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Introduction

In this study, we introduce a notable class of non-associative
hyperalgebraic structure christened extra polyloop-II, and examine its
algebraic properties. Extra polyloop-II is a special class of newly
introduced non-associative hyperalgebraic structure, designated
”Polyloop.”
This work is focused on studying and investigating the hyperalgebraic
properties and autotopic representation of extra polyloop-II. We also
explore the notion of pseudo-automorphism in this hyperalgebraic
structure.
In a classical algebraic structure, the composition of two elements is an
element, while in an algebraic hyperstructure, the composition of two
elements is a set.
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Background of Study

extra loop [F. Fenyves [8, 9]

A loop (G, ·) is said to be an extra loop if and only if it satisfies the
identity (xy · z)x = x(y · zx) for all x, y, z ∈ G. Identities (i) - (iii) were
shown to be equivalent:

(i) (xy · z)x = x(y · zx)

(ii) yz · yx = y(zy · x)
(iii) (x · yz)y = xy · zy) ∀x,y,z ∈ G

Consequently, in the study of non-associative algebraic hyperstructures,
we present analogous results which characterize the extra polyloop-II
identity with seven other equivalent identities.
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Hypergroupoid, Hypergroup

In 1934, during the 8th Congress of Scandinavian Mathematicians, F.
Marty [10] characterized hypergroups as a natural generalization of the
idea of a group. The study of hyperstructure was further exhibited by P.
Corsini [4]. In [12], polyquasigroups and polyloops were introduced, and
extensively studied and some of their algebraic properties were
established.

Definition

Let H be a non-empty set and ◦ : H × H −→ P∗(H) be a hypero-
peration (multivalued operation). The couple (H,◦) is known as a
hypergroupoid.

Let G be a group and H be any subgroup of G. Then, G/H = {xH | x ∈ G}
becomes a hypergroup where the hyperoperation is defined in a usual
manner:

aH ◦ bH = {cH | c ∈ aH · bH} for all a, b ∈ G.
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Semihypergroup, Quasihypergroup, Hypergroup

Definition

A hypergroupoid (H,◦) is the pair of a non-empty set H with a hy-
peroperation ◦ : H×H→ P(H)\{;} defined on it. An hypergroupoid
(H,◦) is called a semihypergroup if

(i) it obeys the associativity law a ◦ (b ◦ c) = (a ◦ b) ◦ c for
all a, b, c ∈ H, which means that

⋃

u∈ a◦b
u ◦ c=
⋃

v∈ b◦c
a ◦ v

An hypergroupoid (H,◦) is called a quasihypergroup if

(ii) it obeys the reproduction axiom x ◦H = H = H ◦ x for
all x ∈ H.

A hypergroupoid (H,◦) is called a hypergroup if it is a semihyper-
group and a quasihypergroup.
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Hv-group

Definition

A hypergroupoid (H,◦) is called an Hv-group if it is a quasihyper-
group and it obeys the weak associativity (WASS) condition

(iii) x ◦ (y ◦ z)∩ (x ◦ y) ◦ z ̸= ; for all x, y, z ∈ H.

A hypergroupoid (H,◦) is called an Marty-Moufang hypergroup (Hm-
group) if it is a quasihypergroup and it obeys the Moufang identity

(iv) (x ◦ y) ◦ (z ◦ x) = x ◦ ((y ◦ z) ◦ x) for all x, y, z ∈ H.

We often see the reproduction axiom used in the form: Given a, b ∈ H,
there exist x, y ∈ H such that b ∈ a◦x and b ∈ y◦a. Hence, an hypergroup
(of Marty) is equivalent to a multigroup of Dresher and Ore [7]
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Hypergroup

Definition

A hypergroup is a couple (H,◦), where ◦ : H×H −→ P∗(H), such that
the following conditions hold for all x, y, z of H:

1 (x ◦ y) ◦ z= x ◦ (y ◦ z) for all x, y, z ∈ H which means that
⋃

u∈ x◦y
u ◦ z=
⋃

v∈ y◦z
x ◦ v

2 H ◦ x = x ◦ H = H, where

H ◦ x =
⋃

h∈H

h ◦ x and x ◦ H =
⋃

h∈H

x ◦ h

This condition is called the reproduction axiom.
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Polygroup

Definition [Davvaz [6]

A polygroup is a system℘=< P, ·, e,−1 >, where e ∈ P, −1 is a unitary
operation on P, ·maps P×P into the non-empty subsets of P, and the
following axioms hold for all x, y, z ∈ P:

(P1) (x · y) · z= x · (y · z),
(P2) e · x = x · e= x

(P3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

A polygroup is a special type of hypergroup.
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Polyquasigroup, Polyloop and Multiloop

Definitions

Let P = (G, ·) be a polygroupoid such that / : G × G → P∗(G) and
\ : G×G→ P∗(G).

(a) If (i) y ∈ x · (x\y) (ii) y ∈ x\(x · y) (iii) y ∈ (y/x) · x (iv)
y ∈ (y · x)/x) then (G, ·,\,/) will be called a
polyquasigroup.

(b) If x · e= e · x = x for all x ∈ G and (G, ·,\,/) is a
polyquasigroup, then (G, ·,\,/, e) will be called a
polyloop.

(c) x ∈ x · e= e · x for all x ∈ P and (P, ·,⧹,⧸) is a
polyquasigroup. Then (P, ·,⧹,⧸, e) will be called a
multiloop.

(d) (x · y) · z= x · (y · z) for all x, y, z ∈ P and (P, ·,⧹,⧸) is
a polyloop. Then (P, ·,⧹,⧸) will be called an
associative polyloop.
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extra polyloop-II

Definition

Let (G, ·,/,\, e) be a polyloop, then (G, ·,/,\, e) is called an extra
polyloop-II if it satisfies the identity

(yx · zx = y(xz · x)

for all x, y, z ∈ G
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Main Results

Theorem 1

Let (G, ·,/,\, e) be a polyloop then, (G, ·,/,\, e) is an extra polyloop-
II iff any of the following is true in (G, ·,/,\, e) for all x, y, z ∈
G; X, Y, Z ⊆ G:

(i) yX · zX = (y · Xz)X.

(ii) Yx · zx = (Y · xz)x.

(iii) yx · Zx = (y · xZ)x.

(iv) YX · zX = (Y · Xz)X.

(v) yX · ZX = (y · XZ)X.

(vi) Yx · Zx = (Y · xZ)x.

(vii) YX · ZX = (Y · XZ)X.
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Proof

Suppose (G, ·,/,\, e) is an extra polyloop-II then

yx · zx = (y · xz)x (1)

Now, we show that (1) holds iff any of (i) - (vi) holds
L.H.S of (1):

yx · zx =
⋃

a∈yx
a · (zx) =
⋃

a∈yx,b∈zx

(a · b).

R.H.S of (1):
(y · xz)x =
⋃

p∈xz
(yp) · x =
⋃

q∈
⋃

yp
p∈xz

(q · x).

∴
⋃

a∈yx,b∈zx

(a · b) =
⋃

q∈
⋃

yp
p∈xz

(q · x) (2)
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Flexibility Laws for extra polyloop-II

Corollary

If (G, ·,/,\, e) is an extra polyloop-II, then the following are true in
(G, ·,/,\, e) for all x, z ∈ G; X, Z ⊆ G

(i) x · zx = xz · x;

(ii) X · zX = Xz · X;

(iii) x · Zx = xZ · x;

(iv) X · ZX = XZ · X.

Remark

The identity (i) in the flexibility law of the Corollary above is true
if (G, ·,/,\, e) is an extra loop. On the other hand, the identities (i)
- (iv) in the Corollary above will jointly be called flexibility laws for
extra polyloop-II.
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Theorem 2

Let (G, ·,/,\, e) be an extra polyloop-II, then the following are true
for all x, y, z ∈ G:
(i) (G, ·,/,\, e) is an inverse property polyloop i.e. a ∈ ax · xρ and
b ∈ xλ · xb ∀ a, b, x ∈ G.
(ii) a ∈ aX · Xρ and b ∈ Xλ · Xb ∀ a, b ∈ G; X ⊆ G.
(iii) Z ⊆ Zx · xρ and Y ⊆ xλ · xY ∀ x ∈ G; Y, Z ⊆ G.
(iv) Q ⊆ QX · Xρ and P ⊆ Xλ · XP ∀ P, Q, X ⊆ G.

Proof

(i) Suppose (G, ·,/,\, e) is an extra polyloop-II, then we have:

yx · zx = (y · xz)x (3)

Let e ∈ yx =⇒ y ∈ e/x = {xλ} =⇒ y = xλ. Then (3) becomes:
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Proof Contd.

xλx · zx = (xλ · xz)x

=⇒ zx ⊆ (xλ · xz)x

=⇒ z ∈ xλ · xz.

Next, let e ∈ y · xz =⇒ y ∈ e/xz= (xz)λ

=⇒ y ∈ (xz)λ = (xz)

=⇒ y ∈ (xz)

Putting this in (3), we have:

((xz) · x)zx = ((xz) · xz)x

=⇒ x ∈ ((xz) · x)(zx)

=⇒ z\zx ⊆ ((xz) · x)(zx)

Oyeyemi Oluwaseyi Oyebola Extra Polyloop-II and Its Representations August 9, 2024 16 /21



Proof Contd.

=⇒ zxL̄z ⊆ zxL((xz)·x)

=⇒ L̄z ⊆ L((xz)·x)

=⇒ eL̄z ⊆ eL((xz)·x)

=⇒ z\e ⊆ ((xz) · x)

=⇒ zρ ∈ (xz) · x

=⇒ x ∈ (xz)\zρ

=⇒ x ∈ zρ L̄(xz) ⊆ zρL(xz)λ(∵ L̄a = Laλ)

=⇒ x ∈ zρL((xz))λ = zρL((xz)ρ)λ = zρLxz

=⇒ x ∈ zρLxz =⇒ x ∈ xz · zρ.

Hence, (G, ·,/,\, e) is an inverse property polyloop.
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Autotopism of extra Polyloop-II

Theorem 3

Let (G, ·,\,/, e) be a polyloop, then (G, ·,\,/, e) is an extra polyloop-II
if and only if (RX , L̄XRX , RX) ∈ AUT(G, ·,\,/, e) for all X ⊆ G.

Proof

Let (G, ·,\,/, e) be a polyloop, then by Theorem 1 (G, ·,\,/, e) is an
extra polyloop-II iff

yX · zX = (y · Xz)X

=⇒ yRX · zRX = (y · zLX)RX

Let A1 = yRX · zRX and A2 = (y · zLX)RX
Suppose q ∈ Xz =⇒ q ∈

⋃

x∈X xz

=⇒ z ∈
⋃

x∈X
x\q =⇒ z ∈ X\q =⇒ z ∈ qL̄X .
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Conclusion and Further Studies

It is worth noting that the generalization of classical quasigroup and loop
is achieved by axiomatizing Polyquasigroup and polyloop. It was evident
that polyquasigroup and polyloop are birthed from a non-commutative
quasigroup and loop respectively.
A general sense of constructing an extra polyloop, characterized by seven
equivalent identities, was investigated.
In future work, the extra polyloop will be investigated for other analogous
algebraic properties that were satisfied by the extra loop in the classical
sense. This will further be investigated and illustrated with examples.
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