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Introduction

The history of factorization

1637 • Fermat’s last theorem: xn + yn = zn

•

•

1847 • ”proof” of Gabriel Lamé

3 months later • Ernst Kummer: D23 is not a UFD  ideal numbers

1871 • Richard Dedekind: notion of rings, fields,...  Dn has
unique factorization of ideals

•

•

1994 • Andrew Wiles’s proof
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Introduction

Factorizations

42 = 2 · 3 · 7

x3 � x = x(x � 1)(x + 1)

factorization: a = c1 · c2 · · · cr

= d1 · d2 · · · ds

r . . . length of factorization

the same if r = s and (up to reordering) ci ⇠ di
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Factorizations

42 = 2 · 3 · 7= 3 · (�2) · (�7)

x3 � x = x(x � 1)(x + 1)
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Introduction

Krull domains

A ring A is a unique factorization domain (or UFD) if every element has a unique
factorization into irreducibles.

 what if not???

One possibile solution: Krull domains and their class groups

Integrally closed noetherian domains are Krull domains.

To each Krull domain we can attach an invariant, the class group.

Factorization theory of a Krull domain is completely determined by its class group
(and one of its subgroup).
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Introduction

Class groups

C(A) = h{ height-1 primes }i/q(A)⇥.

If A is an integrally closed noetherian domain, then the class group C(A) is the
divisor class group of the corresponding a�ne variety1

If the class group is infinite, then for each finite set of integers 2  l1 < · · · < lk
there exists an element of A whose leghts of factorizations are exactly l1, . . . , lk .

Theorem

For a domain A the following statements are equivalent.

1 A is a UFD.

2 A is a Krull domain with trivial class group.

1group of Weil divisors modulo principal divisors.
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Cluster algebras: definition and basic facts

Our setting: cluster algebras of geometric type

Definition

A seed (x,Q) is

a cluster: a set x = {x1, . . . , xn} of algebraically independent indeterminates
over Z;
the cluster is identified with the vertices of a quiver

a Q.

aa finite directed graph without loops and 2-cycles

Two seeds:

x1 x3 x2

x1 x2

x3 x4

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 8



Cluster algebras: definition and basic facts

Mutations

We mutate the seed (x,Q) at an vertex k.

1 For every path xi ! xk ! xj add an arrow xi ! xj

2 Reverse all arrows incident with xk

3 Remove two cycles.

Parallel mutation of cluster:

{x1, . . . , xk�1, xk , , xk+1, . . . , xn} {x1, . . . , xk�1, x
0
k , xk+1, . . . , xn}

with
xkx

0
k =

Y

j!k

xj +
Y

k!j

xj

| {z }
fk exchange polynomial

.
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Cluster algebras: definition and basic facts

Cluster algebras

Let (x,Q) be a seed.

Mutations produce a collection of seeds (possibly infinitely many).

Each element of a seed is called a cluster variable.

Definition

The cluster algebra A = A(x,Q) is the subalgebra of the rational functions
Z(x1, . . . , xn) generated by all the cluster variables.
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Cluster algebras: definition and basic facts

Cluster algebras: an example

Let A2 = x1 x2.

x1 x2
1) x2+1

x1
x2

2) x2+1
x1

1+x1+x2
x1x2

+ 1

x2 x1
1( x1+1

x2
x1

2( x1+1
x2

1+x1+x2
x1x2

Then

A(x,A2) = Z

x1, x2,

1 + x1
x2

,
1 + x2
x1

,
1 + x1 + x2

x1x2

�

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 11



Cluster algebras: definition and basic facts

Laurent phenomenon

Theorem (Fomin-Zelevinsky 2002)

Given a cluster x = {x1, x2, ..., xn} in a cluster algebra A, every element of A can
be written as a Laurent polynomial in x.

Z[x1, . . . , xn+m] ✓ A ✓ Z[x±1

1
, . . . , x±1

n ] ✓ Z(x1, . . . , xn)

where Z[x±1

1
, . . . , x±1

n ] = { f
x
a1
1 ...xann

| f 2 Z[x1, . . . , xn], ai 2 N0} is the Laurent polynomial

ring (associated to x1, . . . , xn).

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 12



Cluster algebras: definition and basic facts

Upper cluster algebras

Definition

The upper cluster algebra associated to a seed (x,Q) is

U =
\

y cluster

Z[y±1
1 , . . . , y±1

n ].

Notice that the Laurent phenomenon is equivalent to A ✓ U .
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Cluster algebras: definition and basic facts

Full rank upper cluster algebras

The signed adjacency matrix associated to a quiver Q is the matrix B = B(Q) given by

bij = #{arrows i ! j}�#{arrows j ! i}.

If B has maximal rank, we say that U is a full rank upper cluster algebra.

Theorem (Berenstein-Fomin-Zelevinsky 2005)

If U is a full rank upper cluster algebra, then

U =
n\

k=0

Z[x±1
1 , . . . , x 0±1

k , . . . , x±1
n ].

In particular, it is a Krull domain.

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 14
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Factorizations and class groups of cluster algebras
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Factorizations and class groups of cluster algebras

The history of factorizations of cluster algebras

2002 • S. Fomin and A. Zelevinski: cluster algebras

•

2012 • Geiss, Leclerc, Schrörer: units, irreducibles, and necessary
conditions for factoriality

2012 • P. Lampe: factoriality of cluster algebras of type A, D, E

•

2019 • A. Garcia Elsener, P. Lampe, D. Smertnig: class group of
an acyclic cluster algebra

2023 • P. Cao, B. Keller, F. Qin: factoriality of full rank upper
cluster algebras
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Factorizations and class groups of cluster algebras

Atomicity

Let A be a (upper) cluster algebra.

Cluster variables are irreducible in A. [Geiss-Leclerc-Schröer, 2012]

Proposition (P. 2023)

Every a 2 A can be written in only finitely many di↵erent ways as a product of
atoms:

a = u1 · · · uk with ui atoms.

The factorization is not unique:

x1 ! x2 ! x3, x1x 0
1 = 1 + x2 = x3x 0

3;

x1 x2 x1x 0
1 = x3

2 + 1 = (x2 + 1)(x2
2 + x2 + 1)
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Factorizations and class groups of cluster algebras

Atomicity

Let A be a (upper) cluster algebra.

Cluster variables are irreducible in A. [Geiss-Leclerc-Schröer, 2012]
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Factorizations and class groups of cluster algebras

Earlier results on factoriality

Proposition (Geiss-Leclerc-Schröer, 2012)

If A is a UFD, all exchange polynomials fi 2 Z[x1, . . . , xn] are irreducible and
pairwise distinct.

Theorem (Cao-Keller-Qin, 2023)

Let U be a full rank upper cluster algebra. Then U is a UFD if and only if all the
exchange polynomials associated to its initial seed are irreducible.

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 18
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Factorizations and class groups of cluster algebras

Class groups of (upper) cluster algebras

Theorem (Garcia Elsener-Lampe-Smertnig, 2019 & P. 2023)

Let A be an (upper) cluster algebra, with initial cluster {x1, . . . , xn}. Assume that
A is a Krull domain.

1 C(A) ⇠= Zr , for some r � 0,

2 r = t � n, with t the number of height-1 prime ideals that contain (at least)
one of the xi .

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 19
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Factorizations and class groups of cluster algebras

And the rank?

Can we say something more about the rank of this class group?

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 20



Factorizations and class groups of cluster algebras

Class group of a full rank upper cluster algebra

Remember: Full rank upper cluster algebras are Krull domains!

Theorem (P. 2023)

Let U be a full rank upper cluster algebra. Let f1, . . . , fn be the exchange polyno-
mials associated to the initial seed. Then

C(U) ⇠= Zt�n with t =
nX

i=1

li

where li is the number of irreducible factors of fi .

M. Pompili (mara.pompili@uni-graz.at) Factorization theory of cluster algebras 21
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Factorizations and class groups of cluster algebras

Factorial upper cluster algebras

Corollary

Let U be a full rank upper cluster algebra. Let f1, . . . , fn be the exchange polyno-
mials associated to the initial seed. Then U is a UFD if and only if f1, . . . , fn are
irreducible.

Proof:

Remember: C(U) ⇠= Zt�n, t = #irreducible factors

C(U) = 0 () t = n () f1, . . . , fn are irreducible.
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Factorizations and class groups of cluster algebras

Some examples I

Let Q =

x3

x4

x1 x2

B(Q) =

0

BB@

0 1 �1 2
�1 0 1 2
1 �1 0 2
�2 �2 �2 0

1

CCA

f1 = x3 + x2x2
4

•

f2 = x1 + x3x2
4

•

f3 = x1x2
4 + x2

•

f4 = x2
2 x

2
1 x

2
3 + 1

•

t = 4, n = 4

C(Q) = 0
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Factorizations and class groups of cluster algebras

Some examples II

Q = x1 x2 x3 x4 B(Q) =

0

BB@

0 3 0 0
�3 0 2 0
0 �2 0 2
0 0 �2 0

1

CCA

f1 = x3
2 + 1

• •

f2 = x3
1 + x2

3

•

f3 = x2
2 + x2

4

•

f4 = x2
3 + 1

•

t = 5, n = 4

C(Q) = Z
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Summary

The class groups of (upper) cluster algebras that are Krull domains are always of the
type Zr .

For full rank upper cluster algebras, this r can be computed counting the number of
irreducible factors of the exchange polynomials.

Similar results hold over fields of characteristic 0 as ground ring,
and allowing frozen variables.

Open questions:

What about non full rank upper cluster algebras?

Are all upper cluster algebras Krull domains? If no, how to characterize them?
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Thank you for your attention!
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