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Affine space of quiver representations

Let Q be a quiver and d ∈ N|Q0| = Nn. There is an affine space

rep(Q,d) =
∏
a∈Q1

HomK (K
dt(a) ,Kdh(a))

of K -representations of Q of dimension d. The group

GLd =
∏
i∈Q0

GLdi (K )

acts on rep(Q,d) by

(gi )i∈Q0 · (Ma)a∈Q1 =
(
g−1
h(a) ·Ma · gt(a)

)
a∈Q1

.
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Generic F -polynomial

Quiver grassmannian:

GreM := {N ⊂ M | dimN = e} ⊂
n∏

i=1

Gr(ei , di ).

F -polynomial (take K = C):

FM =
∑
e

χan(GreM)
n∏

i=1

y eii ∈ Z[y1, . . . , yn].

The function M 7→ FM is constructible on rep(Q,d). Denote the
generic value by Fd.
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Generic Caldero–Chapoton function

Let Q be acyclic and B ∈ Zn×n the skew-symmetric matrix of Q.
Define another vector

g = (−di +
∑
j

[−bij ]+dj)i ∈ Zn.

Definition

The generic Caldero–Chapoton function is

Xg = Fd(g)(ŷ1, . . . , ŷn)
∏
i∈Q0

xgii where ŷi =
∏
j

x
bji
j .

Many people have considered generic CC functions in various
contexts including Dupont, Ding–Xiao–Xu, Geiss–Leclerc–Schröer,
Plamondon etc.
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Generic Caldero–Chapoton function

Theorem (Geiss–Leclerc–Schröer)

The generic CC functions {Xg | g ∈ Zn} form a basis of the cluster
algebra A(B) and contain all cluster monomials.

The function Xg is a cluster monomial when there is rigid
M ∈ rep(Q,d), in which case the orbit OM is open
(Caldero–Keller).
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Skew-symmetrizable case

Let B be skew-symmetrizable with symmetrizer D = diag(ci ) and
acyclic.
Geiss, Leclerc and Schröer defined a fin. dim. K -algebra H(B,D).

Hi = C[εi ]/εcii , Hij =

(
Hi ⊗ Hj/ε

|bij |
gij

i ⊗ 1− 1⊗ ε

|bji |
gij

j

)gij

.

The algebra H can be defined as the tensor algebra (over
S =

∏
Hi ) ⊕

k≥0

⊕
bij>0

Hij

⊗k
S

.
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Skew-symmetrizable case

There is an affine space of locally free H-modules of rank r ∈ Nn

rep(H, r) :=
∏
bij>0

HomHi
(Hij ⊗Hj

H
rj
j ,H

ri
i ),

with an action of
∏

GLri (Hi ).
Replace quiver grassmaniann with the quasi-projective variety

Grlfe (M) = {N ⊂ M | N loc. free, rankN = e}.

There is also generic (l.f.) F -polynomial Fr on rep(H, r).
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Main theorem

Theorem (Su–M.)

If B̃ ∈ Zm×n is of affine type and of full rank, then{
Xg = Fr(g)(ŷ1, . . . , ŷn)

m∏
i=1

xgii | g ∈ Zm

}

is a Z-basis of A(B̃) and contains all cluster monomials.
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In finite types, the theorem is due to Geiss–Leclerc–Schröer.

They conjecture that for any acyclic B,

XM = FM(ŷ1, . . . , ŷn) · xg(M)

gives the corresponding cluster monomial when M is locally free
and rigid. Our main theorem verifies the conjecture for all affine
types.
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Reflections of generic F -polynomials

Let k be a sink and H ′ = H(µk(B),D).
Let v, v′ ∈ Zn be (decorated) rank vectors related by ‘mutation’ at
k .

Proposition (Su–M.)

The generic F -polynomials satisfy the recurrence

(1 + yk)
−[vk ]+FH

v (y1, . . . , yn) = (1 + y ′k)
−[−vk ]+FH′

v′ (y
′
1, . . . , y

′
n)

where y ′i = yiy
[bki ]+
k (yk + 1)−bki for i ̸= k and y ′k = y−1

k .

Corollary

For ((x1, . . . , xm), B̃)
µk ((x ′1, . . . , x

′
m), B̃

′), we have

X B̃
g (x1, . . . , xm) = X B̃′

g′ (x
′
1, . . . , x

′
m).
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Proof: Xg is universal Laurent

1. Perform sink/source mutations to reach a bipartite seed t0.

2. Mutate in every direction t0
k tk for k = 1, . . . , n.

3. Berenstein–Fomin–Zelevinsky (Corollary 1.9)

n⋂
k=0

Z[x±1;tk , . . . , x
±
m;tk

] =
⋂

all seeds

Z[x±1;t , . . . , x
±
m;t ].
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Proof: {Xg | g ∈ Zm} is a Z-basis

Apply a maximal green (source mutation) sequence

v0
n

v1
n − 1 · · · 2

vn−1
1

vn.

Under the full rank assumption, every Xg is compatibly pointed in
each seed v0, . . . , vn. A powerful theorem of Fan Qin then applies:⊕

g∈Zm

Z · Xg =
⋂

all seeds

Z[x±1;t , . . . , x
±
m;t ],

which is known to equal A(B̃).
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Proof: CC formula for cluster monomials

Which are the cluster variables in {Xg}?

{non-ini. cluster variables} {ind. l.f. rigid H-modules}

∆rS

x 7→ d(x)

∼

M 7→ rankM

In affine types Real Schur roots have linear algebraic classification
(Reading–Stella) by considering the Coxeter action on the root
system.

∆rS = {preprojectives} ⊔ {preinjectives} ⊔ {regular Schur roots}
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Proof: CC formula for cluster monomials

1. Preprojectives and preinjectives.

Directly verify XEi
where rankEi = αi simple root. Its

F -polynomial is simply 1 + yi .

Apply sink/source mutations to reach indecomposable
injective or projective modules.

Apply Coxeter transformations to reach other preprojectives
and preinjectives.
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Proof: CC formula for cluster monomials

2. Regular Schur roots. They are organized as follows.

1 {βn,m | (n,m) ∈ Z× Z/dZ, n ≤ d − 1}
2 βn,m + βn,m+1 = βn+1,m + βn−1,m+1 (mesh relation)

3 c(βn,m) = βn+1,m (Coxeter action)

4 β1,1, . . . , β1,d−1 are positive roots of Bfin, generate Ad−1-root
system Φ as simple roots.

If β ∈ Φ, then Fβ can be computed using Hfin-modules.
There is at least one β in Φ on each level! Then apply Coxeter
transformation to reach all βn,m.
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For example, let B =


0 2 0 0
−1 0 1 0
0 −1 0 1
0 0 −2 0

 of type B̃3.

Regular Schur roots are

level 2: (0, 1, 1, 0)
c−→ (2, 1, 2, 2)

c−→ (2, 2, 1, 2)
c−→ (0, 1, 1, 0)

level 1: (0, 1, 0, 0)
c−→ (0, 0, 1, 0)

c−→ (2, 1, 1, 2)
c−→ (0, 1, 0, 0).
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Thank you!
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