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Full exceptional collection

Let D be a triangulated category.

Definition 1.

A full exceptional collection in D is an ordered set of objects (Ex,...,Ey) s.t.
1. Homp(E;, E;) = C and Homp (E;, E;[p]) =2 0 when p # 0.
2. Ifi > j, then Homp (E;, E;[p]) =20 for all p € Z.
3. The thick closure containing Ex, ..., E, in D is equivalent to D.

Denote by FEC(D) the set of isomorphism classes of full exceptional
collections in D.

There are two actions on FEC(D):
® 7™ action: (p]_, e ,pn) . (E]_, ey En) = (E1 [pl]7 ey En[pn})
e Aut(D)-action: @ - (Ex,..., E,) = (®(F1),...,P(E,))
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Dynkin case
Let A = (Ao, A1) be a Dynkin quiver and D*(A) := D’mod(CA). In this
case, the maximal length n of a full exceptional collection is given by \50|.

Define ¢(D*(A)) € Z>, U {Jroo} by
e(D*(R)) = |[FEC(D*(A)) / Z"|.

Theorem 2 (Obaid—-Nauman-Shammakh—Fakieh—Ringel, Deligne).

S |
Db A _ Lhn
6( ( )) d1 . dn ?
where h is the Coxeter number associated with A and ds,

.,dy are degrees of
the Weyl group of A, i.e.,

(A ] =& di,... dn
/Yn n+1 n—l—ln,.. 3,2
D, | 2n—21] 2n—-2,2n - 4,2.n
Es 12 12,9, 8, 6, 5, 2
2, 18 18, 14,13, 10,8, 6, 2
Es 30 30,24, 20,18, 14,12, 8,2
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More explicitly, we have

(n+1)""1, A=A,
2(n—1)", A= D,,
e(D"(A)) = { 29 3%, A = E,
2.312, A = En,
2.3%.5", A= E;.

In order to prove Theorem 2, we need the following recursive formula.

Theorem 3 (Obaid—Nauman—Shammakh—Fakieh—Ringel, Deligne).

e(D'(R)) = & 37 e(DH(AM)),

veﬁo
where A s the full subquiver of A restricted to Ag \ {v}.

For any vertex v € Ao, the full subquiver A® s a disjoint union of some
Dynkin quivers. Therefore, the proof of Theorem 2 is done by the recursive
formula and induction on the number of vertices.
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Extended Dynkin case

Let A = (a1, a2,a3) be a tuple of positive integers satisfying

1 1 1
XA::7+7+7_1>0.
al az as

Note that x4 > 0 if and only if
A: (1’p7q)7 (27277‘)7 (27373)7 (27374) or (27375)7
where p,q,7 € Z>1.
For A = (a1, a2, as) with x4 > 0, we associate an extended Dynkin quiver

Qa = ((Qa)o, (Qa)1) as follows:

A [ pa) [227)] 233 [ (234235
Q| 4 [ ol [ BV | BY | ED
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° A:E,I,(),—quiver:
4 Eé”-quiver:

0p —> -+ —> 0y
7 N o1
°1 Op+q "’
\ / 09
Op+1 ==+ == Opig-1 V

O3 —> 04 —> O5 —> Og —> Oy

° Dﬁl)—quiver:
4 Eé”-quiver:

01 Op
\ / 01
O3 —=>+++—=>0p_1 ¢
/ \ Og —> 03 —> 04 —> O5 —> Og —> O7 —> Oy
09 Opr41

° Eél)—quiver:
o1

v

09 —> 03 —> 04 —> O5 —> Og —> O7 —> 0g —> Og
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Orbifold projective line

For A = (a1,az,as) with x4 > 0, one can define an orbifold projective line P}.
The orbifold projective line P4 can be regarded as the projective line P* with
isotropic points 0,1, 00 € P! and isotropic groups Z/a1Z, Z/a2Z, Z/a3Z
respectively.

Moreover, the orbifold Euler characteristic of P is given by x4 > 0.

The category coh(PP}) of coherent sheaves on P, is abelian and hereditary.
For simplicity, we put D°(PY) := Dbcoh(Ph).

Proposition 4 (Geigle-Lenzing).

There exists an equivalence of triangulated categories

D(Qa) = D" (Ph)
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Octopus quiver

Define a quiver with relation Ta = ((Ta)o, (Ta)1,1) as follows:

® The set of vertices is given by

(TA)O = {1,1*}u{(’l,]) | 1= 1,2,3, j = 1,...,ai - 1}
® Let v,v’ € (Ta)o be verticies.
e If (v,v") = (1, (as,1)) or ((a;,1),1*), there is one arrow a, , € (T4)1 from
v to v, _
® If (v,v") = ((a4,4), (as,j + 1)) for some 4, 5, there is one arrow o, v € (T4)1
from v to v’.
® Otherwise, there are no arrows.

® The relation I is given by

I:= <06(1,1),1*C¥1,(1,1)+C¥<2,1),1*CM1,(2,1)7 C¥<2,1),1*CM1,(2,1)+C¥(3,1),1*Otl,(3,1)>-

For simplicity, we put D*(T4) := Dbmod(C(('ﬁ‘A)o, ('ﬁ‘A)l)/I).
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o
I
I
I
I
o o o) o
(1,a1-1) (1,1) 1 (3,1)
o
(2,1)
o
(2,a2—-1)

Figure: The octopus quiver with relation.

(3,a3—1)
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Derived equivalences

Proposition 5 (Geigle-Lenzing, Shiraishi—-Takahashi-Wada).

There exists an equivalence of triangulated categories
D (PY) = D*(Ta).
Hence, we have two equivalences
D"(Qa) = D'(P4) = D"(Ta),

which play an important role in a recursive formula to count the number of full
exceptional collections.
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Definition of ¢(D?(Q4))
Put na = a1 + a2 + a3 — 1, which is the maximal length of a full exceptional
collection in D*(Q4). To define a finite number e(D®(Q4)), we consider
spherical twists.

Definition 6 (Seidel-Thomas).

Let S € Aut(D®(Qa)) be the Serre functor.
An object S € D*(Qa) is (1-)spherical if S(S) = S[1] and

C7 p:O717

Hom(S, S[p]) & {0 pAOL

Proposition 7 (Seidel-Thomas).

Let S € D*(Qa) be spherical. There exists an autoequivalence
Tws € Aut(D*(Qa)) defined by the exact triangle

RHom(S, X)® S — X — Twg(X)
for any object X € D. The inverse functor Twg' € Aut(D°(Qa)) is given by
Twg'(X) — X — S ® RHom(X, S)*.
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Define a subgroup ST(D®(Q4)) C Aut(D®(QA))
ST(D"(Q4)) = = (Tws | S is spherical in D (QA)>

By direct calculations, we can prove the following

Proposition 8.
ST(D"(Qa)) = Z

Now, we are ready to define the number e(D?(Q4))

Definition 9.

e(D"(Qa)) = [FEC(D"(Qa)) / (ST(D"(Q4)), Z"4)
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Theorem 10 (O-Shiraishi—Takahashi).

b _ ’I’LA! a1 _as asg
G(D (QA)) - a1!a2!a3!XA ay” Gy CL3

More explicitly, we have

Y
%p”qq, A=(Lp.q),
A+ D +2)(r 430, A= (2,2,7),
e(D"(Qa)) = 1224720, A=(2,3,3),
46448640, A=(2,3,4),
2551500000, A=(2,3,5)

Remark 11.

Takahashi-Zhang proved a similar result in the cases of x4 = 0.
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Theorem 10 is proved by the following recursive formula for the orbifold
projective line.

Theorem 12 (O-Shiraishi—Takahashi).

(DPY) = — «(D*(Q))
B XA 'L‘G((Z?A)o !

3 a;—1
na—1 -
+D a4y (m - 1> ~e(D (P, ;) - (D (Aa;—j-1)),
i=1  j=1 4

where Qf:) is the full subquiver of Q4 restricted to (Qa)o \ {v}, and
Aq.jy = (a1, a5, a3) is defined by a; = j and aj, = ay, for k # 1.

Note that the subquiver QS’) is a disjoint union of some Dynkin quivers and
extended Dynkin quivers.

The red term comes from the derived equivalence D*(PPY) = D*(Q.),
and the blue term comes from the derived equivalence D®(PY) = Db(Ta).
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Lyashko—Looijenga map
Let f: C* — C be the normal form of a simple singularity (i.e., ADE
singularity) and n its Milnor number, i.e.,

Ay flxy,z0,23) = a4+ a3+ 23
D, : f(z1, @2, 3) = 2} '+ 125 4 23
Es : f(z1, @, 23) = 7+ a5+ 23

E7 f(z1, @, 23) = 2+ z125 4 25
Es : flzy,z0,23) = af + a5+ 23

Then, there exists the universal unfolding F': M x C> —s C of f equipped
with the parameter space M = C".
The Lyashko—Looijenga map LL is a branched covering map defined by

LL: M — C", s (bi(s),...,bn(s)),

where b1, ..., b, are coefficients of the polynomial
[T —=us(s)) = u™ + bi(s)u" " + - 4 ba(s).
=1

and u1(s), ..., un(s) are critical values of Fi(s,—): C* — C for s € M.
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Theorem 13 (Looijenga, Lyashko).

n! n
deg LL = mh .
Recall that Theorem 2 says that
R !
DY(A)) = —“ ",
e(D"(8) = b

Hence we have

Corollary 14.

e(D°(A)) = deg LL.

We generalized the equation to the cases of extended Dynkin quivers.
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For A = (a1, a2, as), define fa € Clz1,x2,23] by
fa(x) =2 + x3% + x3° — ¢ mizaTs

for a nonzero complex number ¢ € C*. There exists the universal unfolding of
fa equipped with the parameter space M := C"4~1 x C*.

We can define the Lyashko—Looijenga map LL: M — C™4 in the same way
of a simple singularity.

By mirror symmetry, one can define this Lyashko—Looijenga map for the
quantum cohomology of P4 and the Weyl group invariant theory of Q.

Theorem 15 (Dubrovin—Zhang).

!
nal .
deg LL = —————afj'a3”a3’.
a1:a2:a3:X A

Corollary 16.

e(D(Q4)) = deg LL
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Thank you very much!



