Calabi-Yau connected cochain DG algebras

Xuefeng Mao

Department of Mathematics, Shanghai University, xuefengmao@shu.edu.cn

Shanghai Jiao Tong University, Shanghai, August 9th, 2024 The 21st International Conference on Representation of Algebras

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Homological properties of homologically smooth connected cochain DG algebras, https://arxiv.org/pdf/2407.14805

・ロト・日本・日本・日本・日本

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Motivations

- 2 Main Results
- 3 Applications

▲□▶▲@▶▲≣▶▲≣▶ ■ めんの

Let \mathscr{A} be a connected graded k-algebra. If \exists a k-linear map $\partial_{\mathscr{A}} : \mathscr{A} \to \mathscr{A}$ of degree 1 such that $\partial_{\mathscr{A}} \circ \partial_{\mathscr{A}} = 0$, and $\partial_{\mathscr{A}}(ab) = \partial_{\mathscr{A}}(a)b + (-1)^{|a|}a\partial_{\mathscr{A}}(b)$, for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, \partial_{\mathscr{A}})$ is called a connected cochain DG algebra.

$$(\mathscr{A},\partial_{\mathscr{A}}): 0 \to \mathscr{A}^0 = \mathbb{k} \stackrel{\partial_{\mathscr{A}}^0 = 0}{\to} \mathscr{A}^1 \stackrel{\partial_{\mathscr{A}}^1}{\to} \mathscr{A}^2 \stackrel{\partial_{\mathscr{A}}^2}{\to} \cdots \stackrel{\partial_{\mathscr{A}}^l}{\to} \mathscr{A}^{i+1} \stackrel{\partial_{\mathscr{A}}^{i+1}}{\to} \cdots$$

 Any connected graded algebra *A* can be considered as a connected cochain DG algebra with zero differential *A* : 0 → A⁰ = k → A¹ → A² → ··· → Aⁱ⁺¹ → ···
 ∀ complex of graded A-modules ··· ^{dⁱ⁻¹} → Xⁱ → Xⁱ⁺¹ → ··· can be compressed as a DG *A*-module (⊕ ΣⁱXⁱ, ((-1)ⁱΣⁱ(dⁱ))_{i∈Z}). (ΣM)^j = M^{j+1}

Let \mathscr{A} be a connected graded k-algebra. If \exists a k-linear map $\partial_{\mathscr{A}} : \mathscr{A} \to \mathscr{A}$ of degree 1 such that $\partial_{\mathscr{A}} \circ \partial_{\mathscr{A}} = 0$, and $\partial_{\mathscr{A}}(ab) = \partial_{\mathscr{A}}(a)b + (-1)^{|a|}a\partial_{\mathscr{A}}(b),$

for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, \partial_{\mathscr{A}})$ is called a connected cochain DG algebra.

$$(\mathscr{A},\partial_{\mathscr{A}}): \mathbf{0} \to \mathscr{A}^{\mathbf{0}} = \mathbb{k} \stackrel{\partial^{0}_{\mathscr{A}} = \mathbf{0}}{\to} \mathscr{A}^{\mathbf{1}} \stackrel{\partial^{1}_{\mathscr{A}}}{\to} \mathscr{A}^{\mathbf{2}} \stackrel{\partial^{2}_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{i}_{\mathscr{A}}}{\to} \mathscr{A}^{i+1} \stackrel{\partial^{i+1}_{\mathscr{A}}}{\to} \cdots$$

 Any connected graded algebra *A* can be considered as a connected cochain DG algebra with zero differential *A* : 0 → A⁰ = k → A¹ → A² → ··· → Aⁱ⁺¹ → ···
 ∀ complex of graded *A*-modules ··· → Aⁱ⁻¹ × i → Xⁱ → Xⁱ⁺¹ → ··· can be compressed as a DG *A*-module (⊕ ΣⁱXⁱ, ((-1)ⁱΣⁱ(dⁱ))_{i∈Z}). (ΣM)^j = M^{j+1}

Let \mathscr{A} be a connected graded k-algebra. If \exists a k-linear map $\partial_{\mathscr{A}} : \mathscr{A} \to \mathscr{A}$ of degree 1 such that $\partial_{\mathscr{A}} \circ \partial_{\mathscr{A}} = 0$, and $\partial_{\mathscr{A}}(ab) = \partial_{\mathscr{A}}(a)b + (-1)^{|a|}a\partial_{\mathscr{A}}(b)$, for all graded elements $a, b \in \mathscr{A}$. Then (\mathscr{A}, a) is called a

for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, \partial_{\mathscr{A}})$ is called a connected cochain DG algebra.

$$(\mathscr{A},\partial_{\mathscr{A}}): \mathbf{0} \to \mathscr{A}^{\mathbf{0}} = \Bbbk \stackrel{\partial^{\mathbf{0}}_{\mathscr{A}} = \mathbf{0}}{\to} \mathscr{A}^{\mathbf{1}} \stackrel{\partial^{\mathbf{1}}_{\mathscr{A}}}{\to} \mathscr{A}^{\mathbf{2}} \stackrel{\partial^{\mathbf{2}}_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{i}_{\mathscr{A}}}{\to} \mathscr{A}^{i+1} \stackrel{\partial^{i+1}_{\mathscr{A}}}{\to} \cdots$$

Let \mathscr{A} be a connected graded k-algebra. If \exists a k-linear map $\partial_{\mathscr{A}} : \mathscr{A} \to \mathscr{A}$ of degree 1 such that $\partial_{\mathscr{A}} \circ \partial_{\mathscr{A}} = 0$, and $\partial_{\mathscr{A}}(ab) = \partial_{\mathscr{A}}(a)b + (-1)^{|a|}a\partial_{\mathscr{A}}(b)$, for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, 2)$ is called a

for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, \partial_{\mathscr{A}})$ is called a connected cochain DG algebra.

$$(\mathscr{A},\partial_{\mathscr{A}}):0\to\mathscr{A}^0=\Bbbk\overset{\partial^0_{\mathscr{A}}=0}{\to}\mathscr{A}^1\overset{\partial^1_{\mathscr{A}}}{\to}\mathscr{A}^2\overset{\partial^2_{\mathscr{A}}}{\to}\cdots\overset{\partial^i_{\mathscr{A}}}{\to}\mathscr{A}^{i+1}\overset{\partial^{i+1}_{\mathscr{A}}}{\to}\cdots$$

Let \mathscr{A} be a connected graded \Bbbk -algebra. If \exists a \Bbbk -linear map $\partial_{\mathscr{A}} : \mathscr{A} \to \mathscr{A}$ of degree 1 such that $\partial_{\mathscr{A}} \circ \partial_{\mathscr{A}} = 0$, and $\partial_{\mathscr{A}}(ab) = \partial_{\mathscr{A}}(a)b + (-1)^{|a|}a\partial_{\mathscr{A}}(b)$,

for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, \partial_{\mathscr{A}})$ is called a connected cochain DG algebra.

$$(\mathscr{A},\partial_{\mathscr{A}}): 0 \to \mathscr{A}^{0} = \Bbbk \stackrel{\partial^{0}_{\mathscr{A}}=0}{\to} \mathscr{A}^{1} \stackrel{\partial^{1}_{\mathscr{A}}}{\to} \mathscr{A}^{2} \stackrel{\partial^{2}_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{i}_{\mathscr{A}}}{\to} \mathscr{A}^{i+1} \stackrel{\partial^{i+1}_{\mathscr{A}}}{\to} \cdots$$

Any connected graded algebra A can be considered as a connected cochain DG algebra with zero differential $\mathscr{A}: \quad 0 \to A^0 = \mathbb{k} \xrightarrow{0} A^1 \xrightarrow{0} A^2 \xrightarrow{0} \cdots \xrightarrow{0} A^{i+1} \xrightarrow{0} \cdots$

 ² ∀ complex of graded A-modules ··· ^{dⁱ⁻¹}→ Xⁱ ^{dⁱ}→ Xⁱ⁺¹ ^{dⁱ⁺¹}→ ···
 can be compressed as a DG A-module
 (⊕ ΣⁱXⁱ, ((-1)ⁱΣⁱ(dⁱ))_{i∈ℤ}). (ΣM)^j = M^{j+1}

Let \mathscr{A} be a connected graded \Bbbk -algebra. If \exists a \Bbbk -linear map $\partial_{\mathscr{A}} : \mathscr{A} \to \mathscr{A}$ of degree 1 such that $\partial_{\mathscr{A}} \circ \partial_{\mathscr{A}} = 0$, and $\partial_{\mathscr{A}}(ab) = \partial_{\mathscr{A}}(a)b + (-1)^{|a|}a\partial_{\mathscr{A}}(b)$,

for all graded elements $a, b \in \mathscr{A}$. Then $(\mathscr{A}, \partial_{\mathscr{A}})$ is called a connected cochain DG algebra.

$$(\mathscr{A},\partial_{\mathscr{A}}):0\to\mathscr{A}^{0}=\Bbbk\overset{\partial^{0}_{\mathscr{A}}=0}{\to}\mathscr{A}^{1}\overset{\partial^{1}_{\mathscr{A}}}{\to}\mathscr{A}^{2}\overset{\partial^{2}_{\mathscr{A}}}{\to}\cdots\overset{\partial^{i}_{\mathscr{A}}}{\to}\mathscr{A}^{i+1}\overset{\partial^{i+1}_{\mathscr{A}}}{\to}\cdots$$

 Any connected graded algebra A can be considered as a connected cochain DG algebra with zero differential *A* : 0 → A⁰ = k → A¹ → A² → ··· → Aⁱ⁺¹ → ···
 ∀ complex of graded A-modules ··· → Aⁱ⁻¹ × i → Xⁱ → Xⁱ⁺¹ → ··· can be compressed as a DG *A*-module (⊕ ΣⁱXⁱ, ((-1)ⁱΣⁱ(dⁱ))_{i∈Z}). (ΣM)^j = M^{j+1}

Motivations	Main Results	Applications	References

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
	tilting complex	
	dualizing complex	
	free resolution	
	projective resolution	
	injective resolution	
	AS-Gorenstein algebra	
	Koszul algebra	
	noetherian regular algebra	
	Calabi-Yau graded algebra	

Motivations	Main Results	Applications	References

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	

cations References

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	

Motivations	Main Results	Applications	Referen

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
	dualizing complex	
	free resolution	
	projective resolution	
	injective resolution	
	AS-Gorenstein algebra	
	Koszul algebra	
	noetherian regular algebra	
	Calabi-Yau graded algebra	

Motiv	ations	Main Results	Applications	References
	C	omparison of two home	logy theories	

Comparison of two homology meenes		
graded hypercohomology algebra		
perfect complex		
tilting complex		
dualizing complex		
Calabi-Yau graded algebra		

Μ	oti	vati	ion	s

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	

Motivations	Main Results	Applications	References

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
	Calabi-Yau graded algebra	

Motivations	Main Results	Applications	References

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
	Calabi-Yau graded algebra	

Μ	oti	vati	ons	5

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module dualizing complex		
semi-free resolution	free resolution	
	projective resolution	
	Calabi-Yau graded algebra	

Ν	lo	tiv	ati	or	s

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
semi-projective resolution	projective resolution	
	Calabi-Yau graded algebra	

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module dualizing complex		
semi-free resolution	free resolution	
semi-projective resolution	ion projective resolution	
	injective resolution	
	AS-Gorenstein algebra	
	Koszul algebra	
	noetherian regular algebra	
	Calabi-Yau graded algebra	

Comparison of	two homology theories
DG homological algebra	graded hypercohomology algebra
compact DG module	perfect complex
tilting DG module	tilting complex
dualizing DG module	dualizing complex
semi-free resolution	free resolution
semi-projective resolution	projective resolution
semi-injective resolution	injective resolution
	Calabi-Yau graded algebra

Comparison of	two homology theories
DG homological algebra	graded hypercohomology algebra
compact DG module	perfect complex
tilting DG module	tilting complex
dualizing DG module	dualizing complex
semi-free resolution	free resolution
semi-projective resolution	projective resolution
semi-injective resolution	injective resolution
Gorenstein DG algebra	AS-Gorenstein algebra
	Calabi-Yau graded algebra

Comparison of	two homology theories
DG homological algebra	graded hypercohomology algebra
compact DG module	perfect complex
tilting DG module	tilting complex
dualizing DG module	dualizing complex
semi-free resolution	free resolution
semi-projective resolution	projective resolution
semi-injective resolution	injective resolution
Gorenstein DG algebra	AS-Gorenstein algebra
	Koszul algebra
	noetherian regular algebra
	Calabi-Yau graded algebra

Μ	oti	vat	ioi	۱s

Comparison of	two homology theories
DG homological algebra	graded hypercohomology algebra
compact DG module	perfect complex
tilting DG module	tilting complex
dualizing DG module	dualizing complex
semi-free resolution	free resolution
semi-projective resolution	projective resolution
semi-injective resolution	injective resolution
Gorenstein DG algebra	AS-Gorenstein algebra
	Calabi-Yau graded algebra

Motivations

Comparison of	two homology theories
DG homological algebra	graded hypercohomology algebra
compact DG module	perfect complex
tilting DG module	tilting complex
dualizing DG module	dualizing complex
semi-free resolution	free resolution
semi-projective resolution	projective resolution
semi-injective resolution	injective resolution
Gorenstein DG algebra	AS-Gorenstein algebra
Koszul DG algebra	Koszul algebra
	noetherian regular algebra
	Calabi-Yau graded algebra

Motivations

Comparison of	two homology theories
DG homological algebra	graded hypercohomology algebra
compact DG module	perfect complex
tilting DG module	tilting complex
dualizing DG module	dualizing complex
semi-free resolution	free resolution
semi-projective resolution	projective resolution
semi-injective resolution	injective resolution
Gorenstein DG algebra	AS-Gorenstein algebra
Koszul DG algebra	Koszul algebra
	noetherian regular algebra

Motivations

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
semi-projective resolution	projective resolution	
semi-injective resolution	injective resolution	
Gorenstein DG algebra	AS-Gorenstein algebra	
Koszul DG algebra	Koszul algebra	
homologically smooth	noetherian regular algebra	
	Calabi-Yau graded algebra	

Μ	oti	vat	ior	າຣ

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
semi-projective resolution	projective resolution	
semi-injective resolution	injective resolution	
Gorenstein DG algebra	AS-Gorenstein algebra	
Koszul DG algebra	Koszul algebra	
homologically smooth	noetherian regular algebra	
Calabi-Yau DG algebra	Calabi-Yau graded algebra	

Μ	oti	vat	ior	۱S

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
semi-projective resolution	projective resolution	
semi-injective resolution	injective resolution	
Gorenstein DG algebra	AS-Gorenstein algebra	
Koszul DG algebra	Koszul algebra	
homologically smooth	noetherian regular algebra	
Calabi-Yau DG algebra	Calabi-Yau graded algebra	

Μ	oti	vat	ior	۱S

Comparison of two homology theories		
DG homological algebra	graded hypercohomology algebra	
compact DG module	perfect complex	
tilting DG module	tilting complex	
dualizing DG module	dualizing complex	
semi-free resolution	free resolution	
semi-projective resolution	projective resolution	
semi-injective resolution	injective resolution	
Gorenstein DG algebra	AS-Gorenstein algebra	
Koszul DG algebra	Koszul algebra	
homologically smooth	noetherian regular algebra	
Calabi-Yau DG algebra	Calabi-Yau graded algebra	

Let \mathscr{A} be a connected cochain DG algebra.

- $\mathfrak{m}: \text{the maximal DG ideal} \\ \cdots \to 0 \to \mathscr{A}^1 \stackrel{\partial^1_{\mathscr{A}}}{\to} \mathscr{A}^2 \stackrel{\partial^2_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\to} \mathscr{A}^n \stackrel{\partial^n_{\mathscr{A}}}{\to} \cdots$
- *A*^{op}: opposite algebra of *A* with a product ◊ is defined by
 *a*₁ ◊ *a*₂ = (-1)^{|a₁|·|a₂|} *a*₂*a*₁;
- *A*^e: enveloping DG algebra *A* ⊗ *A*^{op} of *A*;
- D(𝔄): derived category of DG left 𝔄-modules;
- a DG *A*-module *M* is called compact, if Hom_{𝔅(𝒜)}(*M*, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- $\mathscr{D}^{c}(\mathscr{A})$: full subcat of $\mathscr{D}(\mathscr{A})$ consisting of compact objects;
- E: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Let \mathscr{A} be a connected cochain DG algebra.

- $\mathfrak{m}: \text{the maximal DG ideal} \\ \cdots \to 0 \to \mathscr{A}^1 \stackrel{\partial^1_{\mathscr{A}}}{\to} \mathscr{A}^2 \stackrel{\partial^2_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\to} \mathscr{A}^n \stackrel{\partial^n_{\mathscr{A}}}{\to} \cdots;$
- A^{op}: opposite algebra of A with a product ◊ is defined by
 a₁ ◊ a₂ = (-1)^{|a₁|·|a₂|}a₂a₁;
- D(𝒜): derived category of DG left 𝒜-modules;
- a DG *A*-module *M* is called compact, if Hom_{𝔅(𝒜)}(*M*, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- $\mathscr{D}^{c}(\mathscr{A})$: full subcat of $\mathscr{D}(\mathscr{A})$ consisting of compact objects;
- E: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Let \mathscr{A} be a connected cochain DG algebra.

- \mathfrak{m} : the maximal DG ideal $\cdots \to 0 \to \mathscr{A}^1 \stackrel{\partial^1_{\mathscr{A}}}{\to} \mathscr{A}^2 \stackrel{\partial^2_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{n-1}}{\to} \mathscr{A}^n \stackrel{\partial^n_{\mathscr{A}}}{\to} \cdots;$
- A^{op}: opposite algebra of A with a product ◊ is defined by
 a₁ ◊ a₂ = (-1)^{|a₁|·|a₂|}a₂a₁;
- \mathscr{A}^{e} : enveloping DG algebra $\mathscr{A} \otimes \mathscr{A}^{op}$ of \mathscr{A} ;
- D(𝒜): derived category of DG left 𝒜-modules;
- a DG *A*-module *M* is called compact, if Hom_{𝔅(𝒜)}(*M*, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- $\mathscr{D}^{c}(\mathscr{A})$: full subcat of $\mathscr{D}(\mathscr{A})$ consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Let \mathscr{A} be a connected cochain DG algebra.

• \mathfrak{m} : the maximal DG ideal

 $\cdots \to \mathbf{0} \to \mathscr{A}^{1} \stackrel{\partial^{1}_{\mathscr{A}}}{\twoheadrightarrow} \mathscr{A}^{2} \stackrel{\partial^{2}_{\mathscr{A}}}{\twoheadrightarrow} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\longrightarrow} \mathscr{A}^{n} \stackrel{\partial^{n}_{\mathscr{A}}}{\longrightarrow} \cdots;$

- \mathscr{A}^{op} : opposite algebra of \mathscr{A} with a product \diamond is defined by $a_1 \diamond a_2 = (-1)^{|a_1| \cdot |a_2|} a_2 a_1;$
- *A*^e: enveloping DG algebra *A* ⊗ *A*^{op} of *A*;
- a DG *A*-module *M* is called compact, if Hom_{𝔅(𝒜)}(*M*, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- $\mathscr{D}^{c}(\mathscr{A})$: full subcat of $\mathscr{D}(\mathscr{A})$ consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Let *A* be a connected cochain DG algebra.

• \mathfrak{m} : the maximal DG ideal

 $\cdots \to \mathbf{0} \to \mathscr{A}^{1} \stackrel{\partial^{1}_{\mathscr{A}}}{\to} \mathscr{A}^{2} \stackrel{\partial^{2}_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\to} \mathscr{A}^{n} \stackrel{\partial^{n}_{\mathscr{A}}}{\to} \cdots;$

- \mathscr{A}^{op} : opposite algebra of \mathscr{A} with a product \diamond is defined by $a_1 \diamond a_2 = (-1)^{|a_1| \cdot |a_2|} a_2 a_1;$
- \mathscr{A}^{e} : enveloping DG algebra $\mathscr{A} \otimes \mathscr{A}^{op}$ of \mathscr{A} ;
- a DG A-module M is called compact, if Hom_{𝔅(𝒜)}(M, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- $\mathscr{D}^{c}(\mathscr{A})$: full subcat of $\mathscr{D}(\mathscr{A})$ consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$
Let \mathscr{A} be a connected cochain DG algebra.

• \mathfrak{m} : the maximal DG ideal

 $\cdots \to \mathbf{0} \to \mathscr{A}^{1} \stackrel{\partial^{1}_{\mathscr{A}}}{\to} \mathscr{A}^{2} \stackrel{\partial^{2}_{\mathscr{A}}}{\to} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\to} \mathscr{A}^{n} \stackrel{\partial^{n}_{\mathscr{A}}}{\to} \cdots;$

- \mathscr{A}^{op} : opposite algebra of \mathscr{A} with a product \diamond is defined by $a_1 \diamond a_2 = (-1)^{|a_1| \cdot |a_2|} a_2 a_1;$
- \mathscr{A}^{e} : enveloping DG algebra $\mathscr{A} \otimes \mathscr{A}^{op}$ of \mathscr{A} ;
- D(𝔄): derived category of DG left 𝔄-modules;
- a DG A-module M is called compact, if Hom_{D(A)}(M, −) preserves all set-indexed coproducts in D(A);
- $\mathscr{D}^{c}(\mathscr{A})$: full subcat of $\mathscr{D}(\mathscr{A})$ consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Let \mathscr{A} be a connected cochain DG algebra.

• m : the maximal DG ideal

 $\cdots \to \mathbf{0} \to \mathscr{A}^1 \stackrel{\partial^1_{\mathscr{A}}}{\twoheadrightarrow} \mathscr{A}^2 \stackrel{\partial^2_{\mathscr{A}}}{\twoheadrightarrow} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\longrightarrow} \mathscr{A}^n \stackrel{\partial^n_{\mathscr{A}}}{\twoheadrightarrow} \cdots;$

- \mathscr{A}^{op} : opposite algebra of \mathscr{A} with a product \diamond is defined by $a_1 \diamond a_2 = (-1)^{|a_1| \cdot |a_2|} a_2 a_1;$
- \mathscr{A}^{e} : enveloping DG algebra $\mathscr{A} \otimes \mathscr{A}^{op}$ of \mathscr{A} ;
- D(𝔄): derived category of DG left 𝔄-modules;
- a DG A-module M is called compact, if Hom_{𝔅(𝒜)}(M, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- $\mathcal{D}^{c}(\mathscr{A})$: full subcat of $\mathcal{D}(\mathscr{A})$ consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Let \mathscr{A} be a connected cochain DG algebra.

• \mathfrak{m} : the maximal DG ideal

 $\cdots \to \mathbf{0} \to \mathscr{A}^{1} \stackrel{\partial^{1}_{\mathscr{A}}}{\twoheadrightarrow} \mathscr{A}^{2} \stackrel{\partial^{2}_{\mathscr{A}}}{\twoheadrightarrow} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\longrightarrow} \mathscr{A}^{n} \stackrel{\partial^{n}_{\mathscr{A}}}{\longrightarrow} \cdots;$

- \mathscr{A}^{op} : opposite algebra of \mathscr{A} with a product \diamond is defined by $a_1 \diamond a_2 = (-1)^{|a_1| \cdot |a_2|} a_2 a_1;$
- \mathscr{A}^{e} : enveloping DG algebra $\mathscr{A} \otimes \mathscr{A}^{op}$ of \mathscr{A} ;
- D(𝔄): derived category of DG left 𝔄-modules;
- a DG A -module M is called compact, if Hom_{𝔅(𝒜)}(M, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- D^c(𝒜): full subcat of D(𝒜) consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k}));$

Let \mathscr{A} be a connected cochain DG algebra.

• m : the maximal DG ideal

 $\cdots \to \mathbf{0} \to \mathscr{A}^{1} \stackrel{\partial^{1}_{\mathscr{A}}}{\twoheadrightarrow} \mathscr{A}^{2} \stackrel{\partial^{2}_{\mathscr{A}}}{\twoheadrightarrow} \cdots \stackrel{\partial^{n-1}_{\mathscr{A}}}{\longrightarrow} \mathscr{A}^{n} \stackrel{\partial^{n}_{\mathscr{A}}}{\longrightarrow} \cdots;$

- \mathscr{A}^{op} : opposite algebra of \mathscr{A} with a product \diamond is defined by $a_1 \diamond a_2 = (-1)^{|a_1| \cdot |a_2|} a_2 a_1;$
- \mathscr{A}^{e} : enveloping DG algebra $\mathscr{A} \otimes \mathscr{A}^{op}$ of \mathscr{A} ;
- D(𝔄): derived category of DG left 𝔄-modules;
- a DG A-module M is called compact, if Hom_{𝔅(𝒜)}(M, −) preserves all set-indexed coproducts in 𝔅(𝒜);
- D^c(𝒜): full subcat of D(𝒜) consisting of compact objects;
- *E*: the Ext-algebra of \mathscr{A} defined by $E = H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk));$

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If A is compact, then A is called homologically smooth. A is homologically smooth if and only if k is compact.

H(*R*Hom_𝒜∘(𝒜, 𝑘)) ≅ *H*(*R*Hom_𝒜(𝑘, 𝑘))
If 𝒜 is homologically smooth and 𝒜 𝖆 𝑘, then sup{*i*|*Hⁱ*(𝒜) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If A is compact, then A is called homologically smooth. A is homologically smooth if and only if k is compact.

H(*R*Hom_𝒜(𝒜, 𝑘)) ≅ *H*(*R*Hom_𝒜(𝑘, 𝑘))
If 𝒜 is homologically smooth and 𝒜 𝖆 𝑘, then sup{*i*|*Hⁱ*(𝒜) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG *A*-module *M* has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG *A*-module *M* is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If *A* is compact, then *A* is called homologically smooth. *A* is homologically smooth if and only if *A* is compact.

H(*R* Hom_𝔄(𝔄, 𝑘)) ≅ *H*(*R* Hom_𝔄(𝑘, 𝑘))
If 𝔄 is homologically smooth and 𝔄 𝖆 𝑘, then sup{*i*|*Hⁱ*(𝔄) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If A is compact, then A is called homologically smooth. A is homologically smooth if and only if k is compact.

H(*R*Hom_𝒜 (𝒜, 𝑘)) ≅ *H*(*R*Hom_𝒜(𝑘, 𝑘))
If 𝒜 is homologically smooth and 刘 𝖆 𝑘, then sup{*i*|*Hⁱ*(刘) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If *A*^e*A* is compact, then *A* is called homologically smooth. *A* is homologically smooth if and only if *A* k is compact.

H(*R*Hom_𝒜(𝒜, 𝑘)) ≅ *H*(*R*Hom_𝒜(𝑘, 𝑘))
If 𝒜 is homologically smooth and 𝒜 𝖆 𝑘, then sup{*i*|*Hⁱ*(𝒜) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If *A***A* is compact, then *A* is called homologically smooth. *A* is homologically smooth if and only if *A*k is compact.

H(*R*Hom_𝔄 ∘ (𝔄, 𝑘)) ≅ *H*(*R*Hom_𝔄(𝑘, 𝑘))
 If 𝔄 is homologically smooth and 𝔄 𝖆 𝑘, then sup{*i*|*Hⁱ*(𝔄) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If *A*^e*A* is compact, then *A* is called homologically smooth. *A* is homologically smooth if and only if *A* k is compact.

 $H(R\operatorname{Hom}_{\mathscr{A}^{e}}(\mathscr{A},\Bbbk)) \cong H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk,\Bbbk))$

If *A* is homologically smooth and *A* ≠ k, then
 sup{*i*|*Hⁱ*(*A*) ≠ 0} = +∞ — Mao-Wu, (2009)

Fact 1: Any cohomologically bounded below DG \mathscr{A} -module M has a minimal semi-free resolution. — Mao-Wu (2008) Fact 2: A DG \mathscr{A} -module M is compact if and only if it admits a minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006)]

If *A*^e*A* is compact, then *A* is called homologically smooth. *A* is homologically smooth if and only if *A* k is compact.

- $H(R\operatorname{Hom}_{\mathscr{A}^{e}}(\mathscr{A}, \Bbbk)) \cong H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$
- If *A* is homologically smooth and *A* ≠ k, then sup{*i*|*Hⁱ*(*A*) ≠ 0} = +∞ Mao-Wu, (2009)

If \mathscr{A}^k , or equivalently $\mathscr{A}^e\mathscr{A}$, has a minimal semi-free resolution with a semi-basis concentrated in degree 0, then \mathscr{A} is called a Koszul DG algebra. ——He-Wu J. Algebra 320 (2008)

Definitions 1.5 [Félix-Halperin-Thomas, Adv. Math. 71]

Let \mathscr{A} be a connected cochain DG \Bbbk -algebra. If $\dim_k H(R \operatorname{Hom}_{\mathscr{A}}(k, \mathscr{A})) = 1$, (resp. $\dim_k H(R \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(k, \mathscr{A})) = 1$) then \mathscr{A} is called <u>left</u> (resp. right) <u>Gorenstein</u>. If \mathscr{A} is both left Gorenstein and right Gorenstein, then \mathscr{A} is called <u>Gorenstein</u>.

If $\mathcal{A} \Bbbk$, or equivalently $\mathcal{A}^{e}\mathcal{A}$, has a minimal semi-free resolution with a semi-basis concentrated in degree 0, then \mathcal{A} is called a Koszul DG algebra. ——He-Wu J. Algebra 320 (2008)

Definitions 1.5 [Félix-Halperin-Thomas, Adv. Math. 71]

Let \mathscr{A} be a connected cochain DG \Bbbk -algebra. If $\dim_k H(R \operatorname{Hom}_{\mathscr{A}}(k, \mathscr{A})) = 1$, (resp. $\dim_k H(R \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(k, \mathscr{A})) = 1$) then \mathscr{A} is called <u>left</u> (resp. right) <u>Gorenstein</u>. If \mathscr{A} is both left Gorenstein and right Gorenstein, then \mathscr{A} is called <u>Gorenstein</u>.

If \mathscr{A}^{k} , or equivalently $\mathscr{A}^{e}\mathscr{A}$, has a minimal semi-free resolution with a semi-basis concentrated in degree 0, then \mathscr{A} is called a Koszul DG algebra. — He-Wu J. Algebra 320 (2008)

Definitions 1.5 [Félix-Halperin-Thomas, Adv. Math. 71]

Let \mathscr{A} be a connected cochain DG \Bbbk -algebra. If $\dim_k H(R \operatorname{Hom}_{\mathscr{A}}(k, \mathscr{A})) = 1$, (resp. $\dim_k H(R \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(k, \mathscr{A})) = 1$) then \mathscr{A} is called <u>left</u> (resp. right) <u>Gorenstein</u>. If \mathscr{A} is both left Gorenstein and right Gorenstein, then \mathscr{A} is called <u>Gorenstein</u>.

If \mathscr{A}^{k} , or equivalently $\mathscr{A}^{e}\mathscr{A}$, has a minimal semi-free resolution with a semi-basis concentrated in degree 0, then \mathscr{A} is called a Koszul DG algebra. — He-Wu J. Algebra 320 (2008)

Definitions 1.5 [Félix-Halperin-Thomas, Adv. Math. 71]

Let \mathscr{A} be a connected cochain DG \Bbbk -algebra. If $\dim_k H(R \operatorname{Hom}_{\mathscr{A}}(k, \mathscr{A})) = 1$, (resp. $\dim_k H(R \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(k, \mathscr{A})) = 1$) then \mathscr{A} is called <u>left</u> (resp. right) <u>Gorenstein</u>. If \mathscr{A} is both left Gorenstein and right Gorenstein, then \mathscr{A} is called <u>Gorenstein</u>.

If $\mathscr{A}^{\mathbb{R}}$, or equivalently $\mathscr{A}^{\mathbb{R}}\mathscr{A}$, has a minimal semi-free resolution with a semi-basis concentrated in degree 0, then \mathscr{A} is called a Koszul DG algebra. — He-Wu J. Algebra 320 (2008)

Definitions 1.5 [Félix-Halperin-Thomas, Adv. Math. 71]

Let \mathscr{A} be a connected cochain DG \Bbbk -algebra. If $\dim_k H(R \operatorname{Hom}_{\mathscr{A}}(k, \mathscr{A})) = 1$, (resp. $\dim_k H(R \operatorname{Hom}_{\mathscr{A}^{\operatorname{op}}}(k, \mathscr{A})) = 1$) then \mathscr{A} is called <u>left</u> (resp. right) <u>Gorenstein</u>. If \mathscr{A} is both left Gorenstein and right Gorenstein, then \mathscr{A} is called <u>Gorenstein</u>.

Let \mathscr{A} be a homologically smooth connected DG \mathbb{k} -algebra. If $R \operatorname{Hom}_{\mathscr{A}^{e}}(\mathscr{A}, \mathscr{A}^{e}) \cong \Sigma^{-n} \mathscr{A}$ in $\mathscr{D}((\mathscr{A}^{e})^{op})$, then \mathscr{A} is called an *n*-Calabi-Yau DG algebra.

Question 1.7

- Are there some relations between these four homological properties?
- Are there some easy way to detect the Gorenstein and Calabi-Yau properties of a given DG algebra?

Calabi-Yau \Rightarrow homologically smooth and Gorenstein

Let \mathscr{A} be a homologically smooth connected DG \Bbbk -algebra. If $R \operatorname{Hom}_{\mathscr{A}^e}(\mathscr{A}, \mathscr{A}^e) \cong \Sigma^{-n} \mathscr{A}$ in $\mathscr{D}((\mathscr{A}^e)^{op})$, then \mathscr{A} is called an *n*-Calabi-Yau DG algebra.

Question 1.7

- Are there some relations between these four homological properties?
- Are there some easy way to detect the Gorenstein and Calabi-Yau properties of a given DG algebra?

Calabi-Yau \Rightarrow homologically smooth and Gorenstein

Let \mathscr{A} be a homologically smooth connected DG \Bbbk -algebra. If $R \operatorname{Hom}_{\mathscr{A}^e}(\mathscr{A}, \mathscr{A}^e) \cong \Sigma^{-n} \mathscr{A}$ in $\mathscr{D}((\mathscr{A}^e)^{op})$, then \mathscr{A} is called an *n*-Calabi-Yau DG algebra.

Question 1.7

- Are there some relations between these four homological properties?
- Are there some easy way to detect the Gorenstein and Calabi-Yau properties of a given DG algebra?

Calabi-Yau \Rightarrow homologically smooth and Gorenstein

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let \mathscr{A} be a homologically smooth connected DG \Bbbk -algebra. If $R \operatorname{Hom}_{\mathscr{A}^e}(\mathscr{A}, \mathscr{A}^e) \cong \Sigma^{-n} \mathscr{A}$ in $\mathscr{D}((\mathscr{A}^e)^{op})$, then \mathscr{A} is called an *n*-Calabi-Yau DG algebra.

Question 1.7

• Are there some relations between these four homological properties?

• Are there some easy way to detect the Gorenstein and Calabi-Yau properties of a given DG algebra?

Calabi-Yau \Rightarrow homologically smooth and Gorenstein

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let \mathscr{A} be a homologically smooth connected DG \Bbbk -algebra. If $R \operatorname{Hom}_{\mathscr{A}^e}(\mathscr{A}, \mathscr{A}^e) \cong \Sigma^{-n} \mathscr{A}$ in $\mathscr{D}((\mathscr{A}^e)^{op})$, then \mathscr{A} is called an *n*-Calabi-Yau DG algebra.

Question 1.7

- Are there some relations between these four homological properties?
- Are there some easy way to detect the Gorenstein and Calabi-Yau properties of a given DG algebra?

Calabi-Yau \Rightarrow homologically smooth and Gorenstein

Let \mathscr{A} be a homologically smooth connected DG \Bbbk -algebra. If $R \operatorname{Hom}_{\mathscr{A}^e}(\mathscr{A}, \mathscr{A}^e) \cong \Sigma^{-n} \mathscr{A}$ in $\mathscr{D}((\mathscr{A}^e)^{op})$, then \mathscr{A} is called an *n*-Calabi-Yau DG algebra.

Question 1.7

- Are there some relations between these four homological properties?
- Are there some easy way to detect the Gorenstein and Calabi-Yau properties of a given DG algebra?

Calabi-Yau \Rightarrow homologically smooth and Gorenstein

・ロト・日本・モート ヨー うへの

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if ∃ a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \mathbb{k}$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E.$

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \mathbb{k}$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if \exists a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \Bbbk$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E.$

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \mathbb{k}$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if ∃ a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \mathbb{k}$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E.$

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \mathbb{k}$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if ∃ a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \Bbbk$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E.$

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \Bbbk$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if ∃ a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \Bbbk$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E.$

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \Bbbk$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if ∃ a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \Bbbk$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E$.

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \Bbbk$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

• *E* is Frobenius iff $_EE \cong _E(E^*)$ or $E_E \cong (E^*)_E$ • *E* is symmetric Frobenius iff $E \cong E^*$ as *E*-bimodule

Applications

Theorem 1.8 He-Wu, J. Algebra, (2008)

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is homologically smooth and Gorenstein iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a Frobenius algebra.

<u>Definition 1.9</u> Let *E* be a finite dimensional algebra. It is called <u>Frobenius</u> if ∃ a nondegenerate associative bilinear form $\langle -, - \rangle : E \times E \to \mathbb{k}$ s.t. $\langle xy, z \rangle = \langle x, yz \rangle, \forall x, y, z \in E.$

<u>Definition 1.10</u> If the Frobenius form $\langle -, - \rangle : E \times E \to \Bbbk$ of a Frobenius algebra *E* satisfies the condition: $\langle a, b \rangle = \langle b, a \rangle$, $\forall a, b \in E$, then *E* is called a symmetric Frobenius algebra.

- *E* is Frobenius iff $_E E \cong _E(E^*)$ or $E_E \cong (E^*)_E$
- *E* is symmetric Frobenius iff $E \cong E^*$ as *E*-bimodules

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is Calabi-Yau iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k}))$ is a symmetric Frobenius algebra.

Question 1.12: Can we drop the Koszul condition of the two theorems above?

<u>Definition 1.13</u> Let *E* be a finite dimensional graded algebra. It is called a Frobenius graded algebra if any one of the following equivalent conditions holds.

- $\exists j \in \mathbb{Z}$ and an isomorphism of left *E*-modules: $\Sigma^{j}E \rightarrow E^{*}$.
- ② ∃ $j \in \mathbb{Z}$ and an isomorphism of right *E*-modules: $\Sigma^{j}E \to E^{*}$.
- **③** ∃*d* ∈ \mathbb{Z} and a graded non-degenerate bilinear form ⟨−, −⟩ : *E* × *E* → Σ^{*d*}k, s.t. ⟨*ab*, *c*⟩ = ⟨*a*, *bc*⟩, ∀*a*, *b*, *c* ∈ *E*.

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is Calabi-Yau iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a symmetric Frobenius algebra.

Question 1.12: Can we drop the Koszul condition of the two theorems above?

<u>Definition 1.13</u> Let *E* be a finite dimensional graded algebra. It is called a Frobenius graded algebra if any one of the following equivalent conditions holds.

- ∃*j* ∈ \mathbb{Z} and an isomorphism of left *E*-modules: Σ^{*j*} *E* → *E*^{*}.
- ② ∃j ∈ ℤ and an isomorphism of right *E*-modules: Σ^{$j} E → E^*$.</sup>
- **③** ∃*d* ∈ ℤ and a graded non-degenerate bilinear form $\langle -, \rangle : E \times E \rightarrow \Sigma^d \Bbbk$, s.t. $\langle ab, c \rangle = \langle a, bc \rangle$, $\forall a, b, c \in E$

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is Calabi-Yau iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a symmetric Frobenius algebra.

Question 1.12: Can we drop the Koszul condition of the two theorems above?

<u>Definition 1.13</u> Let *E* be a finite dimensional graded algebra. It is called a Frobenius graded algebra if any one of the following equivalent conditions holds.

- \bigcirc ∃*j* ∈ ℤ and an isomorphism of left *E*-modules: $\Sigma^{j}E \rightarrow E^{*}$.
- ② ∃j ∈ ℤ and an isomorphism of right *E*-modules: Σ^{$j} E → E^*$.</sup>
- **③** ∃*d* ∈ ℤ and a graded non-degenerate bilinear form $\langle -, \rangle : E \times E \rightarrow \Sigma^d \Bbbk$, s.t. $\langle ab, c \rangle = \langle a, bc \rangle$, $\forall a, b, c \in E$

Let \mathscr{A} be a Koszul connected cochain DG algebra. Then \mathscr{A} is Calabi-Yau iff its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ is a symmetric Frobenius algebra.

Question 1.12: Can we drop the Koszul condition of the two theorems above?

<u>Definition 1.13</u> Let E be a finite dimensional graded algebra. It is called a <u>Frobenius graded algebra</u> if any one of the following equivalent conditions holds.

- **③** ∃*j* ∈ \mathbb{Z} and an isomorphism of left *E*-modules: Σ^{*j*}*E* → *E*^{*}.
- **2** $\exists j \in \mathbb{Z}$ and an isomorphism of right *E*-modules: $\Sigma^{j} E \to E^{*}$.
- **③** ∃*d* ∈ ℤ and a graded non-degenerate bilinear form $\langle -, \rangle : E \times E \to \Sigma^d \Bbbk$, s.t. $\langle ab, c \rangle = \langle a, bc \rangle$, $\forall a, b, c \in E$.

・ロット (雪) () () () ()

<u>Definition 1.14</u> If the Frobenius form $\langle -, - \rangle$ of a Frobenius graded algebra *E* satisfies the condition: $\langle a, b \rangle = (-1)^{ij} \langle b, a \rangle, \quad \forall a \in E^i, b \in E^j,$ then *E* is called symmetric.

 A finite dimensional graded algebra *E* is Frobenius iff ∃*j* ∈ ℤ s.t. Σ^{*j*}_{*E*}*E* ≅ _{*E*}(*E*^{*}) or equivalently Σ^{*j*}*E*_{*E*} ≅ (*E*^{*})_{*E*}

• A Frobenius graded algebra *E* is symmetric if and only if $\exists j \in \mathbb{Z} \text{ s.t. } \Sigma^{j} E \cong E^{*}$ as graded *E*-bimodules.

Aim

Calabi-Yauness of a connected cochain DG algebra \mathscr{A} \updownarrow symmetric Frobenius properties of $H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$
Μ	oti	vat	ion	S

・ ロ マ チ 全部 マ キ 中 マ マ マ

<u>Definition 1.14</u> If the Frobenius form $\langle -, - \rangle$ of a Frobenius graded algebra *E* satisfies the condition: $\langle a, b \rangle = (-1)^{ij} \langle b, a \rangle, \quad \forall a \in E^i, b \in E^j,$ then *E* is called symmetric.

 A finite dimensional graded algebra *E* is Frobenius iff ∃*j* ∈ ℤ s.t. Σ^{*j*}_{*E*}*E* ≅ _{*E*}(*E**) or equivalently Σ^{*j*}*E*_{*E*} ≅ (*E**)_{*E*}

• A Frobenius graded algebra *E* is symmetric if and only if $\exists j \in \mathbb{Z} \text{ s.t. } \Sigma^{j} E \cong E^{*}$ as graded *E*-bimodules.

Aim

Calabi-Yauness of a connected cochain DG algebra \mathscr{A} \updownarrow symmetric Frobenius properties of $H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$

Μ	oti	vat	ior	ıs

・ ロ マ チ 全部 マ キ 中 マ マ マ

<u>Definition 1.14</u> If the Frobenius form $\langle -, - \rangle$ of a Frobenius graded algebra *E* satisfies the condition: $\langle a, b \rangle = (-1)^{ij} \langle b, a \rangle, \quad \forall a \in E^i, b \in E^j,$ then *E* is called symmetric.

• A finite dimensional graded algebra *E* is Frobenius iff $\exists j \in \mathbb{Z} \text{ s.t. } \Sigma^{j}{}_{E}E \cong {}_{E}(E^{*})$ or equivalently $\Sigma^{j}E_{E} \cong (E^{*})_{E}$

• A Frobenius graded algebra *E* is symmetric if and only if $\exists j \in \mathbb{Z} \text{ s.t. } \Sigma^{j} E \cong E^{*}$ as graded *E*-bimodules.

Aim

Calabi-Yauness of a connected cochain DG algebra \mathscr{A} \updownarrow symmetric Frobenius properties of $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k}))$

Motivations	

(日)

<u>Definition 1.14</u> If the Frobenius form $\langle -, - \rangle$ of a Frobenius graded algebra *E* satisfies the condition: $\langle a, b \rangle = (-1)^{ij} \langle b, a \rangle, \quad \forall a \in E^i, b \in E^j,$ then *E* is called symmetric.

 A finite dimensional graded algebra *E* is Frobenius iff ∃*j* ∈ ℤ s.t. Σ^{*j*}_{*E*}*E* ≅ _{*E*}(*E*^{*}) or equivalently Σ^{*j*}*E*_{*E*} ≅ (*E*^{*})_{*E*}

A Frobenius graded algebra *E* is symmetric if and only if ∃*j* ∈ ℤ s.t. Σ^{*j*}*E* ≅ *E*^{*} as graded *E*-bimodules.

Aim

Calabi-Yauness of a connected cochain DG algebra \mathscr{A} \updownarrow symmetric Frobenius properties of $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$

Motivations	

(日)

<u>Definition 1.14</u> If the Frobenius form $\langle -, - \rangle$ of a Frobenius graded algebra *E* satisfies the condition: $\langle a, b \rangle = (-1)^{ij} \langle b, a \rangle, \ \forall a \in E^i, b \in E^j,$ then *E* is called symmetric.

- A finite dimensional graded algebra *E* is Frobenius iff ∃*j* ∈ ℤ s.t. Σ^{*j*}_{*E*}*E* ≅ _{*E*}(*E*^{*}) or equivalently Σ^{*j*}*E*_{*E*} ≅ (*E*^{*})_{*E*}
- A Frobenius graded algebra *E* is symmetric if and only if ∃*j* ∈ ℤ s.t. Σ^{*j*}*E* ≅ *E*^{*} as graded *E*-bimodules.

Aim

Calabi-Yauness of a connected cochain DG algebra \mathscr{A} \updownarrow symmetric Frobenius properties of $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k}))$

Motivations	

<u>Definition 1.14</u> If the Frobenius form $\langle -, - \rangle$ of a Frobenius graded algebra *E* satisfies the condition: $\langle a, b \rangle = (-1)^{ij} \langle b, a \rangle, \ \forall a \in E^i, b \in E^j,$ then *E* is called symmetric.

- A finite dimensional graded algebra *E* is Frobenius iff ∃*j* ∈ ℤ s.t. Σ^{*j*}_{*E*}*E* ≅ _{*E*}(*E*^{*}) or equivalently Σ^{*j*}*E*_{*E*} ≅ (*E*^{*})_{*E*}
- A Frobenius graded algebra *E* is symmetric if and only if ∃*j* ∈ ℤ s.t. Σ^{*j*}*E* ≅ *E*^{*} as graded *E*-bimodules.

Aim

Calabi-Yauness of a connected cochain DG algebra \mathscr{A} \uparrow symmetric Frobenius properties of $H(R \operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk))$ Motivations

Motivations	Main Results	Applications	References
la con	nected cochain DG alo	jebra	

Motivations	Main Results	Applications	Referenc
la con	nected cochain DG alc	gebra	
Let <i>P</i>	C be a minimal semi-fre	ee resolution of $_{\mathscr{A}}\Bbbk$.	

A: a connected cochain DG algebra	
• Let K be a minimal semi-free resolution of $_{\mathscr{A}}\mathbb{k}$.	
• $\mathcal{E} = \operatorname{Hom}_{\mathscr{A}}(\mathcal{K}, \mathcal{K})$: the Koszul dual DG algebra of \mathscr{A}	

Main Results

Assume that \mathscr{A} is a connected cochain DG algebra. Then \mathscr{A} is Gorenstein and homologically smooth iff its Ext-algebra $H(\mathcal{E})$ is a graded Frobenius algebra.

Source of inspiration

Motivation

P. Jørgensen, Duality for cochain DG algebras, (2013)
 Auslander-Reiten theory over topological spaces, (2004)
 B. Keller, Calabi-Yau triangulated categories, (2008)

Doforoncos

Wotrvations	Mann Results	Applications	Itelefellee3
a: a connected	l cochain DG alo	rehra	
	i cochairí DG aig	Jenia	

- Let K be a minimal semi-free resolution of *_d* k.
- $\mathcal{E} = \operatorname{Hom}_{\mathscr{A}}(K, K)$: the Koszul dual DG algebra of \mathscr{A}
- Then $H(\mathcal{E}) = H(\operatorname{Hom}_{\mathscr{A}}(K, K))$ is just the Ext-algebra of \mathscr{A} .

Assume that \mathscr{A} is a connected cochain DG algebra. Then \mathscr{A} is Gorenstein and homologically smooth iff its Ext-algebra $H(\mathcal{E})$ is a graded Frobenius algebra.

Source of inspiration

Wollvalions	Walli Kesulis	Applications	Kelelences
A: a connected	cochain DC algobra		
\mathcal{A} . a connected	courtain DO algebra		

- Let K be a minimal semi-free resolution of \mathcal{A}^k .
- $\mathcal{E} = \operatorname{Hom}_{\mathscr{A}}(K, K)$: the Koszul dual DG algebra of \mathscr{A}
- Then $H(\mathcal{E}) = H(\operatorname{Hom}_{\mathscr{A}}(K, K))$ is just the Ext-algebra of \mathscr{A} .

Assume that \mathscr{A} is a connected cochain DG algebra. Then \mathscr{A} is Gorenstein and homologically smooth iff its Ext-algebra $H(\mathcal{E})$ is a graded Frobenius algebra.

Source of inspiration

Wollvalions	Main Results	Applications	Kelelelices
A: a connected	cochain DG algebra		
\mathcal{A} . a connected			

- Let K be a minimal semi-free resolution of \mathcal{A}^{k} .
- $\mathcal{E} = \operatorname{Hom}_{\mathscr{A}}(K, K)$: the Koszul dual DG algebra of \mathscr{A}
- Then $H(\mathcal{E}) = H(\operatorname{Hom}_{\mathscr{A}}(K, K))$ is just the Ext-algebra of \mathscr{A} .

Assume that \mathscr{A} is a connected cochain DG algebra. Then \mathscr{A} is Gorenstein and homologically smooth iff its Ext-algebra $H(\mathcal{E})$ is a graded Frobenius algebra.

Source of inspiration

Let \mathscr{A} be a homologically smooth connected cochain DG algebra. Then following statements are equivalent.

- The Ext-algebra $H(\mathcal{E})$ is a Frobenius graded algebra;
- Is left Gorenstein;
- Is right Gorenstein;
- $\textcircled{0} \ (\mathcal{E}^*)_{\mathcal{E}} \in \mathscr{D}^c(\mathcal{E}^{op}) ext{ and } _{\mathcal{E}}(\mathcal{E}^*) \in \mathscr{D}^c(\mathcal{E});$
- $\exists \ \mathsf{dim}_{\Bbbk} \, \mathsf{H}(\mathsf{R}\operatorname{Hom}_{\mathcal{E}}(\Bbbk, \mathcal{E})) < \infty, \ \mathsf{dim}_{\Bbbk} \, \mathsf{H}(\mathsf{R}\operatorname{Hom}_{\mathcal{E}^{\operatorname{op}}}(\Bbbk, \mathcal{E})) < \infty;$
- $\boxed{ 0 } \mathsf{dim}_{\Bbbk} \, H(R \operatorname{Hom}_{\mathcal{E}}(\Bbbk, \mathcal{E})) = \mathsf{1}, \ \mathsf{dim}_{\Bbbk} \, H(R \operatorname{Hom}_{\mathcal{E}^{op}}(\Bbbk, \mathcal{E})) = \mathsf{1};$
- $\bigcirc \ \mathscr{D}^{c}(\mathcal{E})$ and $\mathscr{D}^{c}(\mathcal{E}^{op})$ admit Auslander-Reiten triangles;
- $\mathfrak{D}_{f}^{b}(\mathscr{A})$ and $\mathscr{D}_{f}^{b}(\mathscr{A}^{op})$ admit Auslander-Reiten triangles;

Let \mathscr{A} be a homologically smooth connected cochain DG algebra. Then following statements are equivalent.

- The Ext-algebra $H(\mathcal{E})$ is a Frobenius graded algebra;
- Is left Gorenstein;
- Is right Gorenstein;
- $(\mathcal{E}^*)_{\mathcal{E}} \in \mathscr{D}^{c}(\mathcal{E}^{op}) \text{ and }_{\mathcal{E}}(\mathcal{E}^*) \in \mathscr{D}^{c}(\mathcal{E});$
- **o** dim_k $H(R \operatorname{Hom}_{\mathcal{E}}(\mathbb{k}, \mathcal{E})) = 1$, dim_k $H(R \operatorname{Hom}_{\mathcal{E}^{op}}(\mathbb{k}, \mathcal{E})) = 1$;
- $\mathfrak{O} \mathscr{D}^{c}(\mathcal{E})$ and $\mathscr{D}^{c}(\mathcal{E}^{op})$ admit Auslander-Reiten triangles;
- **9** $\mathscr{D}_{lf}^{b}(\mathscr{A})$ and $\mathscr{D}_{lf}^{b}(\mathscr{A}^{op})$ admit Auslander-Reiten triangles;

Let \mathscr{A} be a homologically smooth and Gorenstein DG algebra. Then the following statements are equivalent.

- 🕦 🖉 is Calabi-Yau;
- 2 The Ext-algebra $H(\mathcal{E})$ is a symmetric Frobenius graded algebra;
- 3 The triangulated categories D^c(E) and D^c(E^{op}) are Calabi-Yau;

The triangulated categories $\mathscr{D}^{b}_{lf}(\mathscr{A})$ and $\mathscr{D}^{b}_{lf}(\mathscr{A}^{op})$ are Calabi-Yau.

Theorem 2.4 arXiv:2407.14805

A connected cochain DG algebra \mathscr{A} is Calabi-Yau if and only if its Ext-algebra $H(\mathcal{E})$ is a symmetric Frobenius graded algebra.

Let \mathscr{A} be a homologically smooth and Gorenstein DG algebra. Then the following statements are equivalent.

- Is Calabi-Yau;
- 2 The Ext-algebra $H(\mathcal{E})$ is a symmetric Frobenius graded algebra;
- Solution The triangulated categories D^c(E) and D^c(E^{op}) are Calabi-Yau;
- The triangulated categories $\mathscr{D}^{b}_{lf}(\mathscr{A})$ and $\mathscr{D}^{b}_{lf}(\mathscr{A}^{op})$ are Calabi-Yau.

Theorem 2.4 arXiv:2407.14805

A connected cochain DG algebra \mathscr{A} is Calabi-Yau if and only if its Ext-algebra $H(\mathcal{E})$ is a symmetric Frobenius graded algebra.

Let \mathscr{A} be a homologically smooth and Gorenstein DG algebra. Then the following statements are equivalent.

- Is Calabi-Yau;
- 2 The Ext-algebra $H(\mathcal{E})$ is a symmetric Frobenius graded algebra;
- Solution The triangulated categories D^c(E) and D^c(E^{op}) are Calabi-Yau;
- The triangulated categories $\mathscr{D}^{b}_{lf}(\mathscr{A})$ and $\mathscr{D}^{b}_{lf}(\mathscr{A}^{op})$ are Calabi-Yau.

Theorem 2.4 arXiv:2407.14805

A connected cochain DG algebra \mathscr{A} is Calabi-Yau if and only if its Ext-algebra $H(\mathcal{E})$ is a symmetric Frobenius graded algebra.

Motivations	Main Results	Applications	References

Motivations

2 Main Results

References

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivations	Main Results	Applications	References
Example 3.1 I $\mathscr{A}^{\#} = \mathbb{I}$ with a different Then \mathscr{A} is a negative	Let \mathscr{A} be a conn $\langle x, y \rangle / (x^2 y - y)$ tial defined by $\partial_{\mathscr{A}}$ on-Koszul Calab	nected cochain DG algebra $x^2, xy^2 - y^2 x), x = y $ $x(x) = y^2, \partial_x(y) = 0.$ ni-Yau DG algebra.	ora s.t. = 1

Motivations

Motivations					
IVIC/11V/2111/11/15	ne	0	 1/2	0	•
	13	v	 vс	 •	

Example 3.1 Let \mathscr{A} be a connected cochain DG algebra s.t. $\mathscr{A}^{\#} = \Bbbk \langle x, y \rangle / (x^2y - yx^2, xy^2 - y^2x), |x| = |y| = 1$ with a differential defined by $\partial_{\mathscr{A}}(x) = y^2, \partial_{\mathscr{A}}(y) = 0$. Then \mathscr{A} is a non-Koszul Calabi-Yau DG algebra.

$$\begin{array}{ll} \underline{\text{Step 1}}: & {}_{\mathscr{A}} \& \text{ admits a minimal semi-free resolution } F \text{ s.t.} \\ \overline{F^{\#}} = {}_{\mathscr{A}}^{\#} \oplus {}_{\mathscr{A}}^{\#} \Sigma e_{y} \oplus {}_{\mathscr{A}}^{\#} \Sigma e_{z} \oplus {}_{\mathscr{A}}^{\#} \Sigma e_{x^{2}} \oplus {}_{\mathscr{A}}^{\#} \Sigma e_{t} \oplus {}_{\mathscr{A}}^{\#} \Sigma e_{r}, \\ \partial_{F}(\Sigma e_{y}) = y, & \partial_{F}(\Sigma e_{z}) = x + y \Sigma e_{y}, & \partial_{F}(\Sigma e_{x^{2}}) = x^{2}, \\ \partial_{F}(\Sigma e_{t}) = x^{2} \Sigma e_{y} + y \Sigma e_{x^{2}}, & \partial_{F}(\Sigma e_{r}) = y \Sigma e_{t} + x \Sigma e_{x^{2}} + x^{2} \Sigma e_{z}. \end{array}$$

$$\begin{array}{l} \underline{\operatorname{Step 2}} : \quad H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk)) \cong H(\operatorname{Hom}_{\mathscr{A}}(F, \Bbbk)) = \operatorname{Hom}_{\mathscr{A}}(F, \Bbbk) \\ \cong \Bbbk 1^* \oplus \Bbbk (\Sigma e_y)^* \oplus \Bbbk (\Sigma e_z)^* \oplus \Bbbk (\Sigma e_{x^2})^* \oplus \Bbbk (\Sigma e_t)^* \oplus \Bbbk (\Sigma e_r)^* \\ \\ \operatorname{Note that} \quad \begin{cases} |1^*| = |(\Sigma e_y)^*| = |(\Sigma e_z)^*| = 0 \\ |(\Sigma e_{x^2})^*| = |(\Sigma e_t)^*| = |(\Sigma e_r)^*| = -1. \end{cases} \end{cases}$$

Example 3.1 Let \mathscr{A} be a connected cochain DG algebra s.t. $\mathscr{A}^{\#} = \Bbbk \langle x, y \rangle / (x^2y - yx^2, xy^2 - y^2x), |x| = |y| = 1$ with a differential defined by $\partial_{\mathscr{A}}(x) = y^2, \partial_{\mathscr{A}}(y) = 0$. Then \mathscr{A} is a non-Koszul Calabi-Yau DG algebra.

$$\begin{array}{l} \underline{\text{Step 3: Compute } H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k})) = H(\operatorname{Hom}_{\mathscr{A}}(K, K)).} \\ \hline \\ \overline{\text{It is isomorphic to the algebra}} \\ \left\{ \begin{pmatrix} d & 0 & 0 & 0 & 0 \\ e & d & 0 & 0 & 0 \\ q & e & d & 0 & 0 \\ a & 0 & 0 & d & 0 & 0 \\ b & a & 0 & e & d & 0 \\ c & b & a & q & e & d \end{pmatrix} \mid a, b, c, d, e, q \in \mathbb{k} \\ \right\} = \bigoplus_{i=0}^{5} \mathbb{k}e_i, \\ \\ e_3 = E_{41} + E_{52} + E_{63}, e_4 = E_{51} + E_{62} \text{ and } e_5 = E_{61}. \end{array}$$

Example 3.1 Let \mathscr{A} be a connected cochain DG algebra s.t. $\mathscr{A}^{\#} = \mathbb{k} \langle x, y \rangle / (x^2y - yx^2, xy^2 - y^2x), |x| = |y| = 1$ with a differential defined by $\partial_{\mathscr{A}}(x) = y^2, \partial_{\mathscr{A}}(y) = 0$. Then \mathscr{A} is a non-Koszul Calabi-Yau DG algebra.

<u>Step 4</u>: $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k})) \cong \bigoplus_{i=0}^{5} \mathbb{k} e_i$ with $|e_0| = |e_1| = |e_2| = 0$, $|e_3| = |e_4| = |e_5| = -1$ and a multiplication structure given by

·	e_0	e ₁	e ₂	e ₃	e4	e 5
e_0	e_0	e ₁	e ₂	e ₃	e ₄	e 5
e ₁	e ₁	e ₂	0	e_4	e_5	0
e ₂	e ₂	0	0	e_5	0	0
e_3	e ₃	e ₄	e_5	0	0	0
e_4	e_4	e_5	0	0	0	0
e5	e5	0	0	0	0	0

It is a symmetric Frobenius graded algebra.

Let \mathscr{A} be a connected cochain DG algebra.

- The cohomology graded algebra of \mathscr{A} is the algebra $H(\mathscr{A}) = \bigoplus_{i \in \mathbb{Z}} \frac{\ker(\partial_{\mathscr{A}}^i)}{\operatorname{im}(\partial_{\mathscr{A}}^{i-1})}.$
- ∀z ∈ ker(∂ⁱ_𝒜), we denote by [z] the cohomology class in H(𝒜) represented by z.

Proposition 3.2 [Mao-Yang-Ye, (2019)]

If the trivial DG algebra $(H(\mathscr{A}), 0)$ is Calabi-Yau DG algebra, then \mathscr{A} is a Calabi-Yau DG algebra.

Proposition 3.3 [Mao-He, (2017)]

Let \mathscr{A} be a connected cochain DG algebra. Then \mathscr{A} is Koszul and Calabi-Yau if $H(\mathscr{A}) = \frac{\Bbbk\langle [z_1], [z_2] \rangle}{(|z_1||z_2|+|z_2||z_1|)}, z_1, z_2 \in \ker(\partial^1_{\mathscr{A}}).$ And \mathscr{A} is not Calabi-Yau but Koszul, homologically smooth and Gorenstein if $H(\mathscr{A}) = \Bbbk[[z_1], [z_2]], z_1, z_2 \in \ker(\partial^1_{\mathscr{A}}).$

Motivations	
mounding	

Let \mathscr{A} be a connected cochain DG algebra.

 $\bullet\,$ The cohomology graded algebra of $\mathscr A$ is the algebra

$$H(\mathscr{A}) = \bigoplus_{i \in \mathbb{Z}} \frac{\ker(\partial_{\mathscr{A}}^{i})}{\operatorname{im}(\partial_{\mathscr{A}}^{i-1})}.$$

∀z ∈ ker(∂ⁱ_𝒜), we denote by [z] the cohomology class in H(𝒜) represented by z.

Proposition 3.2 [Mao-Yang-Ye, (2019)]

If the trivial DG algebra $(H(\mathscr{A}), 0)$ is Calabi-Yau DG algebra, then \mathscr{A} is a Calabi-Yau DG algebra.

Proposition 3.3 [Mao-He, (2017)]

Let \mathscr{A} be a connected cochain DG algebra. Then \mathscr{A} is Koszul and Calabi-Yau if $H(\mathscr{A}) = \frac{\mathbb{k}\langle [z_1], [z_2] \rangle}{(|z_1||z_2|+|z_2||z_1|)}, z_1, z_2 \in \ker(\partial^1_{\mathscr{A}}).$ And \mathscr{A} is not Calabi-Yau but Koszul, homologically smooth and Gorenstein if $H(\mathscr{A}) = \mathbb{k}[[z_1], [z_2]], z_1, z_2 \in \ker(\partial^1_{\mathscr{A}}).$

Motivations	Main Results	Applications	References
Let A be a con	nected cochain DG alg	jebra.	
The cohom	ology graded algebra	of \mathscr{A} is the algebra	
	$H(\mathscr{A}) = igoplus_{i \in \mathbb{Z}} rac{\ker(i)}{\operatorname{im}(i)}$	$\left(\frac{\partial^i_{\mathscr{A}}}{\partial^{i-1}_{\mathscr{A}}} \right)$.	
• $\forall z \in \ker(\partial^i)$), we denote by $[z]$ the	ne cohomology class i	n

 $H(\mathscr{A})$ represented by z.

Proposition 3.2 [Mao-Yang-Ye, (2019)]

If the trivial DG algebra $(H(\mathscr{A}), 0)$ is Calabi-Yau DG algebra, then \mathscr{A} is a Calabi-Yau DG algebra.

Proposition 3.3 [Mao-He, (2017)]

Let \mathscr{A} be a connected cochain DG algebra. Then \mathscr{A} is Koszul and Calabi-Yau if $H(\mathscr{A}) = \frac{\Bbbk\langle [z_1], [z_2] \rangle}{([z_1], [z_2] + [z_2] | z_1])}$, $z_1, z_2 \in \ker(\partial^1_{\mathscr{A}})$. And \mathscr{A} is not Calabi-Yau but Koszul, homologically smooth and Gorenstein if $H(\mathscr{A}) = \Bbbk[[z_1], [z_2]]$, $z_1, z_2 \in \ker(\partial^1_{\mathscr{A}})$.

Motivations	Main Results	Applications	References
Let <i>A</i> be	a connected cochain I	DG algebra.	
The	cohomology graded alg	gebra of \mathscr{A} is the alge	ebra
	$H(\mathscr{A}) =$	$\bigoplus_{i \in \mathbb{Z}} \frac{\ker(\partial_{\mathscr{A}}^{i})}{\operatorname{im}(\partial_{\mathscr{A}}^{i-1})}.$	

∀z ∈ ker(∂ⁱ_A), we denote by [z] the cohomology class in H(A) represented by z.

Proposition 3.2 [Mao-Yang-Ye, (2019)]

If the trivial DG algebra $(H(\mathscr{A}), 0)$ is Calabi-Yau DG algebra, then \mathscr{A} is a Calabi-Yau DG algebra.

Proposition 3.3 [Mao-He, (2017)]

Let \mathscr{A} be a connected cochain DG algebra. Then \mathscr{A} is Koszul and Calabi-Yau if $H(\mathscr{A}) = \frac{\mathbb{k}\langle [z_1], [z_2] \rangle}{(|z_1||z_2|+|z_2|||z_1|)}, z_1, z_2 \in \ker(\partial_{\mathscr{A}}^1)$. And \mathscr{A} is not Calabi-Yau but Koszul, homologically smooth and Gorenstein if $H(\mathscr{A}) = \mathbb{k}[[z_1], [z_2]], z_1, z_2 \in \ker(\partial_{\mathscr{A}}^1)$.

・ロット (雪) (日) (日) (日)

Let \mathcal{G} and \mathcal{D} be the category of connected graded algebras and the category of connected cochain DG algebras, respectively.

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.
- ⊖ preserves Koszul, Gorenstein and homologically smooth properties
- ⊖ doesn't necessarily preserve Calabi-Yauness
- the multiplication of the opposite algebra

graded context	DG context
a * b = ba	$a * b = (-1)^{ a \cdot b } ba$

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.
- O doesn't necessarily preserve Calabi-Yauness
- the multiplication of the opposite algebra

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.

- the multiplication of the opposite algebra

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.
- Θ doesn't necessarily preserve Calabi-Yauness
- the multiplication of the opposite algebra

• Note the difference of the multiplications of A^e and Θ(A)^e

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.
- Θ doesn't necessarily preserve Calabi-Yauness
- the multiplication of the opposite algebra

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.
- ⊖ doesn't necessarily preserve Calabi-Yauness
- the multiplication of the opposite algebra

graded context	DG context
a * b = ba	$a * b = (-1)^{ a \cdot b } ba$

Note the difference of the multiplications of A^e and Θ(A)^e

Remark 3.4

- Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG algebra with Θ(A)[#] = A.
- ⊖ doesn't necessarily preserve Calabi-Yauness
- the multiplication of the opposite algebra

graded context	DG context
a * b = ba	$a * b = (-1)^{ a \cdot b } ba$

Proposition 3.5 Let \mathscr{A} be a connected cochain DG algebra s.t. $H(\mathscr{A}) = \mathbb{K} \frac{k\langle [x], [y] \rangle}{(f_1, f_2)}, x, y \in Z^1(\mathscr{A}),$ $f_1 = a[x][y]^2 + b[y][x][y] + a[y]^2[x] + c[x]^3,$ $f_2 = a[y][x]^2 + b[x][y][x] + a[x]^2[y] + c[y]^3,$ where $(a : b : c) \in \mathbb{P}^2_k - \mathfrak{D}$ and $\mathfrak{D} := \{(0 : 0 : 1), (0 : 1 : 0)\} \sqcup \{(a : b : c) | a^2 = b^2 = c^2\}.$ Then \mathscr{A} is a homologically smooth and Gorenstein DG algebra. However, it is neither Koszul nor Calabi-Yau. arXiv:2407.14805 $H(\mathscr{A})$ is a cubic Artin-Schelter algebra of type A

Proposition 3.5 Let *A* be a connected cochain DG algebra s.t.

$$H(\mathscr{A}) = \mathbb{k} \frac{k\langle [x], [y] \rangle}{(f_1, f_2)}, x, y \in Z^1(\mathscr{A}),$$

$$f_1 = a[x][y]^2 + b[y][x][y] + a[y]^2[x] + c[x]^3,$$

$$f_2 = a[y][x]^2 + b[x][y][x] + a[x]^2[y] + c[y]^3,$$
where $(a:b:c) \in \mathbb{P}^2_k - \mathfrak{D}$ and

$$\mathfrak{D} := \{(0:0:1), (0:1:0)\} \sqcup \{(a:b:c) | a^2 = b^2 = c^2\}.$$

Then \mathscr{A} is a homologically smooth and Gorenstein DG algebra. However, it is neither Koszul nor Calabi-Yau. arXiv:2407.14805

Proposition 3.5 Let *A* be a connected cochain DG algebra s.t.

$$\begin{split} H(\mathscr{A}) &= \mathbb{k} \frac{k\langle [x], [y] \rangle}{(t_1, t_2)}, x, y \in Z^1(\mathscr{A}), \\ f_1 &= a[x][y]^2 + b[y][x][y] + a[y]^2[x] + c[x]^3, \\ f_2 &= a[y][x]^2 + b[x][y][x] + a[x]^2[y] + c[y]^3, \\ \text{where } (a:b:c) \in \mathbb{P}^2_k - \mathfrak{D} \text{ and} \\ \mathfrak{D} &:= \{(0:0:1), (0:1:0)\} \sqcup \{(a:b:c) | a^2 = b^2 = c^2\}. \end{split}$$

Then \mathscr{A} is a homologically smooth and Gorenstein DG algebra. However, it is neither Koszul nor Calabi-Yau. arXiv:2407.14805

$H(\mathscr{A})$ is a cubic Artin-Schelter algebra of type A									
$H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk,\Bbbk))\cong igoplus_{i=0}^{5} \Bbbk e_{i}, e_{i} =egin{cases} 0, & i=0,1,2\ -1, & i=3,4,5 \end{cases}$									
	e ₀	e ₁	e ₂	e ₃	e ₄	e ₅			
e ₀	e ₀	e ₁	e ₂	e3	e ₄	<i>e</i> 5			
e ₁	e ₁	0	0	0	-e ₅	0	It is Fash surface back was surpresented		
e ₂	e ₂	0	0	$-e_{5}$	0	0	It is Frobenius but not symmetric.		
e ₃	e ₃	0	e ₅	0	0	0	•		
e4	e4	e ₅	0	0	0	0			
e5	e ₅	0	0	0	0	0			
Definition 3.6 Mao-Xie-Yang-Abla, (2019)

A connected cochain DG algebra \mathscr{A} is called DG free if $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, \cdots, x_n \rangle$, with $|x_i| = 1, \forall i \in \{1, 2, \cdots, n\}$.

Definition 3.7 Mao-Xie-Yang-Abla, (2019)

Let (M^1, M^2, \dots, M^n) be an ordered *n*-tuple of $n \times n$ matrixes with each $M^i = (c_1^i, c_2^i, \dots, c_n^i) = \begin{pmatrix} r_1^i \\ r_2^i \\ \vdots \\ r_n^i \end{pmatrix}, i = 1, 2, \dots, n.$

We say that (M^1, M^2, \cdots, M^n) is <u>crisscross</u> if $\sum_{k=1}^n [c_j^k r_k^i - c_k^i r_j^k] = (0)_{n \times n}, \ \forall i, j \in \{1, 2, \cdots, n\}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Definition 3.6 Mao-Xie-Yang-Abla, (2019)

A connected cochain DG algebra \mathscr{A} is called DG free if $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, \cdots, x_n \rangle$, with $|x_i| = 1, \forall i \in \{1, 2, \cdots, n\}$.

Definition 3.7 Mao-Xie-Yang-Abla, (2019)

Let (M^1, M^2, \dots, M^n) be an ordered *n*-tuple of $n \times n$ matrixes with each $M^i = (c_1^i, c_2^i, \dots, c_n^i) = \begin{pmatrix} r_1^i \\ r_2^i \\ \vdots \\ r_n^i \end{pmatrix}, i = 1, 2, \dots, n.$ We say that (M^1, M^2, \dots, M^n) is <u>crisscross</u> if $\sum_{k=1}^n [c_j^k r_k^i - c_k^i r_j^k] = (0)_{n \times n}, \ \forall i, j \in \{1, 2, \dots, n\}.$

Definition 3.6 Mao-Xie-Yang-Abla, (2019)

A connected cochain DG algebra \mathscr{A} is called DG free if $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, \cdots, x_n \rangle$, with $|x_i| = 1, \forall i \in \{1, 2, \cdots, n\}$.

Definition 3.7 Mao-Xie-Yang-Abla, (2019)

Let (M^1, M^2, \dots, M^n) be an ordered *n*-tuple of $n \times n$ matrixes with each $M^i = (c_1^i, c_2^i, \dots, c_n^i) = \begin{pmatrix} r_1^i \\ r_2^i \\ \vdots \\ r_n^i \end{pmatrix}, i = 1, 2, \dots, n.$ We say that (M^1, M^2, \dots, M^n) is crisscross if

$$\sum_{k=1}^{n} [c_j^k r_k^i - c_k^i r_j^k] = (0)_{n \times n}, \ \forall i, j \in \{1, 2, \cdots, n\}.$$

Theorem 3.8Mao-Xie-Yang-Abla, (2019)

such that $(\Bbbk\langle x_1, x_2, \cdots, x_n \rangle, \partial)$ is a cochain DG algebra.

Theorem 3.8Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} be a DG free algebra s.t. $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, \cdots, x_n \rangle$ with $|x_i| = 1, i = 1, 2, \dots, n$. Then \exists a crisscross ordered *n*-tuple (M^1, M^2, \dots, M^n) of $n \times n$ matrixes s.t. $\partial_{\mathscr{A}}$ is defined by $\partial_{\mathscr{A}}(x_i) = (x_1, x_2, \cdots, x_n) M^i \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{pmatrix}$. Conversely, given a crisscross ordered *n*-tuple (M^1, M^2, \dots, M^n) of $n \times n$ matrixes, we can define a differential ∂ on $\mathbb{k}\langle x_1, x_2, \cdots, x_n \rangle$ by $\partial(\mathbf{x}_i) = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n) M^i \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_n \end{pmatrix}, \forall i \in \{1, 2, \cdots, n\}$ such that $(\Bbbk \langle x_1, x_2, \cdots, x_n \rangle, \partial)$ is a cochain DG algebra.

 $) \land \bigcirc$

Theorem 3.9 Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} and \mathscr{B} be two DG free algebras s.t.

$$\mathscr{A}^{\#} = \mathbb{k}\langle x_1, x_2, \cdots, x_n \rangle, \ \mathcal{B}^{\#} = \mathbb{k}\langle y_1, y_2, \cdots, y_n \rangle, |x_i| = |y_i| = 1.$$

Assume that $\partial_{\mathcal{A}}$ and $\partial_{\mathcal{B}}$ are defined by crisscrossed $n \times n$ matrixes M^1, M^2, \dots, M^n and N^1, N^2, \dots, N^n , respectively. Then $\mathcal{A} \cong \mathcal{B}$ iff $\exists A = (a_{ij})_{n \times n} \in \operatorname{GL}_n(\mathbb{k})$ s.t.

$$(a_{ij}E_n)_{n^2 \times n^2} \begin{pmatrix} N_1 \\ N_2 \\ \vdots \\ N_n \end{pmatrix} = \begin{pmatrix} A^T M^1 A \\ A^T M^2 A \\ \vdots \\ A^T M^n A \end{pmatrix}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへぐ

Theorem 3.9 Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} and \mathscr{B} be two DG free algebras s.t.

$$\mathscr{A}^{\#} = \Bbbk \langle \mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n \rangle, \ \mathcal{B}^{\#} = \Bbbk \langle \mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_n \rangle, |\mathbf{x}_i| = |\mathbf{y}_i| = 1.$$

Assume that $\partial_{\mathcal{A}}$ and $\partial_{\mathcal{B}}$ are defined by crisscrossed $n \times n$ matrixes M^1, M^2, \cdots, M^n and N^1, N^2, \cdots, N^n , respectively. Then $\mathcal{A} \cong \mathcal{B}$ iff $\exists A = (a_{ij})_{n \times n} \in \operatorname{GL}_n(\mathbb{k})$ s.t.

$$(\mathbf{a}_{ij}\mathbf{E}_n)_{n^2\times n^2} \begin{pmatrix} N_1\\N_2\\\vdots\\N_n \end{pmatrix} = \begin{pmatrix} A^T M^1 A\\A^T M^2 A\\\vdots\\A^T M^n A \end{pmatrix}.$$

Theorem 3.10Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} be a DG free algebra with 2 degree one generators. Then \mathscr{A} is a Koszul Calabi-Yau DG algebra iff $\partial_{\mathscr{A}} \neq 0$.

Question 3.11

Can we generalize the result above to the cases $n \ge 3$?

Example 3.12 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \mathbb{k}\langle x_1, x_2, x_3 \rangle$, $|x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_1^2$, $\partial_{\mathscr{A}}(x_2) = x_2 x_1$, $\partial_{\mathscr{A}}(x_3) = x_1 x_3$.

The DG algebra \mathscr{A} in Example 3.12 is a non-Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[[x_2x_3]]$. Its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k})) \cong \mathbb{k}[x]/(x^2)$ with |x| = -1.

Motivatione							
	- 6.4	ot	1.5.1	2	10	nc	
mouvations	101	υι		aι	IU	113	

Theorem 3.10 Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} be a DG free algebra with 2 degree one generators. Then \mathscr{A} is a Koszul Calabi-Yau DG algebra iff $\partial_{\mathscr{A}} \neq 0$.

Question 3.11

Can we generalize the result above to the cases $n \ge 3$?

Example 3.12 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \mathbb{k}\langle x_1, x_2, x_3 \rangle$, $|x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_1^2$, $\partial_{\mathscr{A}}(x_2) = x_2 x_1$, $\partial_{\mathscr{A}}(x_3) = x_1 x_3$.

The DG algebra \mathscr{A} in Example 3.12 is a non-Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[[x_2x_3]]$. Its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k})) \cong \mathbb{k}[x]/(x^2)$ with |x| = -1.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem 3.10 Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} be a DG free algebra with 2 degree one generators. Then \mathscr{A} is a Koszul Calabi-Yau DG algebra iff $\partial_{\mathscr{A}} \neq 0$.

Question 3.11

Can we generalize the result above to the cases $n \ge 3$?

Example 3.12 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \mathbb{k}\langle x_1, x_2, x_3 \rangle$, $|x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_1^2$, $\partial_{\mathscr{A}}(x_2) = x_2 x_1$, $\partial_{\mathscr{A}}(x_3) = x_1 x_3$.

The DG algebra \mathscr{A} in Example 3.12 is a non-Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[\lceil x_2 x_3 \rceil]$. Its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k})) \cong \mathbb{k}[x]/(x^2)$ with |x| = -1.

Theorem 3.10 Mao-Xie-Yang-Abla, (2019)

Let \mathscr{A} be a DG free algebra with 2 degree one generators. Then \mathscr{A} is a Koszul Calabi-Yau DG algebra iff $\partial_{\mathscr{A}} \neq 0$.

Question 3.11

Can we generalize the result above to the cases $n \ge 3$?

Example 3.12 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, x_3 \rangle$, $|x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_1^2$, $\partial_{\mathscr{A}}(x_2) = x_2 x_1$, $\partial_{\mathscr{A}}(x_3) = x_1 x_3$.

The DG algebra \mathscr{A} in Example 3.12 is a non-Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[\lceil x_2 x_3 \rceil]$. Its Ext-algebra $H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{k}, \mathbb{k})) \cong \mathbb{k}[x]/(x^2)$ with |x| = -1.

Example 3.13 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \mathbb{k}\langle x_1, x_2, x_3 \rangle$, $|x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_2 x_3$, $\partial_{\mathscr{A}}(x_2) = 0$ $\partial_{\mathscr{A}}(x_3) = 0$.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Example 3.13 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, x_3 \rangle$, $|x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_2 x_3$, $\partial_{\mathscr{A}}(x_2) = 0$ $\partial_{\mathscr{A}}(x_3) = 0$.

Example 3.13 arXiv:2407.14805

Let \mathscr{A} be a DG free algebra with $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, x_3 \rangle, |x_i| = 1$ and $\partial_{\mathscr{A}}(x_1) = x_2 x_3, \ \partial_{\mathscr{A}}(x_2) = 0 \ \partial_{\mathscr{A}}(x_3) = 0.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Example 3.14 arXiv:2407.14805

Let \mathcal{A} be a DG free algebra with $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, x_3 \rangle, |x_i| = 1$, and $\partial_{\mathscr{A}}(x_1) = x_3^2, \ \partial_{\mathscr{A}}(x_2) = x_1 x_3 + x_3 x_1 \ \partial_{\mathscr{A}}(x_3) = 0.$

The DG algebra \mathscr{A} in Example 3.14 is a Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[\lceil x_3 \rceil, \lceil x_1^2 + x_2x_3 + x_3x_2 \rceil]/(\lceil x_3 \rceil^2).$

$$H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk)) \cong \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & b & a & 0 \\ d & c & b & a \end{pmatrix} \mid a, b, c, d \in \Bbbk \right\} \cong \Bbbk[x]/(x^4), |x| = 0$$

is a symmetric Frobenius algebra concentrated in degree 0.

Example 3.14 arXiv:2407.14805

Let \mathcal{A} be a DG free algebra with $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, x_3 \rangle, |x_i| = 1$, and $\partial_{\mathscr{A}}(x_1) = x_3^2, \ \partial_{\mathscr{A}}(x_2) = x_1 x_3 + x_3 x_1 \ \partial_{\mathscr{A}}(x_3) = 0$.

The DG algebra \mathscr{A} in Example 3.14 is a Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[\lceil x_3 \rceil, \lceil x_1^2 + x_2x_3 + x_3x_2 \rceil]/(\lceil x_3 \rceil^2).$

$$H(R\operatorname{Hom}_{\mathscr{A}}(\Bbbk, \Bbbk)) \cong \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & b & a & 0 \\ d & c & b & a \end{pmatrix} \mid a, b, c, d \in \Bbbk \right\} \cong \Bbbk[x]/(x^4), |x| = 0$$

is a symmetric Frobenius algebra concentrated in degree 0.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Example 3.14 arXiv:2407.14805

Let \mathcal{A} be a DG free algebra with $\mathscr{A}^{\#} = \Bbbk \langle x_1, x_2, x_3 \rangle, |x_i| = 1$, and $\partial_{\mathscr{A}}(x_1) = x_3^2, \ \partial_{\mathscr{A}}(x_2) = x_1 x_3 + x_3 x_1 \ \partial_{\mathscr{A}}(x_3) = 0$.

The DG algebra \mathscr{A} in Example 3.14 is a Koszul Calabi-Yau DG algebra with $H(\mathscr{A}) = \mathbb{k}[\lceil x_3 \rceil, \lceil x_1^2 + x_2x_3 + x_3x_2 \rceil]/(\lceil x_3 \rceil^2)$.

$$H(R \operatorname{Hom}_{\mathscr{A}}(\mathbb{K}, \mathbb{K})) \cong \left\{ \begin{pmatrix} a & 0 & 0 & 0 \\ b & a & 0 & 0 \\ c & b & a & 0 \\ d & c & b & a \end{pmatrix} \mid a, b, c, d \in \mathbb{K} \right\} \cong \mathbb{K}[x]/(x^4), |x| = 0$$

is a symmetric Frobenius algebra concentrated in degree 0.

Motivatione							
	- 6.4	ot	1.5.1	2	10	nc	
mouvations	101	υι		aι	IU	113	

Motivations

- 2 Main Results
- 3 Applications

▲□▶▲@▶▲≣▶▲≣▶ ■ めんの

- X.-F. Mao, Homological properties of homologically smooth connected cochain DG algebras. arXiv.2407.14805 X.-F. Mao, X. Wang and M.-Y. Zhang, DG Algebra structures on the guantum affine *n*-space $\mathcal{O}_{-1}(k^n)$, J. Algebra 594 (2022), 389-482. X.-F. Mao, J.-F. Xie, Y.-N. Yang and Almire. Abla, Isomorphism problem and homological properties of DG free algebras, Comm. Algebra, 47 (10), (2019), 4031-4060 X.-F. Mao, Y.-N. Yang and C.-C. Ye, A sufficient condition for a connected DG algebra to be Calabi-Yau, Comm. Algebra, 47(8), (2019), 3280-3296. X.-F. Mao, J.-W. He, M. Liu and J.-F. Xie, Calabi-Yau properties of non-trivial Noetherian DG down-up algebras, J. Algebra Appl. 17, no.5 (2018), 1850090(45pp) J.-W. He and X.-F. Mao, Connected cochain DG algebras of Calabi-Yau dimension 0, Proc. Amer. Math. Soc. 145 (3), 2017, 937-953. X.-F. Mao and J.-W. He, A special class of Koszul Calabi-Yau DG algebras, Acta Math. Sinica, Chinese series, 60 (2017), 475-504. P. Jørgensen, Duality for cochain DG algebras, Sci. China Math. 56 (2013), 79-89.
 - X.-F. Mao and Q.-S. Wu, Compact DG modules and Gorenstein DG algebras, Sci. china Ser. A 52 (2009), 648–676.

ĸл	0	1/2	••	\mathbf{a}	n	•
171	ou	va	u	U		э

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < @

XF. Mao and QS. Wu, Homological invariants for connected DG algebra, Comm. Algebra 36 (2008), 3050-3072.
JW. He and QS. Wu, Koszul differential graded algebras and BGG correspondence, J. Algebra, 320, (2008), 2934-2962.
B. Keller, Calabi-Yau triangulated categories, pp.467-489 in "Trends in representation theory of algebras and related topics", papers from ICRA XII, 2007, EMS Ser. Congr. Rep., EMS Zürich, 2008.
P. Jørgensen, Auslander-Reiten theory over topological spaces. Comment. Math. Helv., 79 (2004), 160-182.
P. Jørgensen, Calabi-Yau categories and Poincaré duality space, pp.399-431 in "Trends in Representation theory of algebras and related topics", papers from
ICRA XII, 2007, EMS, Ser. Congr. Rep, EMS Zürich, 2008.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → のへぐ

Thanks for your listening!