F-invariant in cluster algebras

Peigen Cao

University of Science and Technology of China

August 6, 2024

The 21st International Conference on Representations of Algebras July 31-August 9, 2024, Shanghai

- **Cluster algebras: Definition and Laurent phenomenon**
- **2** Two mutation invariants: tropical invariant and *F*-invariant
- ³ Oriented exchange graphs of cluster algebras
- **Cluster algebras: Definition and Laurent phenomenon**
- **2** Two mutation invariants: tropical invariant and *F*-invariant
- ³ Oriented exchange graphs of cluster algebras

Compatible pair

\n- Fix
$$
m, n \in \mathbb{Z}
$$
 with $m \ge n > 0$
\n- $\widetilde{B} = \begin{bmatrix} B_{n \times n} \\ P \end{bmatrix}$: $m \times n$ integer matrix
\n- A: $m \times m$ integer show.

• Λ : $m \times m$ integer skew-symmetric matrix

Definition (Compatible pair, Berenstein-Zelevinsky)

Call (B, Λ) a compatible pair, if there exists a diagonal matrix $S = diag(s_1, \ldots, s_n)$ with $s_i \in \mathbb{Z}_{>0}$ such that

 $\widetilde{B}^{\mathsf{T}} \Lambda = (S \mid \mathbf{0})_{n \times m}$

where 0 is the zero matrix of size $n \times (m - n)$.

Remark: The condition $\widetilde{B}^T \Lambda = (S | 0)_{n \times m}$ implies \widetilde{B} has the full rank n and $\widetilde{B}^T \Lambda \widetilde{B} = SB$ is skew-symmetric. Thus B is skew-symmetrizable.

Seed and Mutation

Call
$$
t_0 = (X, \widetilde{B}, \Lambda)
$$
 a seed in $\mathbb{F} := \mathbb{Q}(z_1, \ldots, z_m)$, if
\n• $X = (x_1, \ldots, x_m)$ is a free generating set of \mathbb{F} ;
\n• (\widetilde{B}, Λ) is a compatible pair.

In this case, call X a cluster and x_1, \ldots, x_m cluster variables.

We have mutations μ_1, \ldots, μ_n to produce new seeds:

$$
\mu_k:(X,\widetilde{B},\Lambda)\mapsto(X',\widetilde{B}',\Lambda'),
$$

where $X' = (X \setminus \{x_k\}) \cup \{x'_k\}$ and the new cluster variable x'_k is determined by the k-th column of $\widetilde{B}=(b_{ii})$:

$$
x'_{k} = x_{k}^{-1} \left(\prod_{b_{ik} > 0} x_{i}^{b_{ik}} + \prod_{b_{ik} < 0} x_{i}^{-b_{ik}} \right) = \frac{\text{a binomial}}{x_{k}}.
$$

 \bullet μ_k is an involution, i.e.,

$$
(X,\widetilde{B},\Lambda) \stackrel{\mu_k}{\longmapsto} (X',\widetilde{B}',\Lambda') \stackrel{\mu_k}{\longmapsto} (X,\widetilde{B},\Lambda)
$$

 $(\widetilde{B}',\Lambda')$ is still a compatible pair for the same diagonal matrix, i.e.,

$$
\widetilde{\mathbf{B}}^{\mathsf{T}}\mathbf{\Lambda}=(\mathbf{S}\mid\mathbf{0})=(\widetilde{\mathbf{B}}^{\prime})^{\mathsf{T}}\mathbf{\Lambda}^{\prime}.
$$

• For the case of $m = n = 2$, $\mu_k : (\widetilde{B}, \Lambda) \mapsto (-\widetilde{B}, -\Lambda)$.

Example: Type A_2

Take
$$
\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda
$$
 and $X = (x_1, x_2)$. Clearly, $m = n = 2$ and
\n
$$
\widetilde{B}^T \Lambda = (S | \mathbf{0}) = I_2.
$$

$$
(x_1,x_2)\xrightarrow{\mu_1} (x_3,x_2)\xrightarrow{\mu_2} (x_3,x_4)\xrightarrow{\mu_1} (x_5,x_4)\xrightarrow{\mu_2} \ldots
$$

By applying the mutation relations:

$$
x_{k+2}=\frac{x_{k+1}+1}{x_k},
$$

all cluster variables that we can obtain are as follows:

$$
x_3 = \frac{x_2 + 1}{x_1}, \quad x_4 = \frac{x_1 + x_2 + 1}{x_1 x_2}, \quad x_5 = \frac{x_1 + 1}{x_2}
$$

 $x_6 = x_1, \quad x_7 = x_2 \implies x_{i+5} = x_i, \forall i.$

重

Cluster algebra

Fix an initial seed $t_0 = (X, \overline{B}, \Lambda)$. We can get a collection of seeds:

 $\Delta = \{t = \overset{\leftarrow}{\mu}(t_0) \mid \overset{\leftarrow}{\mu}$ any sequence of mutations}.

Cluster algebra $\mathcal{A} = \mathcal{A}(t_0)$ is the Z-subalgebra of $\mathbb{F} = \mathbb{Q}(x_1, \ldots, x_m)$ generated by all cluster variables in Δ .

Example (Type A_2 , continued)

Take
$$
\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda
$$
, $X = (x_1, x_2)$. Set $t_0 = (X, \widetilde{B}, \Lambda)$. Since all
cluster variables in Δ are

$$
x_1
$$
, x_2 , $x_3 = \frac{x_2 + 1}{x_1}$, $x_4 = \frac{x_1 + x_2 + 1}{x_1 x_2}$, $x_5 = \frac{x_1 + 1}{x_2}$,

 $\mathcal{A}=\mathbb{Z}[x_1, x_2, \frac{x_2+1}{x_1}]$ $\frac{x_1+1}{x_1}, \frac{x_1+x_2+1}{x_1x_2}$ $\frac{+x_2+1}{x_1x_2}, \frac{x_1+1}{x_2}$ $\frac{1}{x_2}$ \subseteq $\mathbb{Q}(x_1, x_2)$. Actually, $\mathcal{A} \subseteq \mathbb{Z}[x_1^{\pm 1}, x_2^{\pm 1}]$.

Laurent phenomenon and canonical expression

A cluster monomial u is a monomial in cluster variables from the same cluster.

Theorem (Fomin-Zelevinsky, Goss-Hacking-Keel-Kontsevich)

Let u be a cluster monomial and $t = (X_t, B_t, \Lambda_t)$ a seed of A. Then (i) The expansion of u w.r.t. X_t is a Laurent polynomial.

(ii) Set $\hat{y}_{k;t} = X_t^{\mathcal{B}_t \mathbf{e}_k}$. The expansion above has a **canonical expression**

 $u = X_t^{\mathbf{g}_u^t} F_u^t(\widehat{Y}_t) = X_t^{\mathbf{g}_u^t} F_u^t(\widehat{y}_{1;t},\ldots,\widehat{y}_{n;t}),$

where $\mathbf{g}_u^t \in \mathbb{Z}^m$ and $F_u^t \in \mathbb{Z}[y_1, \ldots, y_n]$ with $\mathbf{y_i} \nmid \mathbf{F_u^t}$, \forall i. (iii) F_u^t has positive coefficients and constant term 1.

Call $\mathbf{g}_u^t \in \mathbb{Z}^m$ the extended g-vector, F_u^t the F -polynomial of u w.r.t seed t.

Example: canonical expression

Example (Type A_2 , canonical expression)

Take
$$
\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda
$$
, $X = (x_1, x_2)$. Set $t_0 = (X, \widetilde{B}, \Lambda)$. Then

$$
x_1 = x_1 \cdot 1,
$$

\n
$$
x_2 = x_2 \cdot 1,
$$

\n
$$
x_3 = \frac{x_2 + 1}{x_1} = x_1^{-1} x_2 \cdot (1 + \hat{y}_1),
$$

\n
$$
x_4 = \frac{x_1 + x_2 + 1}{x_1 x_2} = x_1^{-1} \cdot (1 + \hat{y}_1 + \hat{y}_1 \hat{y}_2),
$$

\n
$$
x_5 = \frac{x_1 + 1}{x_2} = x_2^{-1} \cdot (1 + \hat{y}_2),
$$

where $\hat{y}_1 = X^{\text{Be}_1} = x_2^{-1}, \quad \hat{y}_2 = X^{\text{Be}_2} = x_1.$

∢ ロ ▶ ィ 何 ▶ ィ

 λ in \mathbb{R} in \mathbb{R} ÷. QQ

1 Cluster algebras: Definition and Laurent phenomenon

- **2** Two mutation invariants: tropical invariant and F-invariant
- **3** Oriented exchange graphs of cluster algebras

Will use the canonical expressions to define two mutation invariants: $\langle -, - \rangle$ and $(- \parallel -)_F$, called tropical invariant and F-invariant.

Relationship: $(u || u')_F = \langle u, u' \rangle + \langle u' \rangle$ take symmetrized sum.

Tropical polynomial

Given a non-zero polynomial $\mathit{F}=\sum_{\mathsf{v}\in\mathbb{N}^n}\mathsf{c}_\mathsf{v}\,\mathsf{Y}^\mathsf{v}\in\mathbb{Z}[y_1,\ldots,y_n]$ and a vector $\mathbf{r} \in \mathbb{Z}^n$, denote by

 $F[\mathbf{r}] := \max \{ \mathbf{v}^T \mathbf{r} \mid c_{\mathbf{v}} \neq 0 \} \in \mathbb{Z}.$

Call the map $F[-]: \mathbb{Z}^n \to \mathbb{Z}$ a tropical polynomial.

Key point: Replace a monomial " $Y^{\mathsf{v}''}$ by a inner product " $\mathsf{v}^\mathsf{T} \mathsf{r}''$ and replace " $+$ " by taking max $\{-,-\}.$

Example

Take
$$
F = 1 + y_1 + y_1y_2
$$
 and $\mathbf{r} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Then
\n
$$
F[\mathbf{r}] = \max \left\{ \begin{bmatrix} 0, 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}, [1, 0] \begin{bmatrix} -1 \\ 1 \end{bmatrix}, [1, 1] \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}
$$
\n
$$
= \max \{ 0, -1, 0 \} = 0.
$$

Remark: If F has constant term 1, then $F[r] \geq 0$, $\forall r \in \mathbb{Z}^n$.

Existence

 Ω

Tropical invariant: $\langle -, - \rangle$

Let $u=X_t^{\mathbf{g}_u^t}F_u^t(\widehat{Y}_t)$ and $u' = X_t^{\mathbf{g}_u^t}F_{u'}^t(\widehat{Y}_t)$ be two cluster monomials of $\mathcal A$ written their **canonical expressions** in a seed $t = (X_t, B_t, \Lambda_t)$.

Using the canonical expressions, we define an integer:

$\langle u, u' \rangle_t := (\mathbf{g}_u^t)^{\mathsf{T}} \mathsf{\Lambda}_t \mathbf{g}_{u'}^t + \mathsf{F}_u^t [(S \mid \mathbf{0}) \mathbf{g}_{u'}^t],$

where the 2nd term is the tropical F-polynomial $\mathit{F}^{\,t}_u[-]$ valued at the modified g-vector $(S | 0)$ g $_{u'}^t \in \mathbb{Z}^n$ of u' w.r.t. seed t.

Theorem (Tropical invariant, Cao)

The integer $\langle u, u' \rangle_t$ only depends on u and u', not on the choice of t.

P. Cao, F-invariant in cluster algebras, arXiv:2306.11438.

 Ω

Theorem (Tropical invariant, Cao)

The integer $\langle u, u' \rangle_t := (\mathbf{g}_u^t)^T \Lambda_t \mathbf{g}_{u'}^t + F_u^t[(S \mid \mathbf{0}) \mathbf{g}_{u'}^t]$ only depends on u and u', not on the choice of t.

Proof: Consider the g -vectors of u' w.r.t. different seeds:

$$
\{{\boldsymbol g}_{u'}^w\in\mathbb Z^m\mid w\in\Delta\}\;\;\rightsquigarrow\;\;\{\Lambda_w{\boldsymbol g}_{u'}^w\in\mathbb Z^m\mid w\in\Delta\}.
$$

Denote by $\mathbb{Q}_{sf}(x_1,\ldots,x_m) = \{P/Q \mid 0 \neq P, Q \in \mathbb{Z}_{\geq 0}[x_1,\ldots,x_m]\}$. Clearly, $\mathbb{Q}_{\text{sf}}(x_1,\ldots,x_m)=\mathbb{Q}_{\text{sf}}(X_w), \ \ \forall \ \ w\in \Delta.$ Claim: There exists a unique semifield homomorphism associated to u' :

$$
\beta_{u'}:(Q_{sf}(x_1,\ldots,x_m),\cdots,+)\rightarrow (\mathbb{Z},+, \ \text{max}\{-,-\})
$$

s.t. $\beta_{u'}(X_w)=(\Lambda_w\mathbf{g}_{u'}^w)^{\sf \tiny T}\in\mathbb{Z}_{\text{row}}^m,~~\forall~w\in\Delta.$ Since $u=X_t^{\mathbf{g}_u^t}\bullet F_u^t(X_t^{\widetilde{B}_t}),$ one has

$$
\beta_{u'}(u) = (\mathbf{g}_u^t)^T \Lambda_t \mathbf{g}_{u'}^t + F_u^t[(S \mid \mathbf{0}) \mathbf{g}_{u'}^t] = \langle u, u' \rangle_t
$$

N[ot](#page-12-0)ice that the left side [on](#page-14-0)ly depends on u and u' , not on [t](#page-12-0)[he](#page-13-0) [cho](#page-0-0)[ic](#page-32-0)[e o](#page-0-0)[f](#page-32-0) t [.](#page-0-0) Ω

Definition (F-invariant, Cao)

The \overline{F} -invariant between two cluster monomials u and u' is defined to be the symmetrized sum

$$
(u \parallel u')_F = \langle u, u' \rangle_t + \langle u', u \rangle_t
$$

=
$$
(\mathbf{g}_u^t)^T \Lambda_t \mathbf{g}_{u'}^t + F_u^t[(S \mid \mathbf{0})\mathbf{g}_{u'}^t] + (\mathbf{g}_{u'}^t)^T \Lambda_t \mathbf{g}_u^t + F_{u'}^t[(S \mid \mathbf{0})\mathbf{g}_u^t].
$$

Since Λ_t **is skew-symmetric, (1st term** $+$ **3rd term)** $=$ 0. Thus

 $(u \parallel u')_F = F_u^t[(S \mid \mathbf{0})\mathbf{g}_{u'}^t] + F_{u'}^t[(S \mid \mathbf{0})\mathbf{g}_u^t].$

(trop. F-polynomial of u valued at the modified g-vector of u' plus trop. F-polynomial of u' valued at the modified g-vector of u .)

Remark: Since F_u^t and $F_{u'}^t$ have constant term 1, $(u \parallel u')_F \in \mathbb{Z}_{\geq 0}$.

ミト ミーのなべ

Special case: If u and u' are two unfrozen cluster variables, say

$$
u=x_{i;t}, u'=x_{j;w},
$$

where "unfrozen" means $i,j\in[1,n].$ Since $\mathbf{g}_u^t=\mathbf{e}_i\in\mathbb{Z}^m$ and $\mathit{F}_u^t=1,$ we have

$$
(u || u')_F = F_u^t[(S | 0)\mathbf{g}_{u'}^t] + F_{u'}^t[(S | 0)\mathbf{g}_u^t]
$$

= 0 + F_u^t[(S | 0)\mathbf{e}_i]
= max{ $\mathbf{v}^T(S | 0)\mathbf{e}_i | c_{\mathbf{v}} \neq 0$ } = s_i · f'_i,

where s_i comes from $S = diag(s_1, \ldots, s_n)$ and f'_i is the maximal exponent of y_i in $\mathcal{F}_{\mathsf{u}'}^t = \sum_{\mathsf{v} \in \mathbb{N}^n} c_\mathsf{v} Y^\mathsf{v} \in \mathbb{Z}[y_1,\ldots,y_n].$ Thus

$$
(u || u')_F = (x_{i;t} || x_{j;w})_F = s_i f'_i = s_i \cdot (x_{i;t} || x_{j;w})_f,
$$

where $(x_{i;t} \mid\mid x_{j;w})_f := f_i'$ is the f -compatibility degree defined by Fu-Gyoda using the components of f-vectors.

 Ω

 $A \equiv 1 \pmod{4} \pmod{4} \pmod{4} \pmod{2} \pmod{2}$

F-invariant: Special case

$$
(x_{i;t} \mid x_{j;w})_F = s_i \cdot (x_{i;t} \mid x_{j;w})_f.
$$

- f -compatibility degree $(- \mid\mid -)_{f}$ is defined on the set of unfrozen cluster variables;
- F-invariant $(- \parallel -)_F$ can be defined for any two cluster monomials and an important **advantage** of F -invariant is that we can calculate $(u || u')_F$ by using any seed t.
- \bullet In fact, F -invariant can be defined for any two "good basis elements", e.g., theta functions constructed by Goss-Hacking-Keel-Kontsevich.

Theorem (Fu-Gyoda)

 $(\mathsf{x}_{i;t} \mid \mid \mathsf{x}_{j;w})_f = 0$ iff $\mathsf{x}_{i;t}$ and $\mathsf{x}_{j;w}$ are contained in the same cluster.

Corollary: $(x_{i;t} || x_{j;w})_F = 0$ iff $x_{i;t} \cdot x_{j;w}$ is a cluster monomial. \mathbf{A} and \mathbf{B} and \mathbf{B} Recall that $(u \parallel u')_F \in \mathbb{Z}_{\geq 0}$ for any two cluster monomials u and u' .

Now we discuss when $(u || u')_F = 0$.

Theorem (Cao)

For two cluster monomials u and u' , their product $u \cdot u'$ is still a cluster monomial iff $(u \mid u')_F = 0$.

Proof: " \Longrightarrow " Say $u \cdot u'$ is a cluster monomial in seed t. Then $F_u^t = 1 = F_{u'}^t$. Thus

$$
(u || u)_F = F_u^t[...] + F_{u'}^t[...] = 0.
$$

 $" \Longleftarrow"$ (Not immediate!) ... and use the corollary of Fu-Gyoda's Theorem . . .

Example: Type A_{2}

Take
$$
\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda
$$
 and $X = (x_1, x_2)$. Clearly, $\widetilde{B}^T \Lambda = (S | \mathbf{0}) = I_2$.
\n $(x_1, x_2) \xrightarrow{\mu_1} (x_3, x_2) \xrightarrow{\mu_2} (x_3, x_4) \xrightarrow{\mu_1} (x_5, x_4) \xrightarrow{\mu_2} (x_5, x_1) \xrightarrow{\mu_1} (x_2, x_1)$

$$
x_3 = x_1^{-1}x_2 \cdot (1 + \widehat{y}_1), \quad x_4 = x_1^{-1} \cdot (1 + \widehat{y}_1 + \widehat{y}_1 \widehat{y}_2), \quad x_5 = x_2^{-1} \cdot (1 + \widehat{y}_2).
$$

By using the canonical expressions, we can calculate the F -invariant, e.g.,

$$
(x_3 \mid x_4)_F = F_{x_3}[\mathbf{g}_{x_4}] + F_{x_4}[\mathbf{g}_{x_3}] = (1 + y_1) \begin{bmatrix} -1 \\ 0 \end{bmatrix} + (1 + y_1 + y_1y_2) \begin{bmatrix} -1 \\ 1 \end{bmatrix}
$$

= $\max\{0, -1\} + \max\{0, -1, 0\} = 0.$
 $(x_3 \mid x_5)_F = F_{x_3}[\mathbf{g}_{x_5}] + F_{x_5}[\mathbf{g}_{x_3}] = (1 + y_1) \begin{bmatrix} 0 \\ -1 \end{bmatrix} + (1 + y_2) \begin{bmatrix} -1 \\ 1 \end{bmatrix}$
= $\max\{0, 0\} + \max\{0, 1\} = 1.$

By the theorem, we know that x_3x_4 is a cluster monomial, while x_3x_5 is not.

- **1** Cluster algebras: Definition and Laurent phenomenon
- **2** Two mutation invariants: tropical invariant and *F*-invariant
- ³ Oriented exchange graphs of cluster algebras

Theorem: Oriented exchange graphs of (skew-symmetrizable) cluster algebras are acyclic.

The exchange graph of a cluster algebra A is a graph Γ defined as follows:

- the vertex set of Γ is the set of seeds (up to permutations) of \mathcal{A} ;
- the edges of Γ correspond to seed mutations.

Now we fix an initial seed $t_0 = (X, B, \Lambda)$ of A. By the sign-coherence of c -vectors, each seed mutation $t'=\mu_k(t)$ is either a green mutation or a red mutation, depending that the *k*-th column of the C-matrix $C_t^{t_0}$ lies in $\mathbb{Z}_{\geq 0}^n$ or $\mathbb{Z}_{\leq 0}^n$.

Remark: If $t' = \mu_k(t)$ is red mutation, then $t = \mu_k(t')$ is green mutation.

So each edge $t \stackrel{k}{\rightharpoonup} t'$ in the exchange graph $\mathsf \Gamma$ has an orientation defined using green mutation. Thus we obtain a **quiver** $\overrightarrow{\Gamma}$, called the oriented exchange graph of A.

Theorem: Oriented exchange graphs of (skew-symmetrizable) cluster algebras are acyclic.

Remark: The above result is well-known to experts for skew-symmetric cluster algebras, because in this case,

- the oriented exchange graphs of cluster algebras is a connected component of some oriented exchange graphs from representation theory;
- there is a natural partial order on the set of "seeds" (e.g., two-term silting objects, or τ -tilting pairs) on the representation theory side and thus their oriented exchange graphs are acyclic.

Remark: The partial order on τ -tilting pairs is induced by the partial order on the torsion classes.

Key point to the proof of the theorem: give a suitable replacement of torsion class on cluster algebras side so that we can define a partial order on cluster algebras side.

Dominant set of a seed (replacement of torsion class in τ -tilting thory)

• Fix an initial seed $t_0 = (X, \widetilde{B}, \Lambda)$. For a cluster monomial u, denote by

$$
F_u := F_u^{t_0}, \quad \mathbf{g}_u := \mathbf{g}_u^{t_0},
$$

the F -polynomial and the extended g-vector of u with respect to the initial seed t_0 .

- For a seed $t=(X_t, \widetilde{B}_t, \Lambda_t)$, denote by $u_t=\prod_{i=1}^n x_{i,t}$ the (basic) cluster monomial in t with full support on the unfrozen part.
- For a cluster variable z, recall $(z \parallel u_t)_F = \mathcal{F}_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] + \mathcal{F}_{u_t}[(S \mid \mathbf{0})\mathbf{g}_z].$

Definition (Dominant set, Cao)

The dominant set of a seed t is defined to be

$$
dom(u_t):=\{z\in\mathcal{X}^\circ\mid F_z[(S\mid \mathbf{0})\mathbf{g}_{u_t}]=0\},\
$$

where \mathcal{X}° is the set of unfrozen cluster variables of $\mathcal{A} = \mathcal{A}(t_0).$

Dominant set of a seed (replacement of torsion class in τ -tilting thory)

Keep $u_t = \prod_{i=1}^n x_{i;t}$ and $dom(u_t) := \{z \in \mathcal{X}^\circ \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}.$

- If two seeds t and t' are the same up to a permutation, then $u_t = u_{t'}$ and thus $dom(u_t) = dom(u_{t'})$.
- Since the F-polynomial of an initial cluster variable is 1, we have

{initial unfrozen cluster variables} \subset dom(u_t)

for any seed t .

By ignoring the initial cluster variables, the dominant set $\mathit{dom}(u_t) = \{z \in \mathcal{X}^\circ \mid \mathit{F}_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}]=0\}$ of the seed t is "like" the set

{indecomposable τ -rigid modules in $FacM$ }

for a τ -tilting pair (M, P) in modA. (Will give more details later.)

Theorem (Cao)

If $t' = \mu_k(t)$ is a green mutation in \mathcal{A} , then dom $(u_t) \subsetneq$ dom $(u_{t'})$. In particular,

- **•** green mutations induce a partial order on the set of seeds (up to permutations) of A;
- \bullet the oriented exchange graph of $\mathcal A$ is acyclic.

Remark: The above result will appear in the second version of the paper: P. Cao, F-invariant in cluster algebras, arXiv:2306.11438.

 Ω

Example: Type A_2

Take
$$
\widetilde{B} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \Lambda
$$
 and $X = (x_1, x_2)$. Clearly, $\widetilde{B}^T \Lambda = (S | \mathbf{0}) = I_2$.

 $x_3 = x_1^{-1}x_2 \cdot (1 + \hat{y}_1), \quad x_4 = x_1^{-1} \cdot (1 + \hat{y}_1 + \hat{y}_1 \hat{y}_2), \quad x_5 = x_2^{-1} \cdot (1 + \hat{y}_2).$

One can check that

$$
dom(u_{t_0}) = \{x_1, x_2\}, \ dom(u_{t_1}) = \{x_1, x_2, x_3\}, \ dom(u_{t_2}) = \{x_1, x_2, x_3, x_4\}
$$

$$
dom(u_{t_3}) = \{x_1, x_2, x_3, x_4, x_5\}, \ dom(u_{t_4}) = \{x_1, x_2, x_5\}.
$$

 \leftarrow \Box

э

The next few pages will answer the following question:

Why the dominant set

$$
dom(u_t) = \{z \in \mathcal{X}^{\circ} \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}
$$

can be viewed as an replacement of torsion class in τ -tilting theory?

Remark: In our convention, the initial (unfrozen) cluster variables correspond to the τ -rigid pairs $(0, P_1), \ldots, (0, P_n)$.

Dominant set from the viewpoint of τ -tilting theory

Recall: "by ignoring the initial cluster variables, the dominant set $\mathit{dom}(u_t)=\{z\in \mathcal{X}^\circ\mid \mathit{F}_z[(S\mid \mathbf{0})\mathbf{g}_{u_t}]=0\}$ of the seed t is "like" the set

{indecomposable τ -rigid modules in $FacM$ }

for a τ -tilting pair (M, P) in modA". Reason as follows:

- Let $\theta = \mathbf{g}_{(M,P)}$ be the g-vector of the τ -tilting pair (M, P) , which is like the " negative" of the modified g-vector $(S | 0)$ g_{ut} of $u_t = \prod_{i=1}^{n} x_{i,t}$.
- It is known from [Asai'2021], [Yurikusa'2018] that

 $FacM = \{U \in mod A \mid \forall \text{ quotient module } X \text{ of } U, \langle \theta, \text{dim} X \rangle \geq 0\} = \overline{\mathcal{T}}_{\theta}.$

• One notice: $\langle \theta, \text{dim} X \rangle = 0$ for the quotient module $X = 0$. So the condition $\langle -\theta ,dim X\rangle = (dim X)^{\mathcal{T}}(-\theta) \leq 0$ for each quotient module X of U is like

$$
F_U[-\theta] = \max\{v^T(-\theta) \mid c_v \neq 0\} = 0,
$$

where " $F_{U}=\sum\limits_{\mathsf{C}}\mathsf{c}_{\mathsf{v}}\,Y^{\mathsf{v}}\,$ " is the F -polynomial of U defined using quotient modules of U.

◆ロト → 何ト → ヨト → ヨト

Dominant set from the viewpoint of τ -tilting theory

• In summary,
$$
U \in \text{Fac} M \Longleftrightarrow \text{F}_{U}[-\theta] = 0
$$
 and it is "like"

$$
F_z[(S\mid \mathbf{0})\mathbf{g}_{u_t}]=0
$$

on the cluster algebras side.

Hence, by ignoring the initial cluster variables, the dominant set

$$
dom(u_t) = \{z \in \mathcal{X}^{\circ} \mid F_z[(S \mid \mathbf{0})\mathbf{g}_{u_t}] = 0\}
$$

of the seed t is like the set

{indecomposable τ -rigid modules in Fac M}

for a τ -tilting pair (M, P) in modA, which is a kind of replacement of the torsion class FacM.

Final Remark

F-invariant $(- \parallel -)$ is related to the following known invariants in cluster theory, because all these are related to the components of f-vectors.

- (i) Fomin-Zelevinsky's compatibility degree $(- \mid \mid -)$ defined on almost positive roots of a Cartan matrix of finite type;
- (ii) Fu-Gyoda's f-compatibility degree $(- \parallel -)_f$ defined on the set of unfrozen cluster variables, as mentioned before;
- (iii) Derksen-Weyman-Zelevinsky's E -invariant $E^{sym}(-,-)$ defined in the additive categorification of cluster algebras, which is closely related to the extension dimension in cluster categories;
- (iv) Kang-Kashiwara-Kim-Oh's \mathfrak{d} -invariant $\mathfrak{d}(-,-)$ defined in the monoidal categorification of (quantum) cluster algebras, which is related to some information of the (renormalized) R-matrices $r_{M,N}$ and $r_{N,M}$ in the representation theory of quiver Hecke algebras.

(ロト 4 何 ト 4 ヨ ト 4

Thank you!

÷ Þ.

 \leftarrow \Box

 \leftarrow \leftarrow \leftarrow

重

 299

S. Asai.

The wall-chamber structures of the real Grothendieck groups. Adv. Math., 381:Paper No. 107615, 44 pp, 2021.

A. Berenstein and A. Zelevinsky.

Quantum cluster algebras. Adv. Math., 195(2):405–455, 2005.

P. Cao.

F-invariant in cluster algebras. arXiv: 2306.11438, 2023.

H. Derksen, J. Weyman, and A. Zelevinsky.

Quivers with potentials and their representations II: Applications to cluster algebras. J. Amer. Math. Soc., 23(1):749–790, 2010.

C. Fu and Y. Gyoda.

Compatibility degree of cluster complexes. Ann. Inst. Fourier, 74(2):663–718, 2024.

S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. J. Amer. Math. Soc., 15:497–529, 2002.

S. Fomin and A. Zelevinsky. Y-systems and generalized associahedra. Ann. Math., 158(3):977–1018, 2003.

S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients. Compos. Math., 143(1):112–164, 2007.

M. Gross, P. Hacking, S. Keel, and M. Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608, 2018.

٠ D.

◂**◻▸ ◂◚▸**

 298

∍

S.-J. Kang, M. Kashiwara, M. Kim, and S.-J. Oh. Monoidal categorification of cluster algebras. J. Amer. Math. Soc., 31:349–426, 2018.

T. Yurikusa.

Wide subcategories are semistable. Doc. Math., 23:35–47, 2018.

[\[Asa21\]](#page-31-0), [\[BZ05\]](#page-31-1), [\[Cao23\]](#page-31-2), [\[DWZ10\]](#page-31-3), [\[FZ02\]](#page-31-4), [\[FZ03\]](#page-31-5), [\[FZ07\]](#page-31-6), [\[FG24\]](#page-31-7),[\[GHKK18\]](#page-31-8), [\[KKKO18\]](#page-31-9), [\[Yur18\]](#page-32-1)

イロト イ部 トイヨ トイヨト

÷.