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Derived Picard groups

Definition

Let A be a (dg) algebra. A dg bimodule X ∈ D(A⊗ Aop) is
invertible if there exists Y ∈ D(A⊗ Aop) such that

X ⊗L
A Y ∼= A and Y ⊗L

A X ∼= A.

The derived Picard group is the group

DPic(A) :=
{
invertible X ∈ D(A⊗ Aop)

}
/∼=

with multiplication ⊗L
A and neutral element A.

X ∈ DPic(A) ⇝ autoequivalence X∗ : D(A) → D(A).

F : A → A (dg) algebra automorphism ⇝ AF ∈ DPic(A).

Upshot: DPic(A) is the (enhanced) symmetry group of D(A).
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Hochschild cohomology

Definition

Let A be a (dg) algebra. Its Hochschild cohomology HH•(A,A)
is the graded endomorphism ring of A inside D(A⊗ Aop). That is,

HH•(A,A) := Hom•
D(A⊗Aop)(A,A).

Can be computed from a canonical complex C (A), the Hochschild
complex.

The graded algebra HH•(A,A) also admits a compatible Lie
bracket [−,−], the Gerstenhaber bracket.
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From derived Picard groups to Hochschild cohomology

Theorem (Keller)

Let A be an algebra. There is a sensible way to assign a graded Lie
algebra to DPic(A) and

Lie
(
DPic(A)

) ∼= HH•(A,A).

HH•(A,A) and its Gerstenhaber bracket are derived invariants of A.

In practice HH•(A,A) is much easier to compute than DPic(A).

Conceptual reason:

1 HH•(A,A) can be computed directly from A (“local”).

2 DPic(A) is the symmetry group of D(A) and “sees” its entire
structure (“global”).

Idea

Extract parts of DPic(A) from its Lie algebra HH•(A,A).
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Motivating analogy: Lie groups and Lie algebras I

{Lie groups} {Lie algebras}

G Lie(G ),

exp(L) L.

Process looses information: L := Lie(G ), G◦ ⊆ G identity
component,

exp(L) ⊆ G◦.

exp(L) is image of map exp : L → G defined by integrating vector
fields. In neighbourhood 0 ∈ U ⊆ L, one has

exp(u ·BCH v) = exp(u) · exp(v), (+)

where ·BCH is the Baker-Campbell-Hausdorff product:

u ·BCH v := u + v − 1

2
[u, v ] +

1

12

[
u, [u, v ]

]
+ · · · .

(+) =⇒ exp : (U, ·BCH) −→ G is a group homomorphism.
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Motivating analogy: Lie groups and Lie algebras II

Example (Classic example)

G = R× ⇝ L = (R, 0) and exp(t) = et =
∑∞

i=0
1
i! t

i is
injective with Im exp = R>0 ⊆ R× and u ·BCH v = u + v .

In general: exp is not injective!

Summary

L = Lie(G ) recovers subgroup of exp(L) ⊆ G◦ ⊆ G through
exponential.

Group structure on exp(L) is locally encoded in BCH product.

Aim

Find a similar relationship between DPic(−) and HH•(−).

Obstacle: No vector fields, no integration and no topology.
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Integration of Hochschild cohomology I

Let A be a dg algebra and C (A) its Hochschild complex.

C (A) admits non-associative product ⋆ with left unit 1.

Lie bracket [−,−] on C (A):

[f , g ] := f ⋆ g − (−1)|f |g ⋆ f .

[−,−] induces the Gerstenhaber bracket on HH•(A,A).

The pair (C (A), ⋆) is an example of a pre-Lie algebra.

Natural dg Lie subalgebra C+(A) ⊆ C (A) admits complete norm
so that u ·BCH v is defined for all u, v ∈ C+(A).

=⇒
(
C 1
+(A), ·BCH

)
is a group.
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Integration of Hochschild cohomology II

Definition (pre-Lie exponential)

Suppose char k = 0. The exponential expA : C+(A) → C (A) is
defined as

expA(f ) :=
∞∑
i=0

1

i !
f ⋆i ,

where f ⋆i is defined inductively by f ⋆(i+1) = f ⋆i ⋆ f and f ⋆0 = 1.

The filtration 0 ⊆ C+(A) ⊆ C (A) induces a filtration

0 ⊆ HH•
+(A,A) ⊆ HH•(A,A).

The set HH1
+(A,A) becomes a group under ·BCH (usually more

complicated than vector addition!).
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Integration for Hochschild cohomology III

Theorem (O.)

Suppose char k = 0 and A is a dg algebra (c-unital A∞-category).

1 expA induces a group homomorphism

expA :
(
HH1

+(A), ·BCH
)

DPic(A).

Note: does not require any finiteness assumptions.

2 The assignment A → expA is natural under quasi-equivalences.

F : A
∼−→ B ⇒ canonical commutative diagram

HH1
+(A,A) DPic(A)

HH1
+(B,B) DPic(B).

∼F∗

expA

F∗∼

expB

Proof relies on work by many people.
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Injectivity of exponential

One can prove a general sufficient criterion for the injectivity of
expA. An application is the following.

Theorem (O.)

The exponential expA : HH1
+(A,A) → DPic(A) is injective in any

of the following cases:

1 A is formal, i.e. A ≃ H•(A), e.g. A is a graded
algebra/category.

2 A is cohomologically schurian, i.e. H0(A) ∼= k. Analogous
statement for categories.

3 A is an E2-algebra, e.g. any commutative dg algebra, cochain
algebra C •(X ) over topological space X , Hochschild
complexes.
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The identity component of DPic(A) and outer
automorphisms

Theorem (Yekutieli)

Let A be fin.dim. algebra. Then the identity component of the
derived invariant group DPic(A) is Out◦(A), the identity
component of the outer automorphism group.

Theorem (Huisgen Zimmermann-Saorin, Rouqier)

Out◦(A) is a derived invariant of A.

For A graded, this is no longer true. But: Out◦(A) and Im expA
assemble into a subgroup

Aut∞◦ (A) := HH1
+(A,A)⋊ Out◦(A) ⊆ DPic(A).

Conjecture

Let A be a fin.dim graded algebra such that
{a ∈ A1 | a2 = 0} = {0}. Then Aut∞◦ (A) is a derived invariant.
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Application: partially wrapped Fukaya categories & graded
gentle algebras

Theorem (O., extends O.’19)

Let A be a fin.-dim. graded gentle algebra and (ΣA, ηA) its surface.
If char k = 0 or under mild conditions on (ΣA, ηA), there exists an
isomorphism

DPic(A) ∼= Aut∞◦ (A)⋊MCG(ΣA, ηA). (∗)

MCG(ΣA, ηA) =
{
f : ΣA → ΣA | f preserves structure

}
∼

denotes the mapping class group.

Viewing DPic(A) as a “Lie group” G , the semi-direct product (∗)
corresponds to the canonical sequence

1 G◦ G G/G◦ 1.
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Teasers

Other applications:

Necessary condition for uniqueness of lifts of triangulated
functors to enhancements and the related uniqueness problem
for Fourier-Mukai kernels.

Derived Picard groups of Fukaya categories of cotangent
bundles (and plumbings). Related to chains and cochains on
spaces.

Thank you for your attention!
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