Positivity for quantum cluster algebras from orbifolds

Min Huang

School of Mathematics (Zhuhai) Sun Yat-sen University arXiv:2406.03362

ICRA 21, SJTU

08-06, 2024

2 Expansion formula for ordinary arcs

3 Sketch of the proof

Expansion formula for singly-notched and doubly-notched arcs

5 Reference

Quantum cluster algebras from surfaces

Definition

A quantum cluster algebra \mathscr{A}_{v} is called *coming from an orbifold* Σ if the commutative cluster algebra $\mathscr{A}_{v}|_{v=1}$ is coming from Σ .

Theorem (Fomin-Shapiro-Thurston [2], Berenstein-Zelevinsky [1])

Let \mathscr{A}_{v} be a quantum cluster algebra from Σ .

- (a) If Σ is not a closed orbifold with one puncture, then there are bijections,
 - $\{\mathsf{Tagged \ arcs \ in} \ \Sigma\} \to \{\mathsf{Quantum \ cluster \ variables \ of} \ \mathscr{A}_v\}.$

 $\{\mathsf{Tagged triangulation of } \Sigma\} \to \{\mathsf{Quantum seeds of } \mathscr{A}_{\nu}\}.$

(b) If Σ is a closed orbifold with one puncture, then there are bijections {Ordinary arcs in Σ } \rightarrow {Quantum cluster variables of \mathscr{A}_v }. {Ideal triangulation of Σ } \rightarrow {Quantum seeds of \mathscr{A}_v }.

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

5 / 4<u>5</u>

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

• γ ordinary arc connection p and q, T^o ideal triangulation, T the tagged triangulation corresponding to T^o .

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

• γ ordinary arc connection p and q, T^o ideal triangulation, T the tagged triangulation corresponding to T^o .

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

• γ ordinary arc connection p and q, T^o ideal triangulation, T the tagged triangulation corresponding to T^o .

2 $\beta = \gamma^{(q)}$, q puncture, $\Delta = T$ contains no arcs tagged notched at q;

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

• γ ordinary arc connection p and q, T^o ideal triangulation, T the tagged triangulation corresponding to T^o .

To give an expansion formula for X_{β} with respect to $X(\Delta)$, where β is a tagged/ordianary arc, Δ is a tagged/ideal triangulation.

• γ ordinary arc connection p and q, T^o ideal triangulation, T the tagged triangulation corresponding to T^o .

(γ, T) ordinary arc, (γ^(q), T) singly-notched arc, (γ^(p,q), T) doubly-notched arc.

Ideal

Theorem (Musiker-Schiffler-Williams [3])

Let \mathscr{A} be a commutative cluster algebra from Σ . For any ordinary arc γ and ideal triangulation T^o , we have

$$x_{\gamma} = \sum_{P \in \mathscr{P}(G_{T^o,\gamma})} x(P).$$

ideal

For each perfect matching P, associative with an integer w(P) and quantum Laurent monomial X(P) such that

$$X_{\gamma} = \sum_{P \in \mathscr{P}(G_{T^o,\gamma})} v^{w(p)} X(P).$$

Expansion formula for ordinary arcs

(日) (四) (日) (日) (日)

Lattice $\mathscr{L}(T,\gamma)$

- Fix γ ordinary arc, T^o ideal triangulation, T the tagged triangulation corresponding to T^o
- Snake graph $G_{T,\gamma}$ is constructed via the following:
 - γ crosses T^o at p_1, \cdots, p_c in order;
 - Associate a tile G_i with each point p_i;
 - Glue $G_i, i = 1, \cdots, c$ to obtain $G_{T,\gamma}$.
- A perfect matching of G_{T,γ} is a set P of edges such that each vertex incident to exactly one edge in P;
- $\mathscr{L}(T,\gamma):=$ {the set of all perfect matchings of $G_{T,\gamma}$ }.

Snake graph – An example

2

★掃▶ ★ 国▶ ★ 国▶

Lattice $\mathscr{L}(T,\gamma)$

Definition

- We say that P ∈ ℒ(T, γ) can *twist* on a tile G_i if there are two edges of G_i in P. The perfect matching obtained by replacing the two edges by the remaining two edges of G_i is called the *twist* of P at G_i, denoted by μ_{G_i}(P).
- let $P < \mu_{G_i}(P)$ if $W(G_i), E(G_i) \in P, rel(G_i, T^o) = 1$ or $N(G_i), S(G_i) \in P, rel(G_i, T^o) = -1.$

Proposition

 $\mathscr{L}(\mathcal{T},\gamma)$ is a lattice with maximum/minimum element $\mathcal{P}_+/\mathcal{P}_-.$

An example

11 / 45

P can twist at a tile G_l with diagonal labeled τ_{i_l} .

- $G_{l}^{-} := G_{1} \cup G_{2} \cup \cdots \cup G_{l-1}, \ G_{l}^{+} := G_{l+1} \cup G_{l+2} \cup \cdots \cup G_{c}$
- $m^{\pm}(P, G_l; \alpha) :=$

number of edges labeled α in $P \cap edge(G_l^{\pm}) \setminus edge(G_l)$.

• $n(G, \alpha) :=$ number of diagonals labeled α of G.

$$\Omega(P, G_{l}) := d(\tau_{i_{l}})[(m^{+}(P, G_{l}; \tau_{i_{l}}) - m^{-}(P, G_{l}; \tau_{i_{l}})) \\ - (n(G_{l}^{+}; \tau_{i_{l}}) - n(G_{l}^{-}; \tau_{i_{l}}))].$$

Valuation map on $\mathscr{L}(\mathcal{T},\gamma)$

Proposition

There is a unique map $w: \mathscr{L}(\mathcal{T},\gamma) \to \mathbb{Z}$ such that

- (Initial condition) $w(P_{-}) = 0$, where P_{-} is the minimum element in $\mathscr{L}(T, \gamma)$,
- (Recurrence condition)

$$w(\mu_{G_l}(P)) = w(P) + \Omega(P, G_l)$$

for any $P \in \mathscr{L}(T, \gamma)$ such that P can twist on G_I with $P < \mu_{G_I}(P)$.

An example

14 / 45

Theorem

For any $P \in \mathscr{L}(T, \gamma)$, we can associate with a quantum Laurent monomial X(P) in $\mathcal{T}(T)$. Then $X_{\gamma} = \sum v^{w(P)} X(P).$

$$P \in \mathscr{L}(T,\gamma)$$

2

Ideal of the proof

(日) (四) (日) (日) (日)

- $f = x + y + x^{-2}y^2 + x^{-2}yz + x^{-2}zy + x^{-2}z^2 = x'^{-1}y + x'^{-1}z + y + x'^2$ with xx' = y + z.
- $\mathscr{P} = \{x, y, x^{-2}y^2, x^{-2}yz, x^{-2}zy, x^{-2}z^2\}$ and $\mathscr{P}' = \{x'^{-1}y, x'^{-1}z, y, x'^2\}.$
- {x} \leftrightarrow { $x'^{-1}y, x'^{-1}z$ }, {y} \leftrightarrow {y}, { $x^{-2}y^2, x^{-2}yz, x^{-2}zy, x^{-2}z^2$ } \leftrightarrow { x'^2 }.

э

(日)

Let $\mathscr{P}, \mathscr{P}'$ be finite sets.

æ

メロト メタト メヨト メヨト

Let $\mathscr{P}, \mathscr{P}'$ be finite sets.

(1) A partition of \mathscr{P} is a finite collection of subsets $\mathscr{P}_i, i \in I$ such that $\bigcup_{i \in I} \mathscr{P}_i = \mathscr{P}$ and $\mathscr{P}_i \cap \mathscr{P}_j = \emptyset$ for any $i \neq j \in I$.

-∢ ∃ ▶

Let $\mathscr{P}, \mathscr{P}'$ be finite sets.

(1) A partition of \mathscr{P} is a finite collection of subsets $\mathscr{P}_i, i \in I$ such that $\bigcup_{i \in I} \mathscr{P}_i = \mathscr{P}$ and $\mathscr{P}_i \cap \mathscr{P}_j = \emptyset$ for any $i \neq j \in I$.

(2) A partition bijection from \mathscr{P} to \mathscr{P}' is a bijection from some partition of \mathscr{P} to some partition of \mathscr{P}' , denoted by $\varphi : \mathscr{P} \stackrel{par}{\to} \mathscr{P}'$.

Let $\mathscr{P}, \mathscr{P}'$ be finite sets.

(1) A partition of \mathscr{P} is a finite collection of subsets $\mathscr{P}_i, i \in I$ such that $\bigcup_{i \in I} \mathscr{P}_i = \mathscr{P}$ and $\mathscr{P}_i \cap \mathscr{P}_j = \emptyset$ for any $i \neq j \in I$.

(2) A partition bijection from \mathscr{P} to \mathscr{P}' is a bijection from some partition of \mathscr{P} to some partition of \mathscr{P}' , denoted by $\varphi : \mathscr{P} \xrightarrow{par} \mathscr{P}'$.

Remark

To give a partition bijection from \mathscr{P} to \mathscr{P}' is equivalent to associate each $P \in \mathscr{P}$ with a non-empty subset $\varphi(P) \subset \mathscr{P}'$ such that the following conditions hold.

э

・ロト ・四ト ・ヨト ・ヨト

Let $\mathscr{P}, \mathscr{P}'$ be finite sets.

(1) A partition of \mathscr{P} is a finite collection of subsets $\mathscr{P}_i, i \in I$ such that $\bigcup_{i \in I} \mathscr{P}_i = \mathscr{P}$ and $\mathscr{P}_i \cap \mathscr{P}_j = \emptyset$ for any $i \neq j \in I$.

(2) A partition bijection from \mathscr{P} to \mathscr{P}' is a bijection from some partition of \mathscr{P} to some partition of \mathscr{P}' , denoted by $\varphi : \mathscr{P} \xrightarrow{par} \mathscr{P}'$.

Remark

To give a partition bijection from \mathscr{P} to \mathscr{P}' is equivalent to associate each $P \in \mathscr{P}$ with a non-empty subset $\varphi(P) \subset \mathscr{P}'$ such that the following conditions hold.

(i) For any $P, Q \in \mathscr{P}$, we have either $\varphi(P) \cap \varphi(Q) = \emptyset$ or $\varphi(P) = \varphi(Q)$;

э

Let $\mathscr{P}, \mathscr{P}'$ be finite sets.

(1) A partition of \mathscr{P} is a finite collection of subsets $\mathscr{P}_i, i \in I$ such that $\bigcup_{i \in I} \mathscr{P}_i = \mathscr{P}$ and $\mathscr{P}_i \cap \mathscr{P}_j = \emptyset$ for any $i \neq j \in I$.

(2) A partition bijection from \mathscr{P} to \mathscr{P}' is a bijection from some partition of \mathscr{P} to some partition of \mathscr{P}' , denoted by $\varphi : \mathscr{P} \stackrel{par}{\to} \mathscr{P}'$.

Remark

To give a partition bijection from \mathscr{P} to \mathscr{P}' is equivalent to associate each $P \in \mathscr{P}$ with a non-empty subset $\varphi(P) \subset \mathscr{P}'$ such that the following conditions hold.

(i) For any P, Q ∈ 𝒫, we have either φ(P) ∩ φ(Q) = Ø or φ(P) = φ(Q);
(ii) ⋃_{P∈𝒫} φ(P) = 𝒫'.

э

Theorem

Let T° be an ideal triangulation and $\alpha \in T^{\circ}$ be a flippable arc. Denote $T'^{\circ} = \mu_{\alpha}(T^{\circ})$ and T (resp. T') the corresponding tagged triangulation of T° (resp. T'°). There exists a partition bijection

$$\pi:\mathscr{L}(\mathsf{T},\beta)\to\mathscr{L}(\mathsf{T}',\beta)$$

such that for any $P \in \mathscr{L}(T,\beta)$ we have

$$\sum_{P' \in \pi(P)} v^{w(P')} X(P') = \sum_{Q \in \pi^{-1}\pi(P)} v^{w(Q)} X(Q).$$

Consequently, we have

$$\sum_{P'\in\mathscr{L}(T',\beta)} v^{w(P')} X(P') = \sum_{P\in\mathscr{L}(T,\beta)} v^{w(P)} X(P).$$

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

An example

Let Σ , T^{o} , $T^{\prime o}$, α , α^{\prime} and β be as shown in the following figure.

.

Then the snake graphs $G_{T,\beta}$ and $G_{T',\beta}$ are the graphs in the following Figure.

25 / 45

Ξ.

Expansion formula for singly-notched and doubly-notched arcs

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds

Lattice $\mathscr{L}(T, \gamma^{(q)})$

The ending point q of γ is a puncture. T contains no arcs tagged notched at q.

• $\Delta(q) = \{\Delta_1(q), \cdots, \Delta_t(q)\}$: triangles incident to q in T^o .

• $\mathscr{L}(T,\gamma^{(q)}) = \mathscr{L}(T,\gamma) \times \Delta(q).$

Lattice $\mathscr{L}(T, \gamma^{(q)})$

$$E_1(q) := egin{cases} N(G_c), & ext{if } rel(G_c, T^o) = 1, \ E(G_c), & ext{if } rel(G_c, T^o) = -1, \ E_2(q) := egin{cases} E(G_c), & ext{if } rel(G_c, T^o) = -1, \ N(G_c), & ext{if } rel(G_c, T^o) = -1. \ \end{array}$$

Remark

 $E_1(q) \in P_-, E_2(q) \in P_+.$

3

イロト イヨト イヨト イヨト

Lattice $\mathscr{L}(T, \gamma^{(q)})$

For any P ∈ 𝒫(G_{T,γ}),
if E₁(q) ∈ P then (P, Δ₁(q)) < (P, Δ₂(q)) < (P, Δ₃(q)) < ··· < (P, Δ_t(q));
if E₂(q) ∈ P then (P, Δ₂(q)) < ··· < (P, Δ_{t-1}(q)) < (P, Δ_t(q)) < (P, Δ₁(q)).
For any j ∈ {1, ··· , t}, (P, Δ_j(q)) < (Q, Δ_j(q)) if P < Q.

Proposition

 $\mathscr{L}(T, \gamma^{(q)})$ is a lattice with minimum element $(P_{-}, \Delta_1(q))$ and maximum element $(P_{+}, \Delta_1(q))$.

< ロト < 同ト < ヨト < ヨト

Figure: Hasse graph of $\mathscr{L}(T, \gamma^{(q)})$

Cover relations

- $(P, \Delta_{j+1}(q))$ covers $(P, \Delta_j(q))$; or
- $(\mu_{G_l}P, \Delta_j(q))$ covers $(P, \Delta_j(q))$.

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Lattice $\mathscr{L}(T, \gamma^{(p,q)})$

The starting point and ending point of γ are punctures p and q, respectively. T contains no arcs tagged notched at p or q.

- $\Delta(p) = \{\Delta_1(p), \cdots, \Delta_s(p)\}$: triangles incident to p in T^o .
- $\Delta(q) = \{\Delta_1(q), \cdots, \Delta_t(q)\}$: triangles incident to q in T^o .

• $\mathscr{L}(T, \gamma^{(p,q)}) = \Delta(p) \times \mathscr{L}(T, \gamma) \times \Delta(q).$

Lattice $\mathscr{L}(T, \gamma^{(p,q)})$

- For any $(P, \Delta_j(q)) \in \mathscr{P}(\mathcal{G}_{\mathcal{T},\gamma}) imes \Delta(q)$,
 - if $E_1(p) \in P$ then

 $(\Delta_1(p), P, \Delta_j(q)) < (\Delta_2(p), P, \Delta_j(q)) < \cdots < (\Delta_s(p), P, \Delta_j(q));$

• if $E_2(p) \in P$ then

 $(\Delta_2(p), P, \Delta_j(q)) < (\Delta_3(p), P, \Delta_j(q)) < \cdots (\Delta_s(p), P, \Delta_j(q)) < (\Delta_1(p), P, \Delta_j(q));$

• For any $i \in \{1, \cdots, t\}$, $(\Delta_i(p), P, \Delta_a(q)) < (\Delta_i(p), Q, \Delta_b(q))$ if $(P, \Delta_a(q)) < (Q, \Delta_b(q))$ in $\mathscr{L}(T, \gamma^{(q)})$.

Proposition

 $\mathscr{L}(T, \gamma^{(p,q)})$ is a lattice with minimum element $(\Delta_1(p), P_-, \Delta_1(q))$ and maximum element $(\Delta_1(p), P_+, \Delta_1(q))$.

э

A (1) × A (2) × A (2) × A

Figure: Hasse graph of $\mathscr{L}(\mathcal{T},\beta^{(0,1)})$

イロト イヨト イヨト イヨト

Cover relations

- $(\Delta_i(p), P, \Delta_{j+1}(q))$ covers $(\Delta_i(p), P, \Delta_j(q))$; or
- $(\Delta_{i+1}(p), P, \Delta_{j+1}(q))$ covers $(\Delta_i(p), P, \Delta_j(q))$; or
- $(\Delta_i(p), \mu_{G_l}P, \Delta_j(q))$ covers $(\Delta_i(p), P, \Delta_j(q))$.

э

Assume the edges of $\Delta_j(q)$ are $\tau_{j-1}(q), \tau_j(q), \tau_{[j]}(q)$.

 $m(\Delta_j(q); \alpha) = \text{number of edges labeled } \alpha \text{ in } \{\tau_{[j]}(q)\}$ - number of edges labeled $\alpha \text{ in } \{\tau_{j-1}(q), \tau_j(q)\}.$ • $\forall P \in \mathscr{L}(T, \gamma) \text{ and arc } \alpha \in T^o,$ $m(P, \alpha) = \text{number of edges labeled } \alpha \text{ in } P.$

Valuation map on
$$\mathscr{L}(\mathcal{T},\gamma^{(q)})$$

$$\begin{array}{l} \forall \ (P, \Delta_j(q)) \in \mathscr{L}(T, \gamma^{(q)}), \\ \bullet \\ & \Omega^{(q)}(P, \underline{\Delta_j(q)}) = -d(\tau_j(q))m(P; \tau_j(q)). \\ \bullet \ \text{ If } P \text{ can twist at } G_l, \end{array}$$

 $\Omega^{(q)}(P,\Delta_j(q);G_l) = \Omega(P,G_l) + d(\tau_j(q))m(\Delta_j(q);\tau_{i_l}).$

æ

イロト イヨト イヨト イヨト

Valuation map on $\mathscr{L}(\mathcal{T},\gamma^{(q)})$

Proposition

There is a unique map $w : \mathscr{L}(T, \gamma^{(q)}) \to \mathbb{Z}$ such that

- (Initial condition) $w(P_-, \Delta_1(q)) = 0$,
- (Recurrence conditions)
 - For any $(P, \Delta_j(q))$ such that $(P, \Delta_{j+1}(q))$ covers $(P, \Delta_j(q))$,

$$w(P,\Delta_{j+1}(q)) - w(P,\Delta_j(q)) = \Omega^{(q)}(P,\underline{\Delta_j(q)}).$$
 (1)

Por any (P, ∆_j(q)), (Q, ∆_j(q)) ∈ ℒ(T, γ^(q)) such that (Q, ∆_j(q)) covers (P, ∆_j(q)), in particular P < Q are related by a twist on some tile G_l,

$$w(Q,\Delta_j(q)) - w(P,\Delta_j(q)) = \Omega^{(q)}(P,\Delta_j(q);G_l).$$
(2)

< (17) > < (17) > <

Valuation map on
$$\mathscr{L}(\mathcal{T},\gamma^{(p,q)})$$

1

2

 $\Omega^{(p,q)}(\underline{\Delta_i(p)}, P, \Delta_j(q)) = d(\tau_i(p))[m(P; \tau_i(p)) + m(\Delta_j(q); \tau_i(p))].$ $\Omega^{(p,q)}(\underline{\Delta_i(p)}, P, \underline{\Delta_j(q)}) = -d(\tau_i(p))[m(P; \tau_j(q)) + m(\Delta_i(p); \tau_j(q))].$

3 If P can twist at G_I ,

 $\Omega^{(p,q)}(\Delta_i(p), P, \Delta_j(q); G_l) = \Omega^{(q)}(P, \Delta_j(q); G_l) - d(\tau_i(p))m(\Delta_i(p); \tau_{i_l}).$

э

Valuation map on $\mathscr{L}(\mathcal{T},\gamma^{(p,q)})$

Proposition

There is a unique map $w: \mathscr{L}(\mathcal{T}, \gamma^{(p,q)}) \to \mathbb{Z}$ such that

- (Initial condition) $w(\Delta_1(p), P_-, \Delta_1(q)) = 0$,
- (Recurrence conditions)

• For any $(\Delta_i(p), P, \Delta_j(q))$ such that $(\Delta_{i+1}(p), P, \Delta_j(q))$ covers $(\Delta_i(p), P, \Delta_j(q))$, we have

 $w(\Delta_{i+1}(p), P, \Delta_j(q)) - w(\Delta_i(p), P, \Delta_j(q)) = \Omega^{(p,q)}(\underline{\Delta_i(p)}, P, \Delta_j(q)).$

イロト イヨト イヨト -

Valuation map on $\mathscr{L}(\mathcal{T}^o,\gamma^{(p,q)})$

Continue

• For any $(\Delta_i(p), P, \Delta_j(q))$ such that $(\Delta_i(p), P, \Delta_{j+1}(q))$ covers $(\Delta_i(p), P, \Delta_j(q))$, we have

$$w(\Delta_i(p),P,\Delta_{j+1}(q))-w(\Delta_i(p),P,\Delta_j(q))=\Omega^{(p,q)}(\Delta_i(p),P,\underline{\Delta_j(q)}).$$

• For any $(\Delta_i(p), Q, \Delta_j(q)), (\Delta_i(p), P, \Delta_j(q)) \in \mathscr{L}(T^o, \beta^{(p,q)})$ such that $(\Delta_i(p), Q, \Delta_j(q))$ covers $(\Delta_i(p), P, \Delta_j(q))$, in particular, Q > P are related by a twist on some tile G_l ,

$$w(\Delta_i(p), Q, \Delta_j(q)) - w(\Delta_i(p), P, \Delta_j(q)) = \Omega^{(p,q)}(\Delta_i(p), P, \Delta_j(q); G_l).$$

Theorem

Let $\beta = \gamma^{(q)}$ or $\gamma^{(p,q)}$. For any $\mathbf{P} \in \mathscr{L}(\mathcal{T},\beta)$, we can associate with a quantum Laurent monomial $X(\mathbf{P})$ in $\mathscr{T}(\mathcal{T})$. Then

$$X_eta = \sum_{\mathbf{P}\in\mathscr{L}(\mathcal{T},eta)} v^{w(\mathbf{P})} X(\mathbf{P}).$$

Theorem

The positivity conjecture holds for quantum cluster algebras from orbifolds.

- A. Berenstein and A. Zelevinsky, Quantum cluster algebras. Adv Math 195 (2) (2005) 405-455.
- S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008) 83-146.
- G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011) 2241-2308.

Thanks!

æ

メロト メタト メヨト メヨト