Simple Functors over the Green Biset Functor of Section Burnside Rings

International Conference on Representations of Algebras (ICRA 21, 2024)

Authors

Olcay Coşkun

Department of Mathematics Boğaziçi University Bebek, 34342 Istanbul, Turkey olcay.coskun@boun.edu.tr Research supported by Tübitak-1001-119F422.

Ruslan Muslumov

ADA University Ahmadbey Aghaoghlu str. 61 Baku, AZ1008, Azerbaijan rmuslumov@ada.edu.az

Definition

Let G and H be finite groups. The biset Burnside group B(H,G) is the Burnside group $B(H \times G^{op})$, i.e. the Grothendieck group of the category of finite (H,G)—bisets.

Definition

Let G and H be finite groups. The biset Burnside group B(H,G) is the Burnside group $B(H \times G^{op})$, i.e. the Grothendieck group of the category of finite (H,G)—bisets.

Fix a commutative ring with unity k. Biset category $k\mathcal{C}$ is an k-linear category such that

Definition

Let G and H be finite groups. The biset Burnside group B(H,G) is the Burnside group $B(H \times G^{op})$, i.e. the Grothendieck group of the category of finite (H,G)—bisets.

Fix a commutative ring with unity k. Biset category kC is an k-linear category such that

1 The objects of kC are finite groups.

Definition

Let G and H be finite groups. The biset Burnside group B(H,G) is the Burnside group $B(H \times G^{op})$, i.e. the Grothendieck group of the category of finite (H,G)—bisets.

Fix a commutative ring with unity k.

Biset category kC is an k-linear category such that

- **①** The objects of kC are finite groups.
- **②** For finite groups G and H, $\operatorname{Hom}_{k\mathcal{C}}(G,H)=k\otimes_{\mathbb{Z}}B(H,G)$

Definition

Let G and H be finite groups. The biset Burnside group B(H,G) is the Burnside group $B(H \times G^{op})$, i.e. the Grothendieck group of the category of finite (H,G)—bisets.

Fix a commutative ring with unity k.

Biset category $k\mathcal{C}$ is an k-linear category such that

- **①** The objects of kC are finite groups.
- **②** For finite groups G and H, $\operatorname{Hom}_{k\mathcal{C}}(G,H)=k\otimes_{\mathbb{Z}}B(H,G)$
- **③** If G, H, and K are finite groups, then the composition $v \circ u$ of the morphism $u \in \operatorname{Hom}_{\mathcal{C}}(G, H)$ and the morphism $v \in \operatorname{Hom}_{\mathcal{C}}(H, K)$ is equal to $v \times_H u$.
- **①** The composition of morphisms in kC is the k-linear extension of the composition in C.

Definition

Let G and H be finite groups. The biset Burnside group B(H,G) is the Burnside group $B(H \times G^{op})$, i.e. the Grothendieck group of the category of finite (H,G)—bisets.

Fix a commutative ring with unity k.

Biset category kC is an k-linear category such that

- **①** The objects of kC are finite groups.
- **②** For finite groups G and H, $\operatorname{Hom}_{k\mathcal{C}}(G,H)=k\otimes_{\mathbb{Z}}B(H,G)$
- ③ If G, H, and K are finite groups, then the composition $v \circ u$ of the morphism $u \in \operatorname{Hom}_{\mathcal{C}}(G, H)$ and the morphism $v \in \operatorname{Hom}_{\mathcal{C}}(H, K)$ is equal to $v \times_H u$.
- **③** The composition of morphisms in kC is the k-linear extension of the composition in C.
- **9** For any finite group G, the identity morphism of G in $k\mathcal{C}$ is equal to $[k \otimes_{\mathbb{Z}} \mathrm{Id}_G]$.

• Biset functor defined over kC, with values in k-Mod is an k-linear functor from kC to k-Mod.

- Biset functor defined over kC, with values in k-Mod is an k-linear functor from kC to k-Mod.
- We denote by $\mathcal{F}_{\mathcal{C},k}$ the category whose objects are biset functors and morphisms are natural transformations.

- Biset functor defined over kC, with values in k-Mod is an k-linear functor from kC to k-Mod.
- We denote by $\mathcal{F}_{\mathcal{C},k}$ the category whose objects are biset functors and morphisms are natural transformations.

Example (Burnside functor)

For an object G of C, the group kB(G) defines a biset functor. If H is another object of C, and if U is a finite (H,G)-biset, then the map $kB(U):kB(G)\to kB(H)$ is induced by the correspondence sending a finite G-set X to the H-set $U\times_G X$.

Green Biset Functors

- Let A be a biset functor.
- We call A a Green biset functor if there are bilinear maps

$$A(G) \times A(H) \rightarrow A(G \times H), (a, b) \mapsto a \times b$$

for each pair of finite groups G and H and an element $\epsilon_A \in A(1)$ with the properties, associativity, functoriality and identity element.

• Functoriality $A(\phi \times \psi)(a \times b) = A(\phi)(a) \times A(\psi)(b)$, where $a \in A(G), b \in A(H)$ and $\phi : A(G) \rightarrow A(G'), \psi : A(H) \rightarrow A(H')$

Green Biset Functors

- Let A be a biset functor.
- We call A a Green biset functor if there are bilinear maps

$$A(G) \times A(H) \rightarrow A(G \times H), (a, b) \mapsto a \times b$$

for each pair of finite groups G and H and an element $\epsilon_A \in A(1)$ with the properties, associativity, functoriality and identity element.

- Functoriality $A(\phi \times \psi)(a \times b) = A(\phi)(a) \times A(\psi)(b)$, where $a \in A(G)$, $b \in A(H)$ and $\phi : A(G) \rightarrow A(G')$, $\psi : A(H) \rightarrow A(H')$
- A Green biset functor is a biset functor with a ring structure.
- Then Green biset functors on C, with values on k-Mod, form a category **Green** $_{C,k}$.

Green Biset Functors

- Let A be a biset functor.
- We call A a Green biset functor if there are bilinear maps

$$A(G) \times A(H) \rightarrow A(G \times H), (a, b) \mapsto a \times b$$

for each pair of finite groups G and H and an element $\epsilon_A \in A(1)$ with the properties, associativity, functoriality and identity element.

- Functoriality $A(\phi \times \psi)(a \times b) = A(\phi)(a) \times A(\psi)(b)$, where $a \in A(G)$, $b \in A(H)$ and $\phi : A(G) \to A(G')$, $\psi : A(H) \to A(H')$
- A Green biset functor is a biset functor with a ring structure.
- Then Green biset functors on C, with values on k-Mod, form a category **Green** $_{C,k}$.

Example

Burnside functor B is a Green biset functor on C, with values in \mathbb{Z} -Mod, for the bilinear product $B(G) \times B(H) \to B(G \times H)$, defined by sending (X,Y) to the $(G \times H)$ -set $X \times Y$. The identity element is $1 \in B(1) = \mathbb{Z}$.

A-modules

An A-module F is an object of $\mathcal{F}_{\mathcal{C},k}$ such that for any object G and H of \mathcal{C} , there are product maps

$$A(G) \times M(H) \rightarrow M(G \times H)$$
 $(a, m) \mapsto a \times m$

A-modules

An A-module F is an object of $\mathcal{F}_{\mathcal{C},k}$ such that for any object G and H of \mathcal{C} , there are product maps

$$A(G) \times M(H) \rightarrow M(G \times H)$$
 $(a, m) \mapsto a \times m$

- An A-module is a k-linear functor $\mathcal{P}_A \to k$ -mod.
- We denote the (abelian) functor category of all A-modules by A-Mod.

A-modules

An A-module F is an object of $\mathcal{F}_{\mathcal{C},k}$ such that for any object G and H of \mathcal{C} , there are product maps

$$A(G) \times M(H) \rightarrow M(G \times H) \quad (a, m) \mapsto a \times m$$

- An A-module is a k-linear functor $\mathcal{P}_A \to k$ -mod.
- We denote the (abelian) functor category of all A-modules by A-Mod.
- For instance for A = kB, the category kB-**Mod** is the same as the category $\mathcal{F}_{\mathcal{C},k}$ of all biset functors.

• Let F be an A-module,

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,
- Then F(G) is annihilated by all the endomorphisms that factor through a group of smaller order (I_G) .

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,
- Then F(G) is annihilated by all the endomorphisms that factor through a group of smaller order (I_G) .
- $\hat{A}(G) = E_G^A/I_G^A$ the essential algebra of A at G.

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,
- Then F(G) is annihilated by all the endomorphisms that factor through a group of smaller order (I_G) .
- $\hat{A}(G) = E_G^A/I_G^A$ the essential algebra of A at G.
- F(G) is an $\hat{A}(G)$ -module.

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,
- Then F(G) is annihilated by all the endomorphisms that factor through a group of smaller order (I_G) .
- $\hat{A}(G) = E_G^A/I_G^A$ the essential algebra of A at G.
- F(G) is an $\hat{A}(G)$ -module.
- If S is simple and G is minimal for S then S(G) is a simple $\hat{A}(G)$ -module.

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,
- Then F(G) is annihilated by all the endomorphisms that factor through a group of smaller order (I_G) .
- $\hat{A}(G) = E_G^A/I_G^A$ the essential algebra of A at G.
- F(G) is an $\hat{A}(G)$ -module.
- If S is simple and G is minimal for S then S(G) is a simple $\hat{A}(G)$ -module.
- (G, S(G)) seed for S.

- Let F be an A-module,
- F(G) is a module over the endomorphism ring $E_G^A = \operatorname{End}_{\mathcal{P}_A}(G) = A(G \times G)$ of G in \mathcal{P}_A
- If G is minimal order such that $F(G) \neq 0$,
- Then F(G) is annihilated by all the endomorphisms that factor through a group of smaller order (I_G) .
- $\hat{A}(G) = E_G^A/I_G^A$ the essential algebra of A at G.
- F(G) is an $\hat{A}(G)$ -module.
- If S is simple and G is minimal for S then S(G) is a simple $\hat{A}(G)$ -module.
- (G, S(G)) seed for S.
- There is a correspondence between isomorphism classes of simple A-modules and equivalence classes of seeds.

Question

In general two seeds (G,V) and (G',V') may induce isomorphic simple A-modules. In this case, we say that (G,V) and (G',V') are equivalent.

Question

In general two seeds (G, V) and (G', V') may induce isomorphic simple A-modules. In this case, we say that (G, V) and (G', V') are equivalent.

Questions

• How to classify simple modules of essential algebra \hat{A}_G for all G?

Question

In general two seeds (G, V) and (G', V') may induce isomorphic simple A-modules. In this case, we say that (G, V) and (G', V') are equivalent.

Questions

- **1** How to classify simple modules of essential algebra \hat{A}_G for all G?
- 4 How one can define the equivalence relation on all these simple modules to determine isomorphism types of simple A-modules associated to them?

ullet Let E_G^c be a subalgebra of E_G^A such that

$$E_G^A = E_G^c + I_G^A.$$

ullet Let E_G^c be a subalgebra of E_G^A such that

$$E_G^A = E_G^c + I_G^A.$$

• So
$$\hat{A}(G) = E_G^c/(E_G^c \cap I_G^A)$$

• Let E_G^c be a subalgebra of E_G^A such that

$$E_G^A = E_G^c + I_G^A.$$

- So $\hat{A}(G) = E_G^c/(E_G^c \cap I_G^A)$
- For instance, the truncated algebra $\tilde{e}_G^G A(G \times G) \tilde{e}_G^G$ is a covering algebra. Here \tilde{e}_G^G is the image of the primitive idempotent e_G^G of the Burnside ring B(G) in the double Burnside ring $B(G \times G)$ as defined in [4, Section 6.5].

• Let E_G^c be a subalgebra of E_G^A such that

$$E_G^A = E_G^c + I_G^A.$$

- So $\hat{A}(G) = E_G^c/(E_G^c \cap I_G^A)$
- For instance, the truncated algebra $\tilde{e}_G^G A(G \times G) \tilde{e}_G^G$ is a covering algebra. Here \tilde{e}_G^G is the image of the primitive idempotent e_G^G of the Burnside ring B(G) in the double Burnside ring $B(G \times G)$ as defined in [4, Section 6.5].
- One aims to choose a covering algebra for which the intersection with the ideal I_G^A is easier to determine.

The Aim and Reason

 Our aim is to solve the classification problem for the functor of section Burnside rings.

The Aim and Reason

- Our aim is to solve the classification problem for the functor of section Burnside rings.
- Section Burnside rings are introduced by Bouc in [5] as the Grothendieck rings of the subcategory of "Galois" morphisms in the category of morphisms of G-sets.

The Aim and Reason

- Our aim is to solve the classification problem for the functor of section Burnside rings.
- Section Burnside rings are introduced by Bouc in [5] as the Grothendieck rings of the subcategory of "Galois" morphisms in the category of morphisms of G-sets.
- It is different from the previous known examples

- Our aim is to solve the classification problem for the functor of section Burnside rings.
- Section Burnside rings are introduced by Bouc in [5] as the Grothendieck rings of the subcategory of "Galois" morphisms in the category of morphisms of G-sets.
- It is different from the previous known examples
- The previous examples are known to have strong connections with the theory of representations of finite groups

- Our aim is to solve the classification problem for the functor of section Burnside rings.
- Section Burnside rings are introduced by Bouc in [5] as the Grothendieck rings of the subcategory of "Galois" morphisms in the category of morphisms of G-sets.
- It is different from the previous known examples
- The previous examples are known to have strong connections with the theory of representations of finite groups
- On the other hand section Burnside rings are relatively new and these kind of deep connections are not known yet

- Our aim is to solve the classification problem for the functor of section Burnside rings.
- Section Burnside rings are introduced by Bouc in [5] as the Grothendieck rings of the subcategory of "Galois" morphisms in the category of morphisms of G-sets.
- It is different from the previous known examples
- The previous examples are known to have strong connections with the theory of representations of finite groups
- On the other hand section Burnside rings are relatively new and these kind of deep connections are not known yet
- Therefore it is close to be an abstract example.

- Our aim is to solve the classification problem for the functor of section Burnside rings.
- Section Burnside rings are introduced by Bouc in [5] as the Grothendieck rings of the subcategory of "Galois" morphisms in the category of morphisms of G-sets.
- It is different from the previous known examples
- The previous examples are known to have strong connections with the theory of representations of finite groups
- On the other hand section Burnside rings are relatively new and these kind of deep connections are not known yet
- Therefore it is close to be an abstract example.
- It can help us to solve the problem of classification of simple modules over Green biset functors in more general cases.

• The ring generated by the isomorphism classes of Galois morphisms of G-sets is called the section Burnside ring and is denoted by $\Gamma(G)$.

- The ring generated by the isomorphism classes of Galois morphisms of G-sets is called the section Burnside ring and is denoted by $\Gamma(G)$.
- The section Burnside ring $\Gamma(G)$ has a basis consisting of G-conjugacy classes of sections (T,S) of G. Here $S \subseteq T \leqslant G$.

- The ring generated by the isomorphism classes of Galois morphisms of G-sets is called the section Burnside ring and is denoted by $\Gamma(G)$.
- The section Burnside ring $\Gamma(G)$ has a basis consisting of G-conjugacy classes of sections (T,S) of G. Here $S \subseteq T \leqslant G$.

Theorem (10.6 of [5])

• For a finite (H, G)-biset U. The functor

$$(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$$

from G-**Mor**^{Gal} to H-**Mor** G al</sup> induces a group homomorphism $\Gamma(U): \Gamma(G) \to \Gamma(H)$.

2 The correspondence $G \mapsto \Gamma(G)$ is a Green biset functor.

- The ring generated by the isomorphism classes of Galois morphisms of G-sets is called the section Burnside ring and is denoted by $\Gamma(G)$.
- The section Burnside ring $\Gamma(G)$ has a basis consisting of G-conjugacy classes of sections (T,S) of G. Here $S \subseteq T \subseteq G$.

Theorem (10.6 of [5])

• For a finite (H, G)-biset U. The functor

$$(X \xrightarrow{f} Y) \mapsto (U \times_G X \xrightarrow{U \times_G f} U \times_G Y)$$

from G-Mor^{Gal} to H-Mor G al</sup> induces a group homomorphism $\Gamma(U):\Gamma(G)\to\Gamma(H)$.

2 The correspondence $G \mapsto \Gamma(G)$ is a Green biset functor.

Since a basis for $\Gamma(G \times H)$ is given in terms of sections of $G \times H$, we first parametrize these sections in a way as Goursat Theorem parametrizes subgroups of direct products.

Goursat Theorem for Sections

Theorem

There is a bijective correspondence between

- **1** the set of all sections $S \subseteq T$ of $G \times H$ and
- ② the set of all pairs $((P_1, K_1, \eta_1, L_1, Q_1), (P_2, K_2, \eta_2, L_2, Q_2))$ of Goursat quintuples satisfying the following conditions.

Goursat Theorem for Sections

Theorem

There is a bijective correspondence between

- **1** the set of all sections $S \subseteq T$ of $G \times H$ and
- 2 the set of all pairs $((P_1, K_1, \eta_1, L_1, Q_1), (P_2, K_2, \eta_2, L_2, Q_2))$ of Goursat quintuples satisfying the following conditions.
- (i) $P_2 \subseteq P_1, K_2 \subseteq K_1, L_2 \subseteq L_1, Q_2 \subseteq Q_1$.
- (ii) $(P_2/K_2, P_1/K_1, \partial)$ and $(Q_2/L_2, Q_1/L_1, \partial')$ are crossed modules where ∂ and ∂' is given by $\partial(xK_2) = xK_1$ and $\partial(xL_2) = xL_1$ and the actions are given by

$$aK_1 \cdot cK_2 = aca^{-1}K_2$$
, $a'L_1 \cdot c'L_2 = a'c'a'^{-1}L_2$

(iii) (η_2, η_1) : $(Q_2/L_2, Q_1/L_1, \partial') \rightarrow (P_2/K_2, P_1/K_1, \partial)$ is an isomorphism of crossed modules.

• So to study simple modules over section Burnside functor we identify covering algebra for it.

- So to study simple modules over section Burnside functor we identify covering algebra for it.
- Our main theorem shows that covering algebra for section Burnside functor is Morita equivalent to the product of some matrix algebras.

- So to study simple modules over section Burnside functor we identify covering algebra for it.
- Our main theorem shows that covering algebra for section Burnside functor is Morita equivalent to the product of some matrix algebras.
- Essential algebra is isomorphic to the subalgebra of covering algebra.

- So to study simple modules over section Burnside functor we identify covering algebra for it.
- Our main theorem shows that covering algebra for section Burnside functor is Morita equivalent to the product of some matrix algebras.
- Essential algebra is isomorphic to the subalgebra of covering algebra.

Theorem

There exists a k-algebra isomorphism

$$E_G^c \xrightarrow{\sim} \bigoplus_{\{K,P\}_G \in \mathcal{G}_G/\sim} Mat_{|\{K,P\}_G|} k\Gamma_{(G,K,P)}$$

with the following property:

For every $\{K,P\}_G=\{(K_1,P_1),\cdots,(K_n,P_n)\}\in\mathcal{G}_G/\sim$, the isomorphism maps the element $f_{(K_i,P_i)}\in E_G^c$ to the diagonal idempotent matrices $e_i=diag(0,\cdots,0,1,0,\cdots,0)\in \operatorname{Mat}_{|\{K,P\}_G|}k\Gamma_{(G,K,P)},$ $i=1,\cdots,|\{K,P\}_G|$, in the $\{K,P\}_G$ -component.

ullet We gave the intersection of the ideal I_G with covering algebra

ullet We gave the intersection of the ideal I_G with covering algebra

Proposition

$$E_G^c \cap I_G = \bigoplus_{\substack{\{K,P\}_G \in \mathcal{G}_G/\sim\\ (K,P) \notin \mathcal{R}_G}} f_{\{K,P\}_G} E_G^c.$$

ullet We gave the intersection of the ideal I_G with covering algebra

Proposition

$$E_G^c \cap I_G = \bigoplus_{\substack{\{K,P\}_G \in \mathcal{G}_G/\sim\\ (K,P) \notin \mathcal{R}_G}} f_{\{K,P\}_G} E_G^c.$$

Hence, we determined essential algebra for section Burnside ring,

ullet We gave the intersection of the ideal I_G with covering algebra

Proposition

$$E_G^c \cap I_G = \bigoplus_{\substack{\{K,P\}_G \in \mathcal{G}_G/\sim\\ (K,P) \notin \mathcal{R}_G}} f_{\{K,P\}_G} E_G^c.$$

- Hence, we determined essential algebra for section Burnside ring,
- and showed that it is isomorphic to the subalgebra of covering algebra

$$\bigoplus_{\{K,P\}_G \in \mathcal{R}_G/\sim} f_{\{K,P\}_G} E_G^c.$$

Simple \bar{E}_G -modules

Finally we parameterize simple modules over \bar{E}_G .

Simple \bar{E}_G -modules

Finally we parameterize simple modules over \bar{E}_G .

Definition

$$\mathcal{S}_G = \mathcal{S}_k(G) := \{ ((K,P),[V]) \mid (K,P) \in \mathcal{R}_G, [V] \in \operatorname{Irr}(k\Gamma_{(G,K,P)}) \}.$$

$$((K,P),[V]) \sim ((K',P'),[V']) \text{ if } (K,P) \text{ and } (K',P') \text{ are G-linked and the canonical bijection } \operatorname{Irr}(k\Gamma_{(G,K',P')}) \xrightarrow{\sim} \operatorname{Irr}(k\Gamma_{(G,K,P)}) \text{ maps } [V'] \text{ to } [V].$$

$$\tilde{\mathcal{S}}_G = \mathcal{S}_G/\sim, \text{ that is,}$$

 $\tilde{\mathcal{S}}_G := \{ ((K, P), [V]) \mid (K, P) \in \tilde{\mathcal{R}}_G, [V] \in \operatorname{Irr}(k\Gamma_{(G,K,P)}) \}.$

Simple \bar{E}_G -modules

Finally we parameterize simple modules over \bar{E}_G .

Definition

$$\mathcal{S}_G = \mathcal{S}_k(G) := \{ ((K,P),[V]) \mid (K,P) \in \mathcal{R}_G, [V] \in \operatorname{Irr}(k\Gamma_{(G,K,P)}) \}.$$

$$((K,P),[V]) \sim ((K',P'),[V']) \text{ if } (K,P) \text{ and } (K',P') \text{ are } G\text{-linked and the canonical bijection } \operatorname{Irr}(k\Gamma_{(G,K',P')}) \xrightarrow{\sim} \operatorname{Irr}(k\Gamma_{(G,K,P)}) \text{ maps } [V'] \text{ to } [V].$$

$$\tilde{\mathcal{S}}_G = \mathcal{S}_G / \sim, \text{ that is,}$$

 $\tilde{\mathcal{S}}_G := \{ ((K, P), [V]) \mid (K, P) \in \tilde{\mathcal{R}}_G, [V] \in \operatorname{Irr}(k\Gamma_{(G,K,P)}) \}.$

Theorem

Then there is a bijection between the set \tilde{S}_G and $Irr(\bar{E}_G)$.

Main Theorem

Definition

We write the set of all seeds for $k\Gamma$ as

$$\operatorname{Seeds}(k\Gamma) = \{(G, K, P, [V]) | G \in Ob(\mathcal{P}_{\Gamma}), (K, P, [V]) \in \tilde{\mathcal{S}}_G\}.$$

Main Theorem

Definition

We write the set of all seeds for $k\Gamma$ as

$$\operatorname{Seeds}(k\Gamma) = \{(G,K,P,[V]) | G \in Ob(\mathcal{P}_{\Gamma}), (K,P,[V]) \in \tilde{\mathcal{S}}_G\}.$$

Definition (Linkage)

$$(G,K,P,[V]) \sim (H,L,Q,[W])$$

if and only if $(G, K, P, 1) \sim (H, L, Q, 1)$ and $V \cong k[_{(G,K,P)}\Gamma_{(H,L,Q)}] \otimes_{k\Gamma_{(H,L,Q)}} W$.

Main Theorem

Definition

We write the set of all seeds for $k\Gamma$ as

$$\operatorname{Seeds}(k\Gamma) = \{(G,K,P,[V]) | G \in Ob(\mathcal{P}_{\Gamma}), (K,P,[V]) \in \tilde{\mathcal{S}}_G\}.$$

Definition (Linkage)

$$(G,K,P,[V])\sim (H,L,Q,[W])$$

if and only if $(G, K, P, 1) \sim (H, L, Q, 1)$ and $V \cong k[_{(G,K,P)}\Gamma_{(H,L,Q)}] \otimes_{k\Gamma_{(H,L,Q)}} W$.

Theorem,

There is a bijective correspondence between

- the set $Irr(k\Gamma)$ of isomorphism classes of simple section biset functors
- the set $Seeds(k\Gamma)/\sim of linkage classes of quadruples (G, K, P, [V]).$

References

- L. BARKER: 'Rhetorical biset functors, rational p-biset functors and their semisimplicity in characteristic zero', *J. Algebra* 319 (2008) 3810-3853.
- R. BOLTJE, O. COŞKUN: Fibered biset functors. Adv. Math. 339(2018), 540-598.
- S. BOUC: Foncteurs d'ensembles munis d'une double action. J. Alg. **183** (1996), 664-736.
- S. Bouc: Biset functors for finite groups, volume 1990 of Lecture Notes in Mathematics. Springer, 2010.
- S. BOUC: The slice Burnside ring and the section Burnside ring of a finite group, Compos. Math. **148** (1) (2012), 868-906.
- S. BOUC, J. THÉVENAZ: The algebra of essential relations on a finite set. *J. reine angew. Math.* 712 (2016), p 225-250.

References

- M. DUCELLIER: Foncteurs de *p*-permutation. PhD Thesis, Universite de Picardie. 2015.
- N. ROMERO: Simple modules over Green biset functors. J. Alg., **367** (2012), 203-221.
- I. TOUNKARA: The ideals of the slice Burnside *p*-biset functor. Journal of Algebra, **495** (2018), 81-113.
- J.H.C. WHITEHEAD, On adding relations to homotopy groups. Ann. of Math. (2) **42** (1941), 409?428.