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Quantum cluster algebras from surfaces

Definition
A quantum cluster algebra Av is called coming from an orbifold Σ if the

commutative cluster algebra Av |v=1 is coming from Σ.
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Theorem (Fomin-Shapiro-Thurston [2], Berenstein-Zelevinsky [1])
Let Av be a quantum cluster algebra from Σ.

(a) If Σ is not a closed orbifold with one puncture, then there are

bijections,

{Tagged arcs in Σ} → {Quantum cluster variables of Av}.
{Tagged triangulation of Σ} → {Quantum seeds of Av}.

(b) If Σ is a closed orbifold with one puncture, then there are bijections

{Ordinary arcs in Σ} → {Quantum cluster variables of Av}.
{Ideal triangulation of Σ} → {Quantum seeds of Av}.
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Objective
To give an expansion formula for Xβ with respect to X (∆), where β is a

tagged/ordianary arc, ∆ is a tagged/ideal triangulation.

γ ordinary arc connection p and q, T o ideal triangulation, T the

tagged triangulation corresponding to T o .

1 β = γ, ∆ = T ;
2 β = γ(q), q puncture, ∆ = T contains no arcs tagged notched at q;
3 β = γ(p,q), p, q punctures, ∆ = T contains no arcs tagged notched at

p or q.

(γ,T ) ordinary arc, (γ(q),T ) singly-notched arc, (γ(p,q),T )

doubly-notched arc.
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Ideal

Theorem (Musiker-Schiffler-Williams [3])
Let A be a commutative cluster algebra from Σ. For any ordinary arc γ

and ideal triangulation T o , we have

xγ =
∑

P∈P(GTo ,γ)

x(P).

ideal
For each perfect matching P, associative with an integer w(P) and

quantum Laurent monomial X (P) such that

Xγ =
∑

P∈P(GTo ,γ)

vw(p)X (P).

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 6 / 45



Expansion formula for ordinary arcs
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Lattice L(T , γ)

Fix γ ordinary arc, T o ideal triangulation, T the tagged triangulation

corresponding to T o

Snake graph GT ,γ is constructed via the following:

γ crosses T o at p1, · · · , pc in order;

Associate a tile Gi with each point pi ;

Glue Gi , i = 1, · · · , c to obtain GT ,γ .

A perfect matching of GT ,γ is a set P of edges such that each vertex

incident to exactly one edge in P;

L(T , γ):={the set of all perfect matchings of GT ,γ}.

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 8 / 45



Snake graph – An example

1 2

γ
α

β

2 1 2 1 2

22 1 2 1

2 21 11α β α β α β

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 9 / 45



Lattice L(T , γ)

Definition
We say that P ∈L(T , γ) can twist on a tile Gi if there are two edges

of Gi in P. The perfect matching obtained by replacing the two edges

by the remaining two edges of Gi is called the twist of P at Gi ,

denoted by µGi (P).

let P < µGi (P) if W (Gi ),E (Gi ) ∈ P, rel(Gi ,T o) = 1 or

N(Gi ), S(Gi ) ∈ P, rel(Gi ,T o) = −1.

Proposition
L(T , γ) is a lattice with maximum/minimum element P+/P−.
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An example

2 1 2 1 2

22 1 2 1

2 21 11α β α β α β
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Valuation map on L(T , γ)

P can twist at a tile Gl with diagonal labeled τil .

G−l := G1 ∪ G2 ∪ · · · ∪ Gl−1, G+
l := Gl+1 ∪ Gl+2 ∪ · · · ∪ Gc

m±(P,Gl ;α) :=

number of edges labeled α in P ∩ edge(G±l ) \ edge(Gl ).

n(G , α) := number of diagonals labeled α of G .

Ω(P,Gl ) : = d(τil )[(m+(P,Gl ; τil )−m−(P,Gl ; τil ))

−
(
n(G+

l ; τil )− n(G−l ; τil )
)
].
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Valuation map on L(T , γ)

Proposition
There is a unique map w : L(T , γ)→ Z such that

1 (Initial condition) w(P−) = 0, where P− is the minimum element in

L(T , γ),

2 (Recurrence condition)

w(µGl (P)) = w(P) + Ω(P,Gl )

for any P ∈L(T , γ) such that P can twist on Gl with P < µGl (P).
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An example

2 1 2 1 2

22 1 2 1

2 21 11α β α β α β

0

2 0

2 0 −2

1 0 −1

1 −1

0

−2
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Expansion formula

Theorem
For any P ∈L(T , γ), we can associate with a quantum Laurent

monomial X (P) in T(T ). Then

Xγ =
∑

P∈L(T ,γ)

vw(P)X (P).
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Ideal of the proof
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An observation

f = x +y +x−2y2 +x−2yz +x−2zy +x−2z2 = x ′−1y +x ′−1z +y +x ′2

with xx ′ = y + z .

P = {x , y , x−2y2, x−2yz , x−2zy , x−2z2} and
P′ = {x ′−1y , x ′−1z , y , x ′2}.

{x} ↔ {x ′−1y , x ′−1z}, {y} ↔ {y},
{x−2y2, x−2yz , x−2zy , x−2z2} ↔ {x ′2}.
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Definition
Let P,P′ be finite sets.

(1) A partition of P is a finite collection of subsets Pi , i ∈ I such that

∪i∈IPi = P and Pi ∩Pj = ∅ for any i 6= j ∈ I .

(2) A partition bijection from P to P′ is a bijection from some partition

of P to some partition of P′, denoted by ϕ : P
par→ P′.

Remark
To give a partition bijection from P to P′ is equivalent to associate each

P ∈ P with a non-empty subset ϕ(P) ⊂ P′ such that the following

conditions hold.

(i) For any P,Q ∈ P, we have either ϕ(P)∩ϕ(Q) = ∅ or ϕ(P) = ϕ(Q);

(ii)
⋃

P∈P ϕ(P) = P′.
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Theorem
Let T o be an ideal triangulation and α ∈ T o be a flippable arc. Denote

T ′o = µα(T o) and T (resp. T ′) the corresponding tagged triangulation of

T o (resp. T ′o). There exists a partition bijection

π : L(T , β)→L(T ′, β)

such that for any P ∈L(T , β) we have∑
P′∈π(P)

vw(P′)X (P ′) =
∑

Q∈π−1π(P)

vw(Q)X (Q).

Consequently, we have∑
P′∈L(T ′,β)

vw(P′)X (P ′) =
∑

P∈L(T ,β)

vw(P)X (P).
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An example
Let Σ,T o ,T ′o , α, α′ and β be as shown in the following figure.

α

1

3 4

1

3 4α′

T o T ′o

β β

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 20 / 45



Then the snake graphs GT ,β and GT ′,β are the graphs in the following

Figure.
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X2e1−e3−e4−2eα

Xe1−e3−eα

Xe1−e4−eα
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Expansion formula for

singly-notched and doubly-notched

arcs
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Lattice L(T , γ(q))

The ending point q of γ is a puncture. T contains no arcs tagged notched

at q.

∆(q) = {∆1(q), · · · ,∆t(q)}: triangles incident to q in T o .

L(T , γ(q)) = L(T , γ)×∆(q).

p q

∆1

∆2

p q∆1

∆2

∆t

∆t−1
∆t

γ γ
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Lattice L(T , γ(q))

E1(q) :=


N(Gc), if rel(Gc ,T o) = 1,

E (Gc), if rel(Gc ,T o) = −1,

E2(q) :=


E (Gc), if rel(Gc ,T o) = 1,

N(Gc), if rel(Gc ,T o) = −1.

Remark
E1(q) ∈ P−,E2(q) ∈ P+.
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Lattice L(T , γ(q))

For any P ∈ P(GT ,γ),

if E1(q) ∈ P then

(P,∆1(q)) < (P,∆2(q)) < (P,∆3(q)) < · · · < (P,∆t(q));

if E2(q) ∈ P then

(P,∆2(q)) < · · · < (P,∆t−1(q)) < (P,∆t(q)) < (P,∆1(q)).

For any j ∈ {1, · · · , t}, (P,∆j(q)) < (Q,∆j(q)) if P < Q.

Proposition

L(T , γ(q)) is a lattice with minimum element (P−,∆1(q)) and maximum

element (P+,∆1(q)).
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γ

(P−,∆1)

(P,∆1)

(P−,∆2)

(P,∆2)

(P+,∆2)
(P+,∆1)

P− P P+

Figure: Hasse graph of L(T , γ(q))

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 30 / 45



Cover relations
(P,∆j+1(q)) covers (P,∆j(q)); or

(µGlP,∆j(q)) covers (P,∆j(q)).
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Lattice L(T , γ(p,q))

The starting point and ending point of γ are punctures p and q,

respectively. T contains no arcs tagged notched at p or q.

∆(p) = {∆1(p), · · · ,∆s(p)}: triangles incident to p in T o .

∆(q) = {∆1(q), · · · ,∆t(q)}: triangles incident to q in T o .

L(T , γ(p,q)) = ∆(p)×L(T , γ)×∆(q).

∆s(p) = ∆1(q)

∆1(p) = ∆t(q)

∆2(q)

∆t−1(q)∆2(p)

∆s−1(p)

p q

∆2(q)

∆2(p)

p q∆1(p)

∆s(p)

∆t(q)

∆1(q)
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Lattice L(T , γ(p,q))

For any (P,∆j(q)) ∈ P(GT ,γ)×∆(q),

if E1(p) ∈ P then

(∆1(p),P,∆j(q)) < (∆2(p),P,∆j(q)) < · · · < (∆s(p),P,∆j(q));

if E2(p) ∈ P then

(∆2(p),P,∆j(q)) < (∆3(p),P,∆j(q)) < · · · (∆s(p),P,∆j(q)) < (∆1(p),P,∆j(q));

For any i ∈ {1, · · · , t}, (∆i (p),P,∆a(q)) < (∆i (p),Q,∆b(q)) if

(P,∆a(q)) < (Q,∆b(q)) in L(T , γ(q)).

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 33 / 45



Proposition

L(T , γ(p,q)) is a lattice with minimum element (∆1(p),P−,∆1(q)) and

maximum element (∆1(p),P+,∆1(q)).
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(∆1, P−,∆
′
1)

(∆2, P−,∆
′
1)

(∆1, P−,∆
′
2)

(∆2, P−,∆
′
2)

(∆2, P+,∆
′
2)

(∆2, P+,∆
′
1)

(∆1, P+,∆
′
1)

(∆1, P+,∆
′
2)

β0 1

Figure: Hasse graph of L(T , β(0,1))
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Cover relations
(∆i (p),P,∆j+1(q)) covers (∆i (p),P,∆j(q)); or

(∆i+1(p),P,∆j+1(q)) covers (∆i (p),P,∆j(q)); or

(∆i (p), µGlP,∆j(q)) covers (∆i (p),P,∆j(q)).
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Valuation map on L(T , γ(q))

Assume the edges of ∆j(q) are τj−1(q), τj(q), τ[j](q).

m(∆j(q);α) = number of edges labeled α in {τ[j](q)}

− number of edges labeled α in {τj−1(q), τj(q)}.

∀P ∈L(T , γ) and arc α ∈ T o ,

m(P, α) = number of edges labeled α in P.
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Valuation map on L(T , γ(q))

∀ (P,∆j(q)) ∈L(T , γ(q)),

Ω(q)(P,∆j(q)) = −d(τj(q))m(P; τj(q)).

If P can twist at Gl ,

Ω(q)(P,∆j(q);Gl ) = Ω(P,Gl ) + d(τj(q))m(∆j(q); τil ).
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Valuation map on L(T , γ(q))

Proposition

There is a unique map w : L(T , γ(q))→ Z such that

1 (Initial condition) w(P−,∆1(q)) = 0,

2 (Recurrence conditions)

1 For any (P,∆j(q)) such that (P,∆j+1(q)) covers (P,∆j(q)),

w(P,∆j+1(q))− w(P,∆j(q)) = Ω(q)(P,∆j(q)). (1)

2 For any (P,∆j(q)), (Q,∆j(q)) ∈L(T , γ(q)) such that (Q,∆j(q))

covers (P,∆j(q)), in particular P < Q are related by a twist on some

tile Gl ,

w(Q,∆j(q))− w(P,∆j(q)) = Ω(q)(P,∆j(q);Gl ). (2)
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Valuation map on L(T , γ(p,q))

∀ (∆i (p),P,∆j(q)) ∈L(T , γ(p,q)),1

Ω(p,q)(∆i (p),P,∆j(q)) = d(τi (p))[m(P; τi (p)) + m(∆j(q); τi (p))].

2

Ω(p,q)(∆i (p),P,∆j(q)) = −d(τi (p))[m(P; τj(q)) + m(∆i (p); τj(q))].

3 If P can twist at Gl ,

Ω(p,q)(∆i (p),P,∆j(q);Gl ) = Ω(q)(P,∆j(q);Gl )−d(τi (p))m(∆i (p); τil ).
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Valuation map on L(T , γ(p,q))

Proposition

There is a unique map w : L(T , γ(p,q))→ Z such that

1 (Initial condition) w(∆1(p),P−,∆1(q)) = 0,

2 (Recurrence conditions)

• For any (∆i (p),P,∆j(q)) such that (∆i+1(p),P,∆j(q)) covers

(∆i (p),P,∆j(q)), we have

w(∆i+1(p),P,∆j(q))− w(∆i (p),P,∆j(q)) = Ω(p,q)(∆i (p),P,∆j(q)).

Min Huang (Sun Yat-sen University) Positivity for QCA from orbifolds 41 / 45



Valuation map on L(T o, γ(p,q))

Continue
• For any (∆i (p),P,∆j(q)) such that (∆i (p),P,∆j+1(q)) covers

(∆i (p),P,∆j(q)), we have

w(∆i (p),P,∆j+1(q))− w(∆i (p),P,∆j(q)) = Ω(p,q)(∆i (p),P,∆j(q)).

• For any (∆i (p),Q,∆j(q)), (∆i (p),P,∆j(q)) ∈L(T o , β(p,q)) such that

(∆i (p),Q,∆j(q)) covers (∆i (p),P,∆j(q)), in particular, Q > P are

related by a twist on some tile Gl ,

w(∆i (p),Q,∆j(q))− w(∆i (p),P,∆j(q)) = Ω(p,q)(∆i (p),P,∆j(q);Gl ).
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Expansion formula

Theorem
Let β = γ(q) or γ(p,q). For any P ∈L(T , β), we can associate with a

quantum Laurent monomial X (P) in T(T ). Then

Xβ =
∑

P∈L(T ,β)

vw(P)X (P).

Theorem
The positivity conjecture holds for quantum cluster algebras from orbifolds.
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Thanks!
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