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Full exceptional collection

Let D be a triangulated category.

Definition 1.
A full exceptional collection in D is an ordered set of objects (E1, . . . , En) s.t.

1. HomD(Ei, Ei) ∼= C and HomD(Ei, Ei[p]) ∼= 0 when p 6= 0.

2. If i > j, then HomD(Ei, Ej [p]) ∼= 0 for all p ∈ Z.
3. The thick closure containing E1, . . . , En in D is equivalent to D.

Denote by FEC(D) the set of isomorphism classes of full exceptional
collections in D.

There are two actions on FEC(D):

• Zn-action: (p1, . . . , pn) · (E1, . . . , En) := (E1[p1], . . . , En[pn])

• Aut(D)-action: Φ · (E1, . . . , En) := (Φ(E1), . . . ,Φ(En))
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Dynkin case
Let ∆⃗ = (∆⃗0, ∆⃗1) be a Dynkin quiver and Db(∆⃗) := Dbmod(C∆⃗). In this

case, the maximal length n of a full exceptional collection is given by |∆⃗0|.

Define e(Db(∆⃗)) ∈ Z≥1 ∪ {+∞} by

e(Db(∆⃗)) :=
∣∣FEC(Db(∆⃗))

/
Zn

∣∣.
Theorem 2 (Obaid–Nauman–Shammakh–Fakieh–Ringel, Deligne).

e(Db(∆⃗)) =
n!

d1 · · · dn
hn,

where h is the Coxeter number associated with ∆⃗ and d1, . . . , dn are degrees of
the Weyl group of ∆⃗, i.e.,

∆⃗ h d1, . . . , dn

A⃗n n+ 1 n+ 1, n, . . . , 3, 2

D⃗n 2n− 2 2n− 2, 2n− 4, . . . , 4, 2, n

E⃗6 12 12, 9, 8, 6, 5, 2

E⃗7 18 18, 14, 13, 10, 8, 6, 2

E⃗8 30 30, 24, 20, 18, 14, 12, 8, 2
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More explicitly, we have

e(Db(∆⃗)) =



(n+ 1)n−1, ∆⃗ = A⃗n,

2(n− 1)n, ∆⃗ = D⃗n,

29 · 34, ∆⃗ = E⃗6,

2 · 312, ∆⃗ = E⃗7,

2 · 35 · 57, ∆⃗ = E⃗8.

In order to prove Theorem 2, we need the following recursive formula.

Theorem 3 (Obaid–Nauman–Shammakh–Fakieh–Ringel, Deligne).

e(Db(∆⃗)) =
h

2

∑
v∈∆⃗0

e(Db(∆⃗(v))),

where ∆⃗(v) is the full subquiver of ∆⃗ restricted to ∆⃗0 \ {v}.

For any vertex v ∈ ∆⃗0, the full subquiver ∆⃗(v) is a disjoint union of some
Dynkin quivers. Therefore, the proof of Theorem 2 is done by the recursive
formula and induction on the number of vertices.
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Extended Dynkin case

Let A = (a1, a2, a3) be a tuple of positive integers satisfying

χA :=
1

a1
+

1

a2
+

1

a3
− 1 > 0.

Note that χA > 0 if and only if

A = (1, p, q), (2, 2, r), (2, 3, 3), (2, 3, 4) or (2, 3, 5),

where p, q, r ∈ Z≥1.

For A = (a1, a2, a3) with χA > 0, we associate an extended Dynkin quiver
QA = ((QA)0, (QA)1) as follows:

A (1, p, q) (2, 2, r) (2, 3, 3) (2, 3, 4) (2, 3, 5)

QA A
(1)
p,q D

(1)
r+2 E

(1)
6 E

(1)
7 E

(1)
8
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• A
(1)
p,q-quiver:

◦2 // · · · // ◦p
&&

◦1

;;

##

◦p+q

◦p+1
// · · · // ◦p+q−1

88

• D
(1)
r -quiver:

◦1
!!

◦r

◦3 // · · · // ◦r−1

99

%%
◦2

==

◦r+1

• E
(1)
6 -quiver:

◦1
��
◦2
��

◦3 // ◦4 // ◦5 // ◦6 // ◦7

• E
(1)
7 -quiver:

◦1
��

◦2 // ◦3 // ◦4 // ◦5 // ◦6 // ◦7 // ◦8

• E
(1)
8 -quiver:

◦1
��

◦2 // ◦3 // ◦4 // ◦5 // ◦6 // ◦7 // ◦8 // ◦9
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Orbifold projective line

For A = (a1, a2, a3) with χA > 0, one can define an orbifold projective line P1
A.

The orbifold projective line P1
A can be regarded as the projective line P1 with

isotropic points 0, 1,∞ ∈ P1 and isotropic groups Z/a1Z, Z/a2Z, Z/a3Z
respectively.
Moreover, the orbifold Euler characteristic of P1

A is given by χA > 0.

The category coh(P1
A) of coherent sheaves on P1

A is abelian and hereditary.
For simplicity, we put Db(P1

A) := Dbcoh(P1
A).

Proposition 4 (Geigle–Lenzing).

There exists an equivalence of triangulated categories

Db(QA) ∼= Db(P1
A)
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Octopus quiver

Define a quiver with relation T̃A = ((T̃A)0, (T̃A)1, I) as follows:

• The set of vertices is given by

(T̃A)0 := {1,1∗} t {(i, j) | i = 1, 2, 3, j = 1, . . . , ai − 1}.

• Let v, v′ ∈ (T̃A)0 be verticies.

• If (v, v′) = (1, (ai, 1)) or ((ai, 1),1∗), there is one arrow αv,v′ ∈ (T̃A)1 from
v to v′.

• If (v, v′) = ((ai, j), (ai, j + 1)) for some i, j, there is one arrow αv,v′ ∈ (T̃A)1
from v to v′.

• Otherwise, there are no arrows.

• The relation I is given by

I := 〈α(1,1),1∗α1,(1,1)+α(2,1),1∗α1,(2,1), α(2,1),1∗α1,(2,1)+α(3,1),1∗α1,(3,1)〉.

For simplicity, we put Db(T̃A) := Dbmod
(
C
(
(T̃A)0, (T̃A)1

)
/I

)
.
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Figure: The octopus quiver with relation.
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Derived equivalences

Proposition 5 (Geigle–Lenzing, Shiraishi–Takahashi–Wada).

There exists an equivalence of triangulated categories

Db(P1
A) ∼= Db(T̃A).

Hence, we have two equivalences

Db(QA) ∼= Db(P1
A) ∼= Db(T̃A),

which play an important role in a recursive formula to count the number of full
exceptional collections.
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Definition of e(Db(QA))
Put nA := a1 + a2 + a3 − 1, which is the maximal length of a full exceptional
collection in Db(QA). To define a finite number e(Db(QA)), we consider
spherical twists.

Definition 6 (Seidel–Thomas).

Let S ∈ Aut(Db(QA)) be the Serre functor.
An object S ∈ Db(QA) is (1-)spherical if S(S) ∼= S[1] and

Hom(S, S[p]) ∼=

{
C, p = 0, 1,

0, p 6= 0, 1.

Proposition 7 (Seidel–Thomas).

Let S ∈ Db(QA) be spherical. There exists an autoequivalence
TwS ∈ Aut(Db(QA)) defined by the exact triangle

RHom(S,X)⊗ S −→ X −→ TwS(X)

for any object X ∈ D. The inverse functor Tw−1
S ∈ Aut(Db(QA)) is given by

Tw−1
S (X) −→ X −→ S ⊗ RHom(X,S)∗.
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Define a subgroup ST(Db(QA)) ⊂ Aut(Db(QA)) by

ST(Db(QA)) :=
〈
TwS | S is spherical in Db(QA)

〉
By direct calculations, we can prove the following

Proposition 8.

ST(Db(QA)) ∼= Z

Now, we are ready to define the number e(Db(QA)).

Definition 9.

e(Db(QA)) :=
∣∣∣FEC(Db(QA))

/
〈ST(Db(QA)),ZnA〉

∣∣∣
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Theorem 10 (O–Shiraishi–Takahashi).

e(Db(QA)) =
nA!

a1!a2!a3!χA
aa1
1 aa2

2 aa3
3

More explicitly, we have

e(Db(QA)) =



(p+ q − 1)!

(p− 1)!(q − 1)!
ppqq, A = (1, p, q),

4(r + 1)(r + 2)(r + 3)rr+1, A = (2, 2, r),

1224720, A = (2, 3, 3),

46448640, A = (2, 3, 4),

2551500000, A = (2, 3, 5).

Remark 11.
Takahashi–Zhang proved a similar result in the cases of χA = 0.
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Theorem 10 is proved by the following recursive formula for the orbifold
projective line.

Theorem 12 (O–Shiraishi–Takahashi).

e(Db(P1
A)) =

1

χA

∑
v∈(QA)0

e(Db(Q
(v)
A ))

+
3∑

i=1

ai

ai−1∑
j=1

( nA − 1

ai − j − 1

)
· e(Db(P1

A(i,j)
)) · e(Db(A⃗ai−j−1)),

where Q
(v)
A is the full subquiver of QA restricted to (QA)0 \ {v}, and

A(i,j) = (a′
1, a

′
2, a

′
3) is defined by a′

i = j and a′
k = ak for k 6= i.

Note that the subquiver Q
(v)
A is a disjoint union of some Dynkin quivers and

extended Dynkin quivers.

The red term comes from the derived equivalence Db(P1
A) ∼= Db(QA),

and the blue term comes from the derived equivalence Db(P1
A) ∼= Db(T̃A).
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Lyashko–Looijenga map
Let f : C3 −→ C be the normal form of a simple singularity (i.e., ADE
singularity) and n its Milnor number, i.e.,

An : f(x1, x2, x3) = xn+1
1 + x2

2 + x2
3

Dn : f(x1, x2, x3) = xn−1
1 + x1x

2
2 + x2

3

E6 : f(x1, x2, x3) = x4
1 + x3

2 + x2
3

E7 : f(x1, x2, x3) = x3
1 + x1x

3
2 + x2

3

E8 : f(x1, x2, x3) = x5
1 + x3

2 + x2
3

Then, there exists the universal unfolding F : M × C3 −→ C of f equipped
with the parameter space M := Cn.
The Lyashko–Looijenga map LL is a branched covering map defined by

LL : M −→ Cn, s 7→ (b1(s), . . . , bn(s)),

where b1, . . . , bn are coefficients of the polynomial

n∏
i=1

(u− ui(s)) = un + b1(s)u
n−1 + · · ·+ bn(s).

and u1(s), . . . , un(s) are critical values of F (s,−) : C3 −→ C for s ∈ M .
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Theorem 13 (Looijenga, Lyashko).

degLL =
n!

d1 · · · dn
hn.

Recall that Theorem 2 says that

e(Db(∆⃗)) =
n!

d1 · · · dn
hn.

Hence we have

Corollary 14.

e(Db(∆⃗)) = degLL.

We generalized the equation to the cases of extended Dynkin quivers.
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For A = (a1, a2, a3), define fA ∈ C[x1, x2, x3] by

fA(x) := xa1
1 + xa2

2 + xa3
3 − q−1 · x1x2x3

for a nonzero complex number q ∈ C∗. There exists the universal unfolding of
fA equipped with the parameter space M := CnA−1 × C∗.

We can define the Lyashko–Looijenga map LL : M −→ CnA in the same way
of a simple singularity.

By mirror symmetry, one can define this Lyashko–Looijenga map for the
quantum cohomology of P1

A and the Weyl group invariant theory of QA.

Theorem 15 (Dubrovin–Zhang).

degLL =
nA!

a1!a2!a3!χA
aa1
1 aa2

2 aa3
3 .

Corollary 16.

e(Db(QA)) = degLL
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Thank you very much!
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