The number of full exceptional collections for extended Dynkin quivers

Takumi OTANI (Tsinghua University)

6th August, 2024

Joint work with Yuuki SHIRAISHI (Osaka) and Atsushi TAKAHASHI (Osaka)

Full exceptional collection

Let \mathcal{D} be a triangulated category.

Definition 1.

A full exceptional collection in \mathcal{D} is an ordered set of objects (E_1, \ldots, E_n) s.t.

- 1. $\operatorname{Hom}_{\mathcal{D}}(E_i, E_i) \cong \mathbb{C}$ and $\operatorname{Hom}_{\mathcal{D}}(E_i, E_i[p]) \cong 0$ when $p \neq 0$.
- 2. If i > j, then $\operatorname{Hom}_{\mathcal{D}}(E_i, E_j[p]) \cong 0$ for all $p \in \mathbb{Z}$.
- 3. The thick closure containing E_1, \ldots, E_n in \mathcal{D} is equivalent to \mathcal{D} .

Denote by $FEC(\mathcal{D})$ the set of isomorphism classes of full exceptional collections in \mathcal{D} .

There are two actions on $FEC(\mathcal{D})$:

- \mathbb{Z}^n -action: $(p_1,\ldots,p_n)\cdot(E_1,\ldots,E_n)\coloneqq(E_1[p_1],\ldots,E_n[p_n])$
- Aut(\mathcal{D})-action: $\Phi \cdot (E_1, \dots, E_n) \coloneqq (\Phi(E_1), \dots, \Phi(E_n))$

Dynkin case

Let $\vec{\Delta} = (\vec{\Delta}_0, \vec{\Delta}_1)$ be a Dynkin quiver and $\mathcal{D}^b(\vec{\Delta}) \coloneqq \mathcal{D}^b \mathrm{mod}(\mathbb{C}\vec{\Delta})$. In this case, the maximal length n of a full exceptional collection is given by $|\vec{\Delta}_0|$.

Define
$$e(\mathcal{D}^b(\vec{\Delta})) \in \mathbb{Z}_{\geq 1} \cup \{+\infty\}$$
 by
$$e(\mathcal{D}^b(\vec{\Delta})) \coloneqq \left| \operatorname{FEC}(\mathcal{D}^b(\vec{\Delta})) \middle/ \mathbb{Z}^n \right|.$$

Theorem 2 (Obaid-Nauman-Shammakh-Fakieh-Ringel, Deligne).

$$e(\mathcal{D}^b(\vec{\Delta})) = \frac{n!}{d_1 \cdots d_n} h^n,$$

where h is the Coxeter number associated with $\vec{\Delta}$ and d_1, \ldots, d_n are degrees of the Weyl group of $\vec{\Delta}$, i.e.,

$ec{\Delta}$	h	d_1,\ldots,d_n	
\vec{A}_n	n+1	$n+1,n,\ldots,3,2$	
\vec{D}_n	2n-2	$2n-2, 2n-4, \ldots, 4, 2, n$	
\vec{E}_6	12	12, 9, 8, 6, 5, 2	
\vec{E}_7	18	18, 14, 13, 10, 8, 6, 2	
\vec{E}_8	30	30, 24, 20, 18, 14, 12, 8, 2	

More explicitly, we have

$$e(\mathcal{D}^{b}(\vec{\Delta})) = \begin{cases} (n+1)^{n-1}, & \vec{\Delta} = \vec{A}_{n}, \\ 2(n-1)^{n}, & \vec{\Delta} = \vec{D}_{n}, \\ 2^{9} \cdot 3^{4}, & \vec{\Delta} = \vec{E}_{6}, \\ 2 \cdot 3^{12}, & \vec{\Delta} = \vec{E}_{7}, \\ 2 \cdot 3^{5} \cdot 5^{7}, & \vec{\Delta} = \vec{E}_{8}. \end{cases}$$

In order to prove Theorem 2, we need the following recursive formula.

Theorem 3 (Obaid-Nauman-Shammakh-Fakieh-Ringel, Deligne).

$$e(\mathcal{D}^b(\vec{\Delta})) = \frac{h}{2} \sum_{v \in \vec{\Delta}_0} e(\mathcal{D}^b(\vec{\Delta}^{(v)})),$$

where $\vec{\Delta}^{(v)}$ is the full subquiver of $\vec{\Delta}$ restricted to $\vec{\Delta}_0 \setminus \{v\}$.

For any vertex $v \in \vec{\Delta}_0$, the full subquiver $\vec{\Delta}^{(v)}$ is a disjoint union of some Dynkin quivers. Therefore, the proof of Theorem 2 is done by the recursive formula and induction on the number of vertices.

Extended Dynkin case

Let $A = (a_1, a_2, a_3)$ be a tuple of positive integers satisfying

$$\chi_A := \frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} - 1 > 0.$$

Note that $\chi_A > 0$ if and only if

$$A = (1, p, q), (2, 2, r), (2, 3, 3), (2, 3, 4) \text{ or } (2, 3, 5),$$

where $p, q, r \in \mathbb{Z}_{\geq 1}$.

For $A=(a_1,a_2,a_3)$ with $\chi_A>0$, we associate an extended Dynkin quiver $Q_A=((Q_A)_0,(Q_A)_1)$ as follows:

ſ	A	(1, p, q)	(2, 2, r)	(2, 3, 3)	(2, 3, 4)	(2, 3, 5)
	Q_A	$A_{p,q}^{(1)}$	$D_{r+2}^{(1)}$	$E_6^{(1)}$	$E_7^{(1)}$	$E_8^{(1)}$

• $A_{p,q}^{(1)}$ -quiver:

• $E_6^{(1)}$ -quiver:

• $D_r^{(1)}$ -quiver:

• $E_7^{(1)}$ -quiver:

$$\circ_{1} \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \circ_{2} \rightarrow \circ_{3} \rightarrow \circ_{4} \rightarrow \circ_{5} \rightarrow \circ_{6} \rightarrow \circ_{7} \rightarrow \circ_{8}$$

• $E_8^{(1)}$ -quiver:

$$\begin{matrix} \circ_1 \\ \downarrow \\ \circ_2 \rightarrow \circ_3 \rightarrow \circ_4 \rightarrow \circ_5 \rightarrow \circ_6 \rightarrow \circ_7 \rightarrow \circ_8 \rightarrow \circ_9 \\ \end{matrix}$$

Orbifold projective line

For $A=(a_1,a_2,a_3)$ with $\chi_A>0$, one can define an orbifold projective line \mathbb{P}^1_A . The orbifold projective line \mathbb{P}^1_A can be regarded as the projective line \mathbb{P}^1 with isotropic points $0,1,\infty\in\mathbb{P}^1$ and isotropic groups $\mathbb{Z}/a_1\mathbb{Z},\ \mathbb{Z}/a_2\mathbb{Z},\ \mathbb{Z}/a_3\mathbb{Z}$ respectively.

Moreover, the orbifold Euler characteristic of \mathbb{P}^1_A is given by $\chi_A > 0$.

The category $\mathrm{coh}(\mathbb{P}^1_A)$ of coherent sheaves on \mathbb{P}^1_A is abelian and hereditary. For simplicity, we put $\mathcal{D}^b(\mathbb{P}^1_A) := \mathcal{D}^b\mathrm{coh}(\mathbb{P}^1_A)$.

Proposition 4 (Geigle-Lenzing).

There exists an equivalence of triangulated categories

$$\mathcal{D}^b(Q_A) \cong \mathcal{D}^b(\mathbb{P}^1_A)$$

Octopus quiver

Define a quiver with relation $\widetilde{\mathbb{T}}_A=((\widetilde{\mathbb{T}}_A)_0,(\widetilde{\mathbb{T}}_A)_1,I)$ as follows:

• The set of vertices is given by

$$(\widetilde{\mathbb{T}}_A)_0 := \{\mathbf{1}, \mathbf{1}^*\} \sqcup \{(i, j) \mid i = 1, 2, 3, \ j = 1, \dots, a_i - 1\}.$$

- Let $v, v' \in (\widetilde{\mathbb{T}}_A)_0$ be verticies.
 - If $(v,v')=(\mathbf{1},(a_i,1))$ or $((a_i,1),\mathbf{1}^*)$, there is one arrow $\alpha_{v,v'}\in (\widetilde{\mathbb{T}}_A)_1$ from v to v'.
 - If $(v,v')=((a_i,j),(a_i,j+1))$ for some i,j, there is one arrow $\alpha_{v,v'}\in (\widetilde{\mathbb{T}}_A)_1$ from v to v'.
 - Otherwise, there are no arrows.
- The relation *I* is given by

$$I \coloneqq \langle \alpha_{(1,1),\mathbf{1}^*} \alpha_{\mathbf{1},(1,1)} + \alpha_{(2,1),\mathbf{1}^*} \alpha_{\mathbf{1},(2,1)}, \alpha_{(2,1),\mathbf{1}^*} \alpha_{\mathbf{1},(2,1)} + \alpha_{(3,1),\mathbf{1}^*} \alpha_{\mathbf{1},(3,1)} \rangle.$$

For simplicity, we put $\mathcal{D}^b(\widetilde{\mathbb{T}}_A) := \mathcal{D}^b \operatorname{mod} (\mathbb{C}((\widetilde{\mathbb{T}}_A)_0, (\widetilde{\mathbb{T}}_A)_1)/I)$.

Figure: The octopus quiver with relation.

Derived equivalences

Proposition 5 (Geigle-Lenzing, Shiraishi-Takahashi-Wada).

There exists an equivalence of triangulated categories

$$\mathcal{D}^b(\mathbb{P}^1_A) \cong \mathcal{D}^b(\widetilde{\mathbb{T}}_A).$$

Hence, we have two equivalences

$$\mathcal{D}^b(Q_A) \cong \mathcal{D}^b(\mathbb{P}_A^1) \cong \mathcal{D}^b(\widetilde{\mathbb{T}}_A),$$

which play an important role in a recursive formula to count the number of full exceptional collections.

Definition of $e(\mathcal{D}^b(Q_A))$

Put $n_A := a_1 + a_2 + a_3 - 1$, which is the maximal length of a full exceptional collection in $\mathcal{D}^b(Q_A)$. To define a finite number $e(\mathcal{D}^b(Q_A))$, we consider spherical twists.

Definition 6 (Seidel-Thomas).

Let $\mathbb{S} \in \operatorname{Aut}(\mathcal{D}^b(Q_A))$ be the Serre functor.

An object $S \in \mathcal{D}^b(Q_A)$ is (1-)spherical if $\mathbb{S}(S) \cong S[1]$ and

$$\operatorname{Hom}(S, S[p]) \cong \begin{cases} \mathbb{C}, & p = 0, 1, \\ 0, & p \neq 0, 1. \end{cases}$$

Proposition 7 (Seidel-Thomas).

Let $S \in \mathcal{D}^b(Q_A)$ be spherical. There exists an autoequivalence $\mathrm{Tw}_S \in \mathrm{Aut}(\mathcal{D}^b(Q_A))$ defined by the exact triangle

$$\mathbb{R}\mathrm{Hom}(S,X)\otimes S\longrightarrow X\longrightarrow \mathrm{Tw}_S(X)$$

for any object $X \in \mathcal{D}$. The inverse functor $\operatorname{Tw}_S^{-1} \in \operatorname{Aut}(\mathcal{D}^b(Q_A))$ is given by

$$\operatorname{Tw}_S^{-1}(X) \longrightarrow X \longrightarrow S \otimes \mathbb{R}\operatorname{Hom}(X,S)^*.$$

Define a subgroup $ST(\mathcal{D}^b(Q_A)) \subset Aut(\mathcal{D}^b(Q_A))$ by

$$\mathrm{ST}(\mathcal{D}^b(Q_A)) \coloneqq \left\langle \mathrm{Tw}_S \mid S \text{ is spherical in } \mathcal{D}^b(Q_A) \right\rangle$$

By direct calculations, we can prove the following

Proposition 8.

$$\mathrm{ST}(\mathcal{D}^b(Q_A))\cong \mathbb{Z}$$

Now, we are ready to define the number $e(\mathcal{D}^b(Q_A))$.

Definition 9.

$$e(\mathcal{D}^b(Q_A)) := \left| \operatorname{FEC}(\mathcal{D}^b(Q_A)) \middle/ \langle \operatorname{ST}(\mathcal{D}^b(Q_A)), \mathbb{Z}^{n_A} \rangle \right|$$

Theorem 10 (O-Shiraishi-Takahashi).

$$e(\mathcal{D}^b(Q_A)) = \frac{n_A!}{a_1!a_2!a_3!\chi_A} a_1^{a_1} a_2^{a_2} a_3^{a_3}$$

More explicitly, we have

$$e(\mathcal{D}^b(Q_A)) = \begin{cases} \frac{(p+q-1)!}{(p-1)!(q-1)!}p^pq^q, & A = (1,p,q), \\ 4(r+1)(r+2)(r+3)r^{r+1}, & A = (2,2,r), \\ 1224720, & A = (2,3,3), \\ 46448640, & A = (2,3,4), \\ 2551500000, & A = (2,3,5). \end{cases}$$

Remark 11.

Takahashi–Zhang proved a similar result in the cases of $\chi_A=0$.

Theorem 10 is proved by the following recursive formula for the orbifold projective line.

Theorem 12 (O-Shiraishi-Takahashi).

$$\begin{split} e(\mathcal{D}^b(\mathbb{P}^1_A)) & = & \frac{1}{\chi_A} \sum_{v \in (Q_A)_0} e(\mathcal{D}^b(Q_A^{(v)})) \\ & + \sum_{i=1}^3 a_i \sum_{j=1}^{a_i-1} \binom{n_A-1}{a_i-j-1} \cdot e(\mathcal{D}^b(\mathbb{P}^1_{A_{(i,j)}})) \cdot e(\mathcal{D}^b(\vec{A}_{a_i-j-1})), \end{split}$$

where $Q_A^{(v)}$ is the full subquiver of Q_A restricted to $(Q_A)_0 \setminus \{v\}$, and $A_{(i,j)} = (a_1', a_2', a_3')$ is defined by $a_i' = j$ and $a_k' = a_k$ for $k \neq i$.

Note that the subquiver $Q_A^{(v)}$ is a disjoint union of some Dynkin quivers and extended Dynkin quivers.

The red term comes from the derived equivalence $\mathcal{D}^b(\mathbb{P}^1_A)\cong\mathcal{D}^b(Q_A)$, and the blue term comes from the derived equivalence $\mathcal{D}^b(\mathbb{P}^1_A)\cong\mathcal{D}^b(\widetilde{\mathbb{T}}_A)$.

Lyashko-Looijenga map

Let $f \colon \mathbb{C}^3 \longrightarrow \mathbb{C}$ be the normal form of a simple singularity (i.e., ADE singularity) and n its Milnor number, i.e.,

$$A_n: f(x_1, x_2, x_3) = x_1^{n+1} + x_2^2 + x_3^2$$

$$D_n: f(x_1, x_2, x_3) = x_1^{n-1} + x_1 x_2^2 + x_3^2$$

$$E_6: f(x_1, x_2, x_3) = x_1^4 + x_2^3 + x_3^2$$

$$E_7: f(x_1, x_2, x_3) = x_1^3 + x_1 x_2^3 + x_3^2$$

$$E_8: f(x_1, x_2, x_3) = x_1^5 + x_2^3 + x_3^2$$

Then, there exists the universal unfolding $F\colon M\times\mathbb{C}^3\longrightarrow\mathbb{C}$ of f equipped with the parameter space $M:=\mathbb{C}^n$.

The Lyashko-Looijenga map LL is a branched covering map defined by

$$LL: M \longrightarrow \mathbb{C}^n, \quad s \mapsto (b_1(s), \dots, b_n(s)),$$

where b_1, \ldots, b_n are coefficients of the polynomial

$$\prod_{i=1}^{n} (u - u_i(s)) = u^n + b_1(s)u^{n-1} + \dots + b_n(s).$$

and $u_1(s), \ldots, u_n(s)$ are critical values of $F(s, -) : \mathbb{C}^3 \longrightarrow \mathbb{C}$ for $s \in M$.

Theorem 13 (Looijenga, Lyashko).

$$\deg LL = \frac{n!}{d_1 \cdots d_n} h^n.$$

Recall that Theorem 2 says that

$$e(\mathcal{D}^b(\vec{\Delta})) = \frac{n!}{d_1 \cdots d_n} h^n.$$

Hence we have

Corollary 14.

$$e(\mathcal{D}^b(\vec{\Delta})) = \deg LL.$$

We generalized the equation to the cases of extended Dynkin quivers.

For $A=(a_1,a_2,a_3)$, define $f_A\in\mathbb{C}[x_1,x_2,x_3]$ by

$$f_A(\mathbf{x}) \coloneqq x_1^{a_1} + x_2^{a_2} + x_3^{a_3} - q^{-1} \cdot x_1 x_2 x_3$$

for a nonzero complex number $q \in \mathbb{C}^*$. There exists the universal unfolding of f_A equipped with the parameter space $M := \mathbb{C}^{n_A-1} \times \mathbb{C}^*$.

We can define the Lyashko–Looijenga map $LL\colon M\longrightarrow \mathbb{C}^{n_A}$ in the same way of a simple singularity.

By mirror symmetry, one can define this Lyashko–Looijenga map for the quantum cohomology of \mathbb{P}^1_A and the Weyl group invariant theory of Q_A .

Theorem 15 (Dubrovin-Zhang).

$$\deg LL = \frac{n_A!}{a_1!a_2!a_3!\chi_A} a_1^{a_1} a_2^{a_2} a_3^{a_3}.$$

Corollary 16.

$$e(\mathcal{D}^b(Q_A)) = \deg LL$$

Thank you very much!