z \mid \mid u_t)_F = F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] + F_{u_t}[(S \mid \mathbf{0})\mathbf{g}_z].$

Definition (Dominant set, Cao)

The dominant set of a seed t is defined to be

$$dom(u_t) := \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\},\$$

where \mathcal{X}° is the set of unfrozen cluster variables of $\mathcal{A} = \mathcal{A}(t_0)$.

Dominant set of a seed (replacement of torsion class in τ -tilting thory)

Keep $u_t = \prod_{i=1}^n x_{i;t}$ and $dom(u_t) := \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}.$

- If two seeds t and t' are the same up to a permutation, then $u_t = u_{t'}$ and thus $dom(u_t) = dom(u_{t'})$.
- Since the F-polynomial of an initial cluster variable is 1, we have

{initial unfrozen cluster variables} $\subseteq dom(u_t)$

for any seed t.

• By ignoring the initial cluster variables, the dominant set $dom(u_t) = \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}$ of the seed t is "like" the set

{indecomposable τ -rigid modules in FacM}

for a τ -tilting pair (M, P) in modA. (Will give more details later.)

Theorem (Cao)

If $t' = \mu_k(t)$ is a green mutation in A, then $dom(u_t) \subsetneq dom(u_{t'})$. In particular,

- green mutations induce a partial order on the set of seeds (up to permutations) of A;
- the oriented exchange graph of A is acyclic.

Remark: The above result will appear in the second version of the paper: P. Cao, *F*-invariant in cluster algebras, arXiv:2306.11438.

25/31

Example: Type A_2

Take
$$\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda$$
 and $X = (x_1, x_2)$. Clearly, $\widetilde{B}^T \Lambda = (S \mid \mathbf{0}) = I_2$.

 $x_3 = x_1^{-1}x_2 \cdot (1+\widehat{y}_1), \quad x_4 = x_1^{-1} \cdot (1+\widehat{y}_1+\widehat{y}_1\widehat{y}_2), \quad x_5 = x_2^{-1} \cdot (1+\widehat{y}_2).$

One can check that

$$dom(u_{t_0}) = \{x_1, x_2\}, \quad dom(u_{t_1}) = \{x_1, x_2, x_3\}, \quad dom(u_{t_2}) = \{x_1, x_2, x_3, x_4\} \\ dom(u_{t_3}) = \{x_1, x_2, x_3, x_4, x_5\}, \quad dom(u_{t_4}) = \{x_1, x_2, x_5\}.$$

The next few pages will answer the following question:

Why the dominant set

$$dom(u_t) = \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}$$

can be viewed as an replacement of torsion class in τ -tilting theory?

Remark: In our convention, the initial (unfrozen) cluster variables correspond to the τ -rigid pairs $(0, P_1), \ldots, (0, P_n)$.

27 / 31

Dominant set from the viewpoint of τ -tilting theory

Recall: "by ignoring the initial cluster variables, the dominant set $dom(u_t) = \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}$ of the seed t is "like" the set

{indecomposable τ -rigid modules in *FacM*}

for a τ -tilting pair (M, P) in modA". Reason as follows:

- Let $\theta = \mathbf{g}_{(M,P)}$ be the g-vector of the τ -tilting pair (M, P), which is like the "negative" of the modified g-vector $(S \mid \mathbf{0})\mathbf{g}_{u_t}$ of $u_t = \prod_{i=1}^n x_{i;t}$.
- It is known from [Asai'2021], [Yurikusa'2018] that

 $FacM = \{U \in modA \mid \forall \text{ quotient module X of U}, \langle \theta, dimX \rangle \geq 0\} = \overline{\mathcal{T}}_{\theta}.$

• One notice: $\langle \theta, dim X \rangle = 0$ for the quotient module X = 0. So the condition $\langle -\theta, dim X \rangle = (dim X)^T (-\theta) \le 0$ for each quotient module X of U is like

$$F_U[-\theta] = \max\{\mathbf{v}^T(-\theta) \mid c_\mathbf{v} \neq 0\} = 0,$$

where " $F_U = \sum c_v Y^v$ " is the *F*-polynomial of *U* defined using quotient modules of *U*.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Dominant set from the viewpoint of τ -tilting theory

• In summary, $U \in FacM \iff F_U[-\theta] = 0$ and it is "like"

$$F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0$$

on the cluster algebras side.

• Hence, by ignoring the initial cluster variables, the dominant set

$$dom(u_t) = \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}$$

of the seed t is like the set

{indecomposable τ -rigid modules in FacM}

for a τ -tilting pair (M, P) in modA, which is a kind of replacement of the torsion class *FacM*.

Final Remark

F-invariant $(- || -)_F$ is related to the following known invariants in cluster theory, because all these are related to the components of *f*-vectors.

- (i) Fomin-Zelevinsky's compatibility degree (− || −) defined on almost positive roots of a Cartan matrix of finite type;
- (ii) Fu-Gyoda's *f*-compatibility degree (− || −)_f defined on the set of unfrozen cluster variables, as mentioned before;
- (iii) Derksen-Weyman-Zelevinsky's *E*-invariant $E^{sym}(-,-)$ defined in the additive categorification of cluster algebras, which is closely related to the extension dimension in cluster categories;
- (iv) Kang-Kashiwara-Kim-Oh's \mathfrak{d} -invariant $\mathfrak{d}(-,-)$ defined in the monoidal categorification of (quantum) cluster algebras, which is related to some information of the (renormalized) *R*-matrices $\mathbf{r}_{M,N}$ and $\mathbf{r}_{N,M}$ in the representation theory of quiver Hecke algebras.

Thank you!

æ

S. Asai.

The wall-chamber structures of the real Grothendieck groups. *Adv. Math.*, 381:Paper No. 107615, 44 pp, 2021.

A. Berenstein and A. Zelevinsky.

Quantum cluster algebras. Adv. Math., 195(2):405–455, 2005.

P. Cao

F-invariant in cluster algebras. arXiv: 2306.11438, 2023.

H. Derksen, J. Weyman, and A. Zelevinsky.

Quivers with potentials and their representations II: Applications to cluster algebras. J. Amer. Math. Soc., 23(1):749–790, 2010.

C. Fu and Y. Gyoda.

Compatibility degree of cluster complexes. Ann. Inst. Fourier, 74(2):663–718, 2024.

S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. J. Amer. Math. Soc., 15:497–529, 2002.

S. Fomin and A. Zelevinsky.

Y-systems and generalized associahedra. Ann. Math., 158(3):977-1018, 2003.

S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients.

Compos. Math., 143(1):112–164, 2007.

M. Gross, P. Hacking, S. Keel, and M. Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608, 2018.

Peigen Cao (USTC)

S.-J. Kang, M. Kashiwara, M. Kim, and S.-J. Oh. Monoidal categorification of cluster algebras. J. Amer. Math. Soc., 31:349–426, 2018.

T. Yurikusa.

Wide subcategories are semistable. Doc. Math., 23:35–47, 2018.

[Asa21], [BZ05], [Cao23], [DWZ10], [FZ02], [FZ03], [FZ07], [FG24], [GHKK18], [KKK018], [Yur18]

э

イロト イヨト イヨト イヨト