Derived Picard groups and integration of Hochschild cohomology (arXiv:2405.14448)

Sebastian Opper

Charles University, Prague

08/08/2024

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

→ < Ξ → <</p>

Definition

Let A be a (dg) algebra.

伺 ト イヨト イヨト

э

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is **invertible**

回 とくほとくほとう

э

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes^{\mathbb{L}}_{A} Y \cong A$$

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_A^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_A^{\mathbb{L}} X \cong A$.

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_A^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_A^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

.

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_A^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_A^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \left\{\mathsf{invertible}\ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\right\}/_{\cong}$$

/□ ▶ ▲ 글 ▶ ▲ 글

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{A}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{A}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_A^{\mathbb{L}}$

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{A}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{A}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_{A}^{\mathbb{L}}$ and neutral element A.

Definition

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{A}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{A}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_{A}^{\mathbb{L}}$ and neutral element A.

• $X \in \mathcal{D}Pic(A) \rightsquigarrow$ autoequivalence $X_* : \mathcal{D}(A) \rightarrow \mathcal{D}(A)$.

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{A}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{A}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_{A}^{\mathbb{L}}$ and neutral element A.

- $X \in \mathcal{D}Pic(A) \rightsquigarrow$ autoequivalence $X_* : \mathcal{D}(A) \rightarrow \mathcal{D}(A)$.
- $F: A \rightarrow A$ (dg) algebra automorphism $\rightsquigarrow A_F \in \mathcal{D}Pic(A)$.

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{\mathcal{A}}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{\mathcal{A}}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_{A}^{\mathbb{L}}$ and neutral element A.

- $X \in \mathcal{D}Pic(A) \rightsquigarrow$ autoequivalence $X_* : \mathcal{D}(A) \rightarrow \mathcal{D}(A)$.
- $F : A \to A$ (dg) algebra automorphism $\rightsquigarrow A_F \in \mathcal{D}Pic(A)$.

Upshot: $\mathcal{D}Pic(A)$ is the (enhanced) symmetry group of $\mathcal{D}(A)$.

▲御▶ ▲∃▶ ▲∃▶ = のQ@

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{\mathcal{A}}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{\mathcal{A}}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_{A}^{\mathbb{L}}$ and neutral element A.

- $X \in \mathcal{D}Pic(A) \rightsquigarrow$ autoequivalence $X_* : \mathcal{D}(A) \rightarrow \mathcal{D}(A)$.
- $F : A \to A$ (dg) algebra automorphism $\rightsquigarrow A_F \in \mathcal{D}Pic(A)$.

Upshot: $\mathcal{D}Pic(A)$ is the (enhanced) symmetry group of $\mathcal{D}(A)$.

▲御▶ ▲∃▶ ▲∃▶ = のQ@

Let A be a (dg) algebra. A dg bimodule $X \in \mathcal{D}(A \otimes A^{op})$ is invertible if there exists $Y \in \mathcal{D}(A \otimes A^{op})$ such that

$$X \otimes_{\mathcal{A}}^{\mathbb{L}} Y \cong A$$
 and $Y \otimes_{\mathcal{A}}^{\mathbb{L}} X \cong A$.

The derived Picard group is the group

$$\mathcal{D}\mathsf{Pic}(A) \coloneqq \{\mathsf{invertible} \ X \in \mathcal{D}(A \otimes A^{\mathsf{op}})\}/_{\cong}$$

with multiplication $\otimes_{A}^{\mathbb{L}}$ and neutral element A.

- $X \in \mathcal{D}Pic(A) \rightsquigarrow$ autoequivalence $X_* : \mathcal{D}(A) \rightarrow \mathcal{D}(A)$.
- $F : A \to A$ (dg) algebra automorphism $\rightsquigarrow A_F \in \mathcal{D}Pic(A)$.

Upshot: $\mathcal{D}Pic(A)$ is the (enhanced) symmetry group of $\mathcal{D}(A)$.

▲御▶ ▲∃▶ ▲∃▶ = のQ@

Hochschild cohomology

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

▶ ★ 문 ▶ ★ 문

э

Let A be a (dg) algebra.

<回>< E> < E> < E> <

æ

Let A be a (dg) algebra. Its Hochschild cohomology

御 と くきと くきとう

3

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$.

伺 ト イヨ ト イヨ ト

э

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

 $\operatorname{HH}^{\bullet}(A,A) \coloneqq \operatorname{Hom}_{\mathcal{D}(A \otimes A^{\operatorname{op}})}^{\bullet}(A,A).$

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

$$\operatorname{HH}^{ullet}(A,A)\coloneqq\operatorname{Hom}^{ullet}_{\mathcal{D}(A\otimes A^{\operatorname{op}})}(A,A).$$

Can be computed from a canonical complex C(A),

何 ト イヨ ト イヨ ト

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

$$\operatorname{HH}^{\bullet}(A,A) \coloneqq \operatorname{Hom}_{\mathcal{D}(A\otimes A^{\operatorname{op}})}^{\bullet}(A,A).$$

Can be computed from a canonical complex C(A), the **Hochschild** complex.

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

$$\operatorname{HH}^{ullet}(A,A)\coloneqq\operatorname{Hom}^{ullet}_{\mathcal{D}(A\otimes A^{\operatorname{op}})}(A,A).$$

Can be computed from a canonical complex C(A), the **Hochschild** complex.

The graded algebra $HH^{\bullet}(A, A)$ also admits a compatible Lie bracket [-, -],

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

$$\operatorname{HH}^{ullet}(A,A)\coloneqq\operatorname{Hom}^{ullet}_{\mathcal{D}(A\otimes A^{\operatorname{op}})}(A,A).$$

Can be computed from a canonical complex C(A), the **Hochschild** complex.

The graded algebra $HH^{\bullet}(A, A)$ also admits a compatible Lie bracket [-, -], the **Gerstenhaber bracket**.

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

$$\operatorname{HH}^{ullet}(A,A)\coloneqq\operatorname{Hom}^{ullet}_{\mathcal{D}(A\otimes A^{\operatorname{op}})}(A,A).$$

Can be computed from a canonical complex C(A), the **Hochschild** complex.

The graded algebra $HH^{\bullet}(A, A)$ also admits a compatible Lie bracket [-, -], the **Gerstenhaber bracket**.

Let A be a (dg) algebra. Its **Hochschild cohomology** $HH^{\bullet}(A, A)$ is the graded endomorphism ring of A inside $\mathcal{D}(A \otimes A^{\text{op}})$. That is,

$$\operatorname{HH}^{ullet}(A,A)\coloneqq\operatorname{Hom}^{ullet}_{\mathcal{D}(A\otimes A^{\operatorname{op}})}(A,A).$$

Can be computed from a canonical complex C(A), the **Hochschild** complex.

The graded algebra $HH^{\bullet}(A, A)$ also admits a compatible Lie bracket [-, -], the **Gerstenhaber bracket**.

3 🕨 🖌 3

Theorem (Keller)

Let A be an algebra.

.

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A)

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

In practice $HH^{\bullet}(A, A)$ is much easier to compute than $\mathcal{D}Pic(A)$.

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

In practice $HH^{\bullet}(A, A)$ is much easier to compute than $\mathcal{D}Pic(A)$.

Conceptual reason:

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

In practice $HH^{\bullet}(A, A)$ is much easier to compute than $\mathcal{D}Pic(A)$.

Conceptual reason:

• $HH^{\bullet}(A, A)$ can be computed directly from A ("local").

周 ト イヨ ト イヨ ト ニヨ

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

In practice $HH^{\bullet}(A, A)$ is much easier to compute than $\mathcal{D}Pic(A)$.

Conceptual reason:

- $HH^{\bullet}(A, A)$ can be computed directly from A ("local").
- Pic(A) is the symmetry group of D(A) and "sees" its entire structure ("global").
From derived Picard groups to Hochschild cohomology

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

In practice $HH^{\bullet}(A, A)$ is much easier to compute than $\mathcal{D}Pic(A)$.

Conceptual reason:

- $HH^{\bullet}(A, A)$ can be computed directly from A ("local").
- Pic(A) is the symmetry group of D(A) and "sees" its entire structure ("global").

Idea

Extract parts of $\mathcal{D}Pic(A)$ from its Lie algebra $HH^{\bullet}(A, A)$.

From derived Picard groups to Hochschild cohomology

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie algebra to DPic(A) and

 $\operatorname{Lie}(\mathcal{D}\operatorname{Pic}(A))\cong\operatorname{HH}^{\bullet}(A,A).$

 $HH^{\bullet}(A, A)$ and its Gerstenhaber bracket are derived invariants of A.

In practice $HH^{\bullet}(A, A)$ is much easier to compute than $\mathcal{D}Pic(A)$.

Conceptual reason:

- $HH^{\bullet}(A, A)$ can be computed directly from A ("local").
- Pic(A) is the symmetry group of D(A) and "sees" its entire structure ("global").

Idea

Extract parts of $\mathcal{D}Pic(A)$ from its Lie algebra $HH^{\bullet}(A, A)$.

• • • • • • •

Process looses information:

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

$$\{\text{Lie groups}\} \longleftrightarrow \{\text{Lie algebras}\}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

伺 ト イヨ ト イヨト

$$\{\text{Lie groups}\} \longleftrightarrow \{\text{Lie algebras}\}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

 $\exp(L) \subseteq G_{\circ}.$

何 ト イヨ ト イヨ ト

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields.

何 ト イヨ ト イヨ ト

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields. In neighbourhood $0 \in U \subseteq L$, one has

$$\exp(u \cdot_{\mathsf{BCH}} v) = \exp(u) \cdot \exp(v), \qquad (+)$$

何 ト イヨ ト イヨ ト

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields. In neighbourhood $0 \in U \subseteq L$, one has

$$\exp(u \cdot_{\mathsf{BCH}} v) = \exp(u) \cdot \exp(v), \qquad (+)$$

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields. In neighbourhood $0 \in U \subseteq L$, one has

$$\exp(u \cdot_{\mathsf{BCH}} v) = \exp(u) \cdot \exp(v), \qquad (+)$$

$$u \cdot_{\mathsf{BCH}} v \coloneqq u + v - \frac{1}{2}[u, v] + \frac{1}{12}[u, [u, v]] + \cdots$$

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields. In neighbourhood $0 \in U \subseteq L$, one has

$$\exp(u \cdot_{\mathsf{BCH}} v) = \exp(u) \cdot \exp(v), \qquad (+)$$

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields. In neighbourhood $0 \in U \subseteq L$, one has

$$\exp(u \cdot_{\mathsf{BCH}} v) = \exp(u) \cdot \exp(v), \qquad (+)$$

$$\{ \text{Lie groups} \} \longleftrightarrow \{ \text{Lie algebras} \}$$

$$G \longmapsto \text{Lie}(G),$$

$$\exp(L) \longleftarrow L.$$

Process looses information: L := Lie(G), $G_{\circ} \subseteq G$ identity component,

$$\exp(L) \subseteq G_{\circ}.$$

 $\exp(L)$ is image of map $\exp: L \to G$ defined by integrating vector fields. In neighbourhood $0 \in U \subseteq L$, one has

$$\exp(u \cdot_{\mathsf{BCH}} v) = \exp(u) \cdot \exp(v), \qquad (+)$$

• • • • • • •

Example (Classic example)

•
$$G = \mathbb{R}^{\times}$$

直 ト イヨ ト イヨト

Example (Classic example)

•
$$G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$$

伺 ト イヨ ト イヨト

Example (Classic example)

•
$$G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$$
 and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective

伺 ト イヨ ト イヨト

Example (Classic example)

直 ト イヨ ト イヨト

Example (Classic example)

•
$$G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$$
 and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.

直 ト イヨ ト イヨト

Example (Classic example)

• $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.

• In general: exp is not injective!

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

- L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.
- Group structure on exp(L) is locally encoded in BCH product.

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

- L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.
- Group structure on exp(L) is locally encoded in BCH product.

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

- L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.
- Group structure on exp(L) is locally encoded in BCH product.

Aim

Find a similar relationship between $\mathcal{D}Pic(-)$ and $HH^{\bullet}(-)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

- L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.
- Group structure on exp(L) is locally encoded in BCH product.

Aim

Find a similar relationship between $\mathcal{D}Pic(-)$ and $HH^{\bullet}(-)$.

Obstacle: No vector fields, no integration and no topology.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

- L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.
- Group structure on exp(L) is locally encoded in BCH product.

Aim

Find a similar relationship between $\mathcal{D}Pic(-)$ and $HH^{\bullet}(-)$.

Obstacle: No vector fields, no integration and no topology.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Example (Classic example)

- $G = \mathbb{R}^{\times} \rightsquigarrow L = (\mathbb{R}, 0)$ and $\exp(t) = e^t = \sum_{i=0}^{\infty} \frac{1}{i!} t^i$ is injective with $\operatorname{Im} \exp = \mathbb{R}_{>0} \subseteq \mathbb{R}^{\times}$ and $u \cdot_{\operatorname{BCH}} v = u + v$.
- In general: exp is not injective!

Summary

- L = Lie(G) recovers subgroup of exp(L) ⊆ G_o ⊆ G through exponential.
- Group structure on exp(L) is locally encoded in BCH product.

Aim

Find a similar relationship between $\mathcal{D}Pic(-)$ and $HH^{\bullet}(-)$.

Obstacle: No vector fields, no integration and no topology.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

伺 ト イヨト イヨト

Let A be a dg algebra and C(A) its Hochschild complex.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let A be a dg algebra and C(A) its Hochschild complex.

• C(A) admits non-associative product \star with left unit **1**.

• • • • • • •

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit **1**.
- Lie bracket [-, -] on C(A):

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit **1**.
- Lie bracket [-, -] on C(A):

$$[f,g] := f \star g - (-1)^{|f|}g \star f.$$

伺 ト イヨ ト イヨト

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit **1**.
- Lie bracket [-, -] on C(A):

$$[f,g] := f \star g - (-1)^{|f|}g \star f.$$

[-, -] induces the Gerstenhaber bracket on HH[•](A, A).

伺 と く ヨ と く ヨ と 二 ヨ

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit 1.
- Lie bracket [-, -] on C(A):

$$[f,g] := f \star g - (-1)^{|f|}g \star f.$$

[-,-] induces the Gerstenhaber bracket on HH[•](*A*, *A*). The pair (*C*(*A*), \star) is an example of a **pre-Lie algebra**.

同 ト イヨ ト イヨ ト ニヨ
Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit 1.
- Lie bracket [-, -] on C(A):

$$[f,g] \coloneqq f \star g - (-1)^{|f|}g \star f.$$

[-,-] induces the Gerstenhaber bracket on HH[•](A, A). The pair ($C(A), \star$) is an example of a **pre-Lie algebra**.

Natural dg Lie subalgebra $C_+(A) \subseteq C(A)$

同 ト イ ヨ ト イ ヨ ト う へ ()

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit 1.
- Lie bracket [-, -] on C(A):

$$[f,g] := f \star g - (-1)^{|f|}g \star f.$$

[-, -] induces the Gerstenhaber bracket on HH[•](A, A). The pair ($C(A), \star$) is an example of a **pre-Lie algebra**.

Natural dg Lie subalgebra $C_+(A) \subseteq C(A)$ admits complete norm so that $u \cdot_{BCH} v$ is defined for all $u, v \in C_+(A)$.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit 1.
- Lie bracket [-, -] on C(A):

$$[f,g] := f \star g - (-1)^{|f|}g \star f.$$

[-, -] induces the Gerstenhaber bracket on HH[•](A, A). The pair ($C(A), \star$) is an example of a **pre-Lie algebra**.

Natural dg Lie subalgebra $C_+(A) \subseteq C(A)$ admits complete norm so that $u \cdot_{BCH} v$ is defined for all $u, v \in C_+(A)$.

$$\Longrightarrow \left(\mathcal{C}^1_+(\mathcal{A}), \cdot_{\mathsf{BCH}} \right)$$
 is a group.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

Let A be a dg algebra and C(A) its Hochschild complex.

- C(A) admits non-associative product \star with left unit 1.
- Lie bracket [-, -] on C(A):

$$[f,g] := f \star g - (-1)^{|f|}g \star f.$$

[-, -] induces the Gerstenhaber bracket on HH[•](A, A). The pair ($C(A), \star$) is an example of a **pre-Lie algebra**.

Natural dg Lie subalgebra $C_+(A) \subseteq C(A)$ admits complete norm so that $u \cdot_{BCH} v$ is defined for all $u, v \in C_+(A)$.

$$\Longrightarrow \left(\mathcal{C}^1_+(\mathcal{A}), \cdot_{\mathsf{BCH}} \right)$$
 is a group.

▲母 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

伺 ト イヨト イヨト

Definition (pre-Lie exponential)

Suppose char k = 0.

日本・モン・モン

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_{A}(f) := \sum_{i=0}^{\infty} \frac{1}{i!} f^{\star i},$$

伺 ト イヨ ト イヨ ト

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_A(f) := \sum_{i=0}^\infty \frac{1}{i!} f^{\star i},$$

where $f^{\star i}$ is defined inductively by $f^{\star (i+1)} = f^{\star i} \star f$ and $f^{\star 0} = \mathbf{1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_{\mathcal{A}}(f) := \sum_{i=0}^{\infty} \frac{1}{i!} f^{\star i},$$

where $f^{\star i}$ is defined inductively by $f^{\star (i+1)} = f^{\star i} \star f$ and $f^{\star 0} = \mathbf{1}$.

The filtration $0 \subseteq C_+(A) \subseteq C(A)$

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_{\mathcal{A}}(f) := \sum_{i=0}^{\infty} \frac{1}{i!} f^{\star i},$$

where $f^{\star i}$ is defined inductively by $f^{\star (i+1)} = f^{\star i} \star f$ and $f^{\star 0} = \mathbf{1}$.

The filtration $0 \subseteq C_+(A) \subseteq C(A)$ induces a filtration

$$0 \subseteq HH^{ullet}_{+}(A,A) \subseteq HH^{ullet}(A,A).$$

同 ト イヨ ト イヨ ト ニヨ

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_{\mathcal{A}}(f) := \sum_{i=0}^{\infty} \frac{1}{i!} f^{\star i},$$

where $f^{\star i}$ is defined inductively by $f^{\star (i+1)} = f^{\star i} \star f$ and $f^{\star 0} = \mathbf{1}$.

The filtration $0 \subseteq C_+(A) \subseteq C(A)$ induces a filtration

$$0 \subseteq \mathsf{HH}^{\bullet}_{+}(A,A) \subseteq \mathsf{HH}^{\bullet}(A,A).$$

The set $HH^1_+(A, A)$ becomes a group under \cdot_{BCH}

伺 とうき とう とう うう

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_{\mathcal{A}}(f) := \sum_{i=0}^{\infty} \frac{1}{i!} f^{\star i},$$

where $f^{\star i}$ is defined inductively by $f^{\star (i+1)} = f^{\star i} \star f$ and $f^{\star 0} = \mathbf{1}$.

The filtration $0 \subseteq C_+(A) \subseteq C(A)$ induces a filtration

$$0 \subseteq HH^{\bullet}_{+}(A, A) \subseteq HH^{\bullet}(A, A).$$

The set $HH^1_+(A, A)$ becomes a group under \cdot_{BCH} (usually more complicated than vector addition!).

Suppose char $\Bbbk = 0$. The **exponential** $\exp_A : C_+(A) \to C(A)$ is defined as

$$\exp_{\mathcal{A}}(f) := \sum_{i=0}^{\infty} \frac{1}{i!} f^{\star i},$$

where $f^{\star i}$ is defined inductively by $f^{\star (i+1)} = f^{\star i} \star f$ and $f^{\star 0} = \mathbf{1}$.

The filtration $0 \subseteq C_+(A) \subseteq C(A)$ induces a filtration

$$0 \subseteq HH^{\bullet}_{+}(A, A) \subseteq HH^{\bullet}(A, A).$$

The set $HH^1_+(A, A)$ becomes a group under \cdot_{BCH} (usually more complicated than vector addition!).

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

伺 ト イヨト イヨト

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A_{∞} -category).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A_{∞} -category).

exp_A induces a group homomorphism

$$\exp_{A}: (\operatorname{HH}^{1}_{+}(A), \cdot_{\operatorname{BCH}}) \longrightarrow \mathcal{D}\operatorname{Pic}(A).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A_{∞} -category).

exp_A induces a group homomorphism

$$\exp_A : (\operatorname{HH}^1_+(A), \cdot_{\operatorname{BCH}}) \longrightarrow \mathcal{D}\operatorname{Pic}(A).$$

Note: does not require any finiteness assumptions.

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A_{∞} -category).

exp_A induces a group homomorphism

$$\exp_{A} : (HH^{1}_{+}(A), \cdot_{BCH}) \longrightarrow \mathcal{D}Pic(A).$$

Note: does not require any finiteness assumptions.

2 The assignment $A \rightarrow \exp_A$ is natural under quasi-equivalences.

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A_{∞} -category).

exp_A induces a group homomorphism

$$\exp_{A} : (HH^{1}_{+}(A), \cdot_{BCH}) \longrightarrow \mathcal{D}Pic(A).$$

Note: does not require any finiteness assumptions.

The assignment A → exp_A is natural under quasi-equivalences.
 F : A $\xrightarrow{\sim}$ B ⇒ canonical commutative diagram

$$HH^{1}_{+}(A, A) \xrightarrow{\exp_{A}} \mathcal{D}Pic(A)$$

$$F_{*} \downarrow \sim \qquad \sim \downarrow F_{*}$$

$$HH^{1}_{+}(B, B) \xrightarrow{\exp_{B}} \mathcal{D}Pic(B).$$

・ 同 ト ・ ヨ ト ・ ヨ

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A_{∞} -category).

exp_A induces a group homomorphism

$$\exp_{A} : (HH^{1}_{+}(A), \cdot_{BCH}) \longrightarrow \mathcal{D}Pic(A).$$

Note: does not require any finiteness assumptions.

The assignment A → exp_A is natural under quasi-equivalences.
 F : A $\xrightarrow{\sim}$ B ⇒ canonical commutative diagram

$$\begin{array}{c} \mathsf{HH}^{1}_{+}(A,A) \xrightarrow{\mathsf{exp}_{A}} \mathcal{D}\mathsf{Pic}(A) \\ F_{*} \downarrow \sim & \sim \downarrow F_{*} \\ \mathsf{HH}^{1}_{+}(B,B) \xrightarrow{\mathsf{exp}_{B}} \mathcal{D}\mathsf{Pic}(B). \end{array}$$

Proof relies on work by many people.

Sebastian Opper

Derived Picard groups and integration of Hochschild cohomology

Injectivity of exponential

Sebastian Opper Derived Picard groups and integration of Hochschild cohomology

Injectivity of exponential

One can prove a general sufficient criterion for the injectivity of exp_A .

直 ト イヨ ト イヨト

Injectivity of exponential

One can prove a general sufficient criterion for the injectivity of exp_A . An application is the following.

• • = • • = •

Theorem (O.)

The exponential $\exp_A : HH^1_+(A, A) \to DPic(A)$ is injective in any of the following cases:

• • = • • = •

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

• A is formal, i.e. $A \simeq H^{\bullet}(A)$,

• • = • • = •

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.

伺 ト イ ヨ ト イ ヨ ト

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

- A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.
- ② A is cohomologically schurian, i.e. $H^0(A) \cong k$. Analogous statement for categories.

周 ト イ ヨ ト イ ヨ ト

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

- A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.
- ② A is cohomologically schurian, i.e. $H^0(A) \cong k$. Analogous statement for categories.
- A is an E₂-algebra,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

- A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.
- ② A is cohomologically schurian, i.e. $H^0(A) \cong \Bbbk$. Analogous statement for categories.
- S A is an E₂-algebra, e.g. any commutative dg algebra,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

- A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.
- ② A is cohomologically schurian, i.e. $H^0(A) \cong \Bbbk$. Analogous statement for categories.
- A is an E₂-algebra, e.g. any commutative dg algebra, cochain algebra C[•](X) over topological space X,

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

- A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.
- ② A is cohomologically schurian, i.e. $H^0(A) \cong \Bbbk$. Analogous statement for categories.
- A is an E₂-algebra, e.g. any commutative dg algebra, cochain algebra C[•](X) over topological space X, Hochschild complexes.

- 4 同 ト 4 三 ト - 4 三 ト

3

Theorem (O.)

The exponential \exp_A : $HH^1_+(A, A) \rightarrow DPic(A)$ is injective in any of the following cases:

- A is formal, i.e. A ≃ H[•](A), e.g. A is a graded algebra/category.
- ② A is cohomologically schurian, i.e. $H^0(A) \cong \Bbbk$. Analogous statement for categories.
- A is an E₂-algebra, e.g. any commutative dg algebra, cochain algebra C[•](X) over topological space X, Hochschild complexes.

- 4 同 ト 4 三 ト - 4 三 ト

3

• • • • • • •

Theorem (Yekutieli)

Let A be fin.dim. algebra.

伺 ト イヨ ト イヨト

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A)

伺 ト イヨ ト イヨト

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

伺 ト イヨト イヨト
Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

伺 ト イヨト イヨト

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true.

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true. But: $Out_o(A)$ and $Im exp_A$ assemble into a subgroup

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true. But: $Out_{\circ}(A)$ and $Im \exp_A$ assemble into a subgroup

$$\operatorname{Aut}^\infty_\circ(A)\coloneqq\operatorname{HH}^1_+(A,A)
times\operatorname{Out}_\circ(A)\subseteq \mathcal{D}\operatorname{Pic}(A).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true. But: $Out_{\circ}(A)$ and $Im \exp_A$ assemble into a subgroup

$$\operatorname{Aut}^{\infty}_{\circ}(A) \coloneqq \operatorname{HH}^{1}_{+}(A, A) \rtimes \operatorname{Out}_{\circ}(A) \subseteq \mathcal{D}\operatorname{Pic}(A).$$

Conjecture

Let A be a fin.dim graded algebra

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true. But: $Out_{\circ}(A)$ and $Im \exp_A$ assemble into a subgroup

 $A \rightarrow \infty(A)$, $\mu \mu 1 (A \rightarrow A) \rightarrow 0 \rightarrow (A) \subset \mathcal{D} \square (A)$

Conjecture
Let A be a fin.dim graded algebra such that
$$\{a \in A^1 \mid a^2 = 0\} = \{0\}.$$

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true. But: $Out_{\circ}(A)$ and $Im \exp_A$ assemble into a subgroup

$$\operatorname{Aut}^\infty_\circ(A)\coloneqq\operatorname{HH}^1_+(A,A)
times\operatorname{Out}_\circ(A)\subseteq\mathcal{D}\operatorname{Pic}(A).$$

Conjecture

Let A be a fin.dim graded algebra such that $\{a \in A^1 \mid a^2 = 0\} = \{0\}$. Then $Aut_{\circ}^{\infty}(A)$ is a derived invariant.

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the derived invariant group DPic(A) is $Out_o(A)$, the identity component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

 $Out_{\circ}(A)$ is a derived invariant of A.

For A graded, this is no longer true. But: $Out_{\circ}(A)$ and $Im \exp_A$ assemble into a subgroup

$$\operatorname{Aut}^\infty_\circ(A)\coloneqq\operatorname{HH}^1_+(A,A)
times\operatorname{Out}_\circ(A)\subseteq\mathcal{D}\operatorname{Pic}(A).$$

Conjecture

Let A be a fin.dim graded algebra such that $\{a \in A^1 \mid a^2 = 0\} = \{0\}$. Then $Aut_{\circ}^{\infty}(A)$ is a derived invariant.

伺 ト イヨト イヨト

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface.

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char k = 0

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) ,

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$\mathcal{D}\mathsf{Pic}(A) \cong \mathsf{Aut}^{\infty}_{\circ}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$DPic(A) \cong Aut_{\circ}^{\infty}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

$$\mathcal{MCG}(\Sigma_A, \eta_A) = \{f : \Sigma_A \to \Sigma_A \mid f \text{ preserves structure} \}_{\sim}$$

denotes the mapping class group.

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$DPic(A) \cong Aut_{\circ}^{\infty}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

$$\mathcal{MCG}(\Sigma_A, \eta_A) = \{f : \Sigma_A \to \Sigma_A \mid f \text{ preserves structure} \}_{\sim}$$

denotes the mapping class group.

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$DPic(A) \cong Aut^{\infty}_{\circ}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

$$\mathcal{MCG}(\Sigma_A, \eta_A) = ig\{f: \Sigma_A o \Sigma_A \mid f \text{ preserves structure}ig\}_{\sim}$$

denotes the mapping class group.

Viewing $\mathcal{D}Pic(A)$ as a "Lie group" G,

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$DPic(A) \cong Aut^{\infty}_{\circ}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

$$\mathcal{MCG}(\Sigma_A, \eta_A) = \{f : \Sigma_A \to \Sigma_A \mid f \text{ preserves structure} \}_{\sim}$$

denotes the mapping class group.

Viewing DPic(A) as a "Lie group" G, the semi-direct product (*) corresponds to the canonical sequence

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$DPic(A) \cong Aut^{\infty}_{\circ}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

$$\mathcal{MCG}(\Sigma_A, \eta_A) = ig\{f: \Sigma_A o \Sigma_A \mid f \text{ preserves structure}ig\}_{\sim}$$

denotes the mapping class group.

Viewing DPic(A) as a "Lie group" G, the semi-direct product (*) corresponds to the canonical sequence

$$\mathbf{1} \longrightarrow G_{\circ} \longrightarrow G \longrightarrow G/G_{\circ} \longrightarrow \mathbf{1}.$$

Theorem (O., extends O.'19)

Let A be a fin.-dim. graded gentle algebra and (Σ_A, η_A) its surface. If char $\Bbbk = 0$ or under mild conditions on (Σ_A, η_A) , there exists an isomorphism

$$DPic(A) \cong Aut^{\infty}_{\circ}(A) \rtimes \mathcal{MCG}(\Sigma_A, \eta_A).$$
 (*)

$$\mathcal{MCG}(\Sigma_A, \eta_A) = ig\{f: \Sigma_A o \Sigma_A \mid f \text{ preserves structure}ig\}_{\sim}$$

denotes the mapping class group.

Viewing DPic(A) as a "Lie group" G, the semi-direct product (*) corresponds to the canonical sequence

$$\mathbf{1} \longrightarrow G_{\circ} \longrightarrow G \longrightarrow G/G_{\circ} \longrightarrow \mathbf{1}.$$

Other applications:

・ロト ・四ト ・ヨト ・ヨト

æ

Other applications:

• Necessary condition for uniqueness of lifts of triangulated functors to enhancements

伺 と く ヨ と く ヨ と …

э

Teasers

Other applications:

- Necessary condition for uniqueness of lifts of triangulated functors to enhancements and the related uniqueness problem for Fourier-Mukai kernels.
- Derived Picard groups of Fukaya categories of cotangent bundles (and plumbings). Related to chains and cochains on spaces.

何 ト イヨ ト イヨ ト

Teasers

Other applications:

- Necessary condition for uniqueness of lifts of triangulated functors to enhancements and the related uniqueness problem for Fourier-Mukai kernels.
- Derived Picard groups of Fukaya categories of cotangent bundles (and plumbings). Related to chains and cochains on spaces.

Thank you for your attention!

伺 ト イ ヨ ト イ ヨ ト