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Definitions 1.1

Let A be a connected graded k-algebra. If ∃ a k-linear map
∂A : A → A of degree 1 such that ∂A ◦ ∂A = 0, and

∂A (ab) = ∂A (a)b + (−1)|a|a∂A (b),
for all graded elements a,b ∈ A . Then (A , ∂A ) is called a
connected cochain DG algebra.

(A , ∂A ) : 0 → A 0 = k ∂0
A

=0
→ A 1 ∂1

A→ A 2 ∂2
A→ · · ·

∂ i
A→ A i+1 ∂ i+1

A→ · · ·

1 Any connected graded algebra A can be considered as a
connected cochain DG algebra with zero differential

A : 0 → A0 = k 0
→ A1 0

→ A2 0
→ · · ·

0
→ Ai+1 0

→ · · ·

2 ∀ complex of graded A-modules · · ·
d i−1

→ X i d i

→ X i+1 d i+1

→ · · ·
can be compressed as a DG A -module

(
⊕

i∈Z
ΣiX i , ((−1)iΣi(d i))i∈Z). (ΣM)j = M j+1
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Comparison of two homology theories
DG homological algebra graded hypercohomology algebra
compact DG module perfect complex
tilting DG module tilting complex
dualizing DG module dualizing complex
semi-free resolution free resolution
semi-projective resolution projective resolution
semi-injective resolution injective resolution
Gorenstein DG algebra AS-Gorenstein algebra
Koszul DG algebra Koszul algebra
homologically smooth noetherian regular algebra
Calabi-Yau DG algebra Calabi-Yau graded algebra
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Some basic notions
Let A be a connected cochain DG algebra.

m : the maximal DG ideal

· · · → 0 → A 1 ∂1
A→ A 2 ∂2

A→ · · ·
∂n−1

A→ A n ∂n
A→ · · · ;

A op: opposite algebra of A with a product ⋄ is defined by
a1 ⋄ a2 = (−1)|a1|·|a2|a2a1;

A e: enveloping DG algebra A ⊗ A op of A ;

D(A ): derived category of DG left A -modules;

a DG A -module M is called compact, if HomD(A )(M,−)
preserves all set-indexed coproducts in D(A );

Dc(A ): full subcat of D(A ) consisting of compact objects;

E : the Ext-algebra of A defined by E = H(R HomA (k,k));
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Definition 1.2 Let θ : F ≃
→ M be a semi-free resolution of a DG

A -module M. If ∂F (F ) ⊆ mF , then θ or just F is called a
minimal semi-free resolution of M.

Fact 1: Any cohomologically bounded below DG A -module M
has a minimal semi-free resolution. —— Mao-Wu (2008)
Fact 2: A DG A -module M is compact if and only if it admits a
minimal semi-free resolution with a finite semi-basis.

Definitions 1.3 [Kontsevich (2006) ]

If A eA is compact, then A is called homologically smooth.
A is homologically smooth if and only if A k is compact.

H(R HomA e(A ,k)) ∼= H(R HomA (k,k))
If A is homologically smooth and A 6≃ k, then

sup{i |H i(A ) 6= 0} = +∞ —– Mao-Wu, (2009)
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Definitions 1.4

If A k, or equivalently A eA , has a minimal semi-free resolution
with a semi-basis concentrated in degree 0, then A is called a
Koszul DG algebra. —— He-Wu J. Algebra 320 (2008)

Definitions 1.5 [Félix-Halperin-Thomas, Adv. Math. 71]

Let A be a connected cochain DG k-algebra. If
dimk H(R HomA (k ,A )) = 1, (resp. dimk H(R HomA op (k ,A )) = 1)

then A is called left (resp. right) Gorenstein. If A is both left
Gorenstein and right Gorenstein, then A is called Gorenstein.

If A is homologically smooth, then A is left Gorenstein if and
only if A is right Gorenstein. —— Mao-Wu, (2009)
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Definitions 1.6 [V. Ginzberg, (2006)]

Let A be a homologically smooth connected DG k-algebra.
If R HomA e(A ,A e) ∼= Σ−nA in D((A e)op), then A is called an
n-Calabi-Yau DG algebra.

Question 1.7

Are there some relations between these four homological
properties?

Are there some easy way to detect the Gorenstein and
Calabi-Yau properties of a given DG algebra?

Calabi-Yau ⇒ homologically smooth and Gorenstein
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Theorem 1.8 He-Wu, J. Algebra, (2008)

Let A be a Koszul connected cochain DG algebra. Then A is
homologically smooth and Gorenstein iff its Ext-algebra
H(R HomA (k,k)) is a Frobenius algebra.

Definition 1.9 Let E be a finite dimensional algebra. It is called
Frobenius if ∃ a nondegenerate associative bilinear form

〈−,−〉 : E × E → k s.t. 〈xy , z〉 = 〈x , yz〉, ∀x , y , z ∈ E .

Definition 1.10 If the Frobenius form 〈−,−〉 : E × E → k of a
Frobenius algebra E satisfies the condition: 〈a,b〉 = 〈b,a〉,
∀a,b ∈ E , then E is called a symmetric Frobenius algebra .

E is Frobenius iff EE ∼= E (E∗) or EE
∼= (E∗)E

E is symmetric Frobenius iff E ∼= E∗ as E -bimodules
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Theorem 1.11 He-Mao, Proc. AMS, (2017)

Let A be a Koszul connected cochain DG algebra. Then A is
Calabi-Yau iff its Ext-algebra H(R HomA (k,k)) is a symmetric
Frobenius algebra.

Question 1.12: Can we drop the Koszul condition of the two
theorems above?

Definition 1.13 Let E be a finite dimensional graded algebra. It
is called a Frobenius graded algebra if any one of the following
equivalent conditions holds.

1 ∃j ∈ Z and an isomorphism of left E -modules: ΣjE → E∗.
2 ∃j ∈ Z and an isomorphism of right E -modules: ΣjE → E∗.
3 ∃d ∈ Z and a graded non-degenerate bilinear form

〈−,−〉 : E × E → Σdk, s.t. 〈ab, c〉 = 〈a,bc〉, ∀a,b, c ∈ E .
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Definition 1.14 If the Frobenius form 〈−,−〉 of a Frobenius
graded algebra E satisfies the condition:

〈a,b〉 = (−1)ij〈b,a〉, ∀a ∈ E i ,b ∈ E j ,
then E is called symmetric.

A finite dimensional graded algebra E is Frobenius iff
∃j ∈ Z s.t. Σj

EE ∼= E (E∗) or equivalently ΣjEE
∼= (E∗)E

A Frobenius graded algebra E is symmetric if and only if
∃j ∈ Z s.t. ΣjE ∼= E∗ as graded E -bimodules.

Aim
Calabi-Yauness of a connected cochain DG algebra A

l
symmetric Frobenius properties of H(R HomA (k,k))
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A : a connected cochain DG algebra

Let K be a minimal semi-free resolution of A k.

E = HomA (K ,K ): the Koszul dual DG algebra of A

Then H(E) = H(HomA (K ,K )) is just the Ext-algebra of A .

Theorem 2.1 arXiv:2407.14805
Assume that A is a connected cochain DG algebra. Then A is
Gorenstein and homologically smooth iff its Ext-algebra H(E) is
a graded Frobenius algebra.

Source of inspiration

[1] P. Jørgensen, Duality for cochain DG algebras, (2013)
[2] Auslander-Reiten theory over topological spaces, (2004)
[3] B. Keller, Calabi-Yau triangulated categories, (2008)
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Theorem 2.2 arXiv:2407.14805
Let A be a homologically smooth connected cochain DG
algebra. Then following statements are equivalent.

1 The Ext-algebra H(E) is a Frobenius graded algebra;
2 A is left Gorenstein;
3 A is right Gorenstein;
4 (E∗)E ∈ Dc(Eop) and E(E∗) ∈ Dc(E);
5 dimk H(R HomE(k, E)) < ∞, dimk H(R HomEop(k, E)) < ∞;
6 dimk H(R HomE(k, E)) = 1, dimk H(R HomEop(k, E)) = 1;
7 Dc(E) and Dc(Eop) admit Auslander-Reiten triangles;
8 Db

lf (A ) and Db
lf (A

op) admit Auslander-Reiten triangles;
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Theorem 2.3 arXiv:2407.14805
Let A be a homologically smooth and Gorenstein DG algebra.
Then the following statements are equivalent.

1 A is Calabi-Yau;
2 The Ext-algebra H(E) is a symmetric Frobenius graded

algebra;
3 The triangulated categories Dc(E) and Dc(Eop) are

Calabi-Yau;
4 The triangulated categories Db

lf (A ) and Db
lf (A

op) are
Calabi-Yau.

Theorem 2.4 arXiv:2407.14805
A connected cochain DG algebra A is Calabi-Yau if and only if
its Ext-algebra H(E) is a symmetric Frobenius graded algebra.
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Example 3.1 Let A be a connected cochain DG algebra s.t.
A # = k〈x , y〉/(x2y − yx2, xy2 − y2x), |x | = |y | = 1

with a differential defined by ∂A (x) = y2, ∂A (y) = 0.
Then A is a non-Koszul Calabi-Yau DG algebra.
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A # = k〈x , y〉/(x2y − yx2, xy2 − y2x), |x | = |y | = 1

with a differential defined by ∂A (x) = y2, ∂A (y) = 0.
Then A is a non-Koszul Calabi-Yau DG algebra.

Step 1: A k admits a minimal semi-free resolution F s.t.
F# = A # ⊕A #Σey ⊕A #Σez ⊕A #Σex2 ⊕A #Σet ⊕A #Σer ,
∂F (Σey) = y , ∂F (Σez) = x + yΣey , ∂F (Σex2) = x2,
∂F (Σet) = x2Σey + yΣex2 , ∂F (Σer ) = yΣet + xΣex2 + x2ΣeZ .

Step 2: H(R HomA (k,k)) ∼= H(HomA (F ,k)) = HomA (F ,k)
∼= k1∗ ⊕ k(Σey)

∗ ⊕ k(Σez)
∗ ⊕ k(Σex2)∗ ⊕ k(Σet)

∗ ⊕ k(Σer )
∗

Note that

{

|1∗| = |(Σey )
∗| = |(Σez)

∗| = 0

|(Σex2)∗| = |(Σet)
∗| = |(Σer )

∗| = −1.
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Example 3.1 Let A be a connected cochain DG algebra s.t.
A # = k〈x , y〉/(x2y − yx2, xy2 − y2x), |x | = |y | = 1

with a differential defined by ∂A (x) = y2, ∂A (y) = 0.
Then A is a non-Koszul Calabi-Yau DG algebra.

Step 3: Compute H(R HomA (k,k)) = H(HomA (K ,K )).
It is isomorphic to the algebra














































d 0 0 0 0 0
e d 0 0 0 0
q e d 0 0 0
a 0 0 d 0 0
b a 0 e d 0
c b a q e d

















| a,b, c,d ,e,q ∈ k














=
5
⊕

i=0
kei ,

where e0 =
6
∑

i=1
Eii , e1 = E21 + E32 + E54 + E65, e2 = E31 + E64,

e3 = E41 + E52 + E63, e4 = E51 + E62 and e5 = E61.
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Example 3.1 Let A be a connected cochain DG algebra s.t.
A # = k〈x , y〉/(x2y − yx2, xy2 − y2x), |x | = |y | = 1

with a differential defined by ∂A (x) = y2, ∂A (y) = 0.
Then A is a non-Koszul Calabi-Yau DG algebra.

Step 4: H(R HomA (k,k)) ∼= 5
⊕

i=0
kei with |e0| = |e1| = |e2| = 0,

|e3| = |e4| = |e5| = −1 and a multiplication structure given by

· e0 e1 e2 e3 e4 e5

e0 e0 e1 e2 e3 e4 e5
e1 e1 e2 0 e4 e5 0
e2 e2 0 0 e5 0 0
e3 e3 e4 e5 0 0 0
e4 e4 e5 0 0 0 0
e5 e5 0 0 0 0 0

It is a symmetric Frobenius graded algebra.
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Let A be a connected cochain DG algebra.

The cohomology graded algebra of A is the algebra

H(A ) =
⊕

i∈Z

ker(∂ i
A

)

im(∂ i−1
A

)
.

∀z ∈ ker(∂ i
A
), we denote by ⌈z⌉ the cohomology class in

H(A ) represented by z.

Proposition 3.2 [Mao-Yang-Ye, (2019)]

If the trivial DG algebra (H(A ),0) is Calabi-Yau DG algebra,
then A is a Calabi-Yau DG algebra.

Proposition 3.3 [Mao-He, (2017)]

Let A be a connected cochain DG algebra. Then A is Koszul
and Calabi-Yau if H(A ) = k〈⌈z1⌉,⌈z2⌉〉

(⌈z1⌉⌈z2⌉+⌈z2⌉⌈z1⌉)
, z1, z2 ∈ ker(∂1

A
).

And A is not Calabi-Yau but Koszul, homologically smooth and
Gorenstein if H(A ) = k[⌈z1⌉, ⌈z2⌉], z1, z2 ∈ ker(∂1

A
).
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Let G and D be the category of connected graded algebras and
the category of connected cochain DG algebras, respectively.

Remark 3.4

Θ : G → D: the functor s.t. ∀A ∈ G, Θ(A) is a trivial DG
algebra with Θ(A)# = A.

Θ preserves Koszul, Gorenstein and homologically smooth
properties

Θ doesn’t necessarily preserve Calabi-Yauness

the multiplication of the opposite algebra

graded context DG context
a ∗ b = ba a ∗ b = (−1)|a|·|b|ba

Note the difference of the multiplications of Ae and Θ(A)e
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Proposition 3.5 Let A be a connected cochain DG algebra s.t.

H(A ) = k k〈⌈x⌉,⌈y⌉〉
(f1,f2)

, x , y ∈ Z 1(A ),

f1 = a⌈x⌉⌈y⌉2 + b⌈y⌉⌈x⌉⌈y⌉ + a⌈y⌉2⌈x⌉+ c⌈x⌉3,
f2 = a⌈y⌉⌈x⌉2 + b⌈x⌉⌈y⌉⌈x⌉ + a⌈x⌉2⌈y⌉+ c⌈y⌉3,

where (a : b : c) ∈ P
2
k −D and

D := {(0 : 0 : 1), (0 : 1 : 0)} ⊔ {(a : b : c)|a2 = b2 = c2}.
Then A is a homologically smooth and Gorenstein DG algebra.
However, it is neither Koszul nor Calabi-Yau. arXiv:2407.14805

H(A ) is a cubic Artin-Schelter algebra of type A

H(R HomA (k,k)) ∼= 5
⊕

i=0
kei , |ei | =

{

0, i = 0,1,2

−1, i = 3,4,5
· e0 e1 e2 e3 e4 e5
e0 e0 e1 e2 e3 e4 e5
e1 e1 0 0 0 −e5 0
e2 e2 0 0 −e5 0 0
e3 e3 0 e5 0 0 0
e4 e4 e5 0 0 0 0
e5 e5 0 0 0 0 0

It is Frobenius but not symmetric.
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Definition 3.6 Mao-Xie-Yang-Abla, (2019)

A connected cochain DG algebra A is called DG free if
A # = k〈x1, x2, · · · , xn〉, with |xi | = 1, ∀i ∈ {1,2, · · · ,n}.

Definition 3.7 Mao-Xie-Yang-Abla, (2019)

Let (M1,M2, · · · ,Mn) be an ordered n-tuple of n × n matrixes

with each M i = (c i
1, c

i
2, · · · , c

i
n) =











r i
1

r i
2
...
r i
n











, i = 1,2, · · · ,n.

We say that (M1,M2, · · · ,Mn) is crisscross if
n
∑

k=1
[ck

j r i
k − c i

k rk
j ] = (0)n×n, ∀i , j ∈ {1,2, · · · ,n}.
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Theorem 3.8 Mao-Xie-Yang-Abla, (2019)

Let A be a DG free algebra s.t. A # = k〈x1, x2, · · · , xn〉 with
|xi | = 1, i = 1,2, · · · ,n. Then ∃ a crisscross ordered n-tuple
(M1,M2, · · · ,Mn) of n × n matrixes s.t. ∂A is defined by

∂A (xi) = (x1, x2, · · · , xn)M i











x1

x2
...

xn











. Conversely, given a

crisscross ordered n-tuple (M1,M2, · · · ,Mn) of n × n matrixes,
we can define a differential ∂ on k〈x1, x2, · · · , xn〉 by

∂(xi ) = (x1, x2, · · · , xn)M i











x1

x2
...

xn











,∀i ∈ {1,2, · · · ,n}

such that (k〈x1, x2, · · · , xn〉, ∂) is a cochain DG algebra.
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Theorem 3.9 Mao-Xie-Yang-Abla, (2019)

Let A and B be two DG free algebras s.t.

A
# = k〈x1, x2, · · · , xn〉, B# = k〈y1, y2, · · · , yn〉, |xi | = |yi | = 1.

Assume that ∂A and ∂B are defined by crisscrossed n × n
matrixes M1,M2, · · · ,Mn and N1,N2, · · · ,Nn, respectively.
Then A ∼= B iff ∃ A = (aij)n×n ∈ GLn(k) s.t.

(aijEn)n2×n2











N1

N2
...

Nn











=











AT M1A
AT M2A

...
AT MnA











.
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Theorem 3.10 Mao-Xie-Yang-Abla, (2019)

Let A be a DG free algebra with 2 degree one generators.
Then A is a Koszul Calabi-Yau DG algebra iff ∂A 6= 0.

Question 3.11

Can we generalize the result above to the cases n ≥ 3?

Example 3.12 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1
and ∂A (x1) = x2

1 , ∂A (x2) = x2x1, ∂A (x3) = x1x3.

The DG algebra A in Example 3.12 is a non-Koszul Calabi-Yau
DG algebra with H(A ) = k[⌈x2x3⌉].
Its Ext-algebra H(R HomA (k,k)) ∼= k[x ]/(x2) with |x | = −1.
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Example 3.13 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1
and ∂A (x1) = x2x3, ∂A (x2) = 0 ∂A (x3) = 0.

A is a Koszul homologically smooth non-Gorenstein DGA with
H(A ) = k〈⌈x2⌉, ⌈x3⌉〉/(⌈x2⌉⌈x3⌉).

H(R HomA (k,k)) ∼= 





















a 0 0 0
b a 0 0
c 0 a 0
d c 0 a









| a, b, c, d ∈ k






not Frobenius

Set e0 =
4
∑

i=1
Eii , e1 = E21, e2 = E31 + E42 and e3 = E41.

· e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e1 0 0 0
e2 e2 e3 0 0
e3 e3 0 0 0

.



beamer-tu-logo

Motivations Main Results Applications References

Example 3.13 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1
and ∂A (x1) = x2x3, ∂A (x2) = 0 ∂A (x3) = 0.

A is a Koszul homologically smooth non-Gorenstein DGA with
H(A ) = k〈⌈x2⌉, ⌈x3⌉〉/(⌈x2⌉⌈x3⌉).

H(R HomA (k,k)) ∼= 





















a 0 0 0
b a 0 0
c 0 a 0
d c 0 a









| a, b, c, d ∈ k






not Frobenius

Set e0 =
4
∑

i=1
Eii , e1 = E21, e2 = E31 + E42 and e3 = E41.

· e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e1 0 0 0
e2 e2 e3 0 0
e3 e3 0 0 0

.



beamer-tu-logo

Motivations Main Results Applications References

Example 3.13 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1
and ∂A (x1) = x2x3, ∂A (x2) = 0 ∂A (x3) = 0.

A is a Koszul homologically smooth non-Gorenstein DGA with
H(A ) = k〈⌈x2⌉, ⌈x3⌉〉/(⌈x2⌉⌈x3⌉).

H(R HomA (k,k)) ∼= 





















a 0 0 0
b a 0 0
c 0 a 0
d c 0 a









| a, b, c, d ∈ k






not Frobenius

Set e0 =
4
∑

i=1
Eii , e1 = E21, e2 = E31 + E42 and e3 = E41.

· e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e1 0 0 0
e2 e2 e3 0 0
e3 e3 0 0 0

.



beamer-tu-logo

Motivations Main Results Applications References

Example 3.14 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1,
and ∂A (x1) = x2

3 , ∂A (x2) = x1x3 + x3x1 ∂A (x3) = 0.

The DG algebra A in Example 3.14 is a Koszul Calabi-Yau DG
algebra with H(A ) = k[⌈x3⌉, ⌈x2

1 + x2x3 + x3x2⌉]/(⌈x3⌉
2).

H(R HomA (k,k)) ∼= 





















a 0 0 0
b a 0 0
c b a 0
d c b a









| a, b, c, d ∈ k






∼= k[x]/(x4), |x| = 0

is a symmetric Frobenius algebra concentrated in degree 0.



beamer-tu-logo

Motivations Main Results Applications References

Example 3.14 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1,
and ∂A (x1) = x2

3 , ∂A (x2) = x1x3 + x3x1 ∂A (x3) = 0.

The DG algebra A in Example 3.14 is a Koszul Calabi-Yau DG
algebra with H(A ) = k[⌈x3⌉, ⌈x2

1 + x2x3 + x3x2⌉]/(⌈x3⌉
2).

H(R HomA (k,k)) ∼= 





















a 0 0 0
b a 0 0
c b a 0
d c b a









| a, b, c, d ∈ k






∼= k[x]/(x4), |x| = 0

is a symmetric Frobenius algebra concentrated in degree 0.



beamer-tu-logo

Motivations Main Results Applications References

Example 3.14 arXiv:2407.14805

Let A be a DG free algebra with A # = k〈x1, x2, x3〉, |xi | = 1,
and ∂A (x1) = x2

3 , ∂A (x2) = x1x3 + x3x1 ∂A (x3) = 0.

The DG algebra A in Example 3.14 is a Koszul Calabi-Yau DG
algebra with H(A ) = k[⌈x3⌉, ⌈x2

1 + x2x3 + x3x2⌉]/(⌈x3⌉
2).

H(R HomA (k,k)) ∼= 





















a 0 0 0
b a 0 0
c b a 0
d c b a









| a, b, c, d ∈ k






∼= k[x]/(x4), |x| = 0

is a symmetric Frobenius algebra concentrated in degree 0.



beamer-tu-logo

Motivations Main Results Applications References

1 Motivations

2 Main Results

3 Applications

4 References



beamer-tu-logo

Motivations Main Results Applications References

X.-F. Mao, Homological properties of homologically smooth connected cochain
DG algebras, arXiv.2407.14805

X.-F. Mao, X. Wang and M.-Y. Zhang, DG Algebra structures on the quantum
affine n-space O

−1(kn), J. Algebra 594 (2022), 389-482.

X.-F. Mao, J.-F. Xie, Y.-N. Yang and Almire. Abla, Isomorphism problem and
homological properties of DG free algebras, Comm. Algebra, 47 (10), (2019),
4031-4060.

X.-F. Mao, Y.-N. Yang and C.-C. Ye, A sufficient condition for a connected DG
algebra to be Calabi-Yau, Comm. Algebra, 47(8), (2019), 3280-3296.

X.-F. Mao, J.-W. He, M. Liu and J.-F. Xie, Calabi-Yau properties of non-trivial
Noetherian DG down-up algebras, J. Algebra Appl. 17, no.5 (2018),
1850090(45pp)

J.-W. He and X.-F. Mao, Connected cochain DG algebras of Calabi-Yau
dimension 0, Proc. Amer. Math. Soc. 145 (3), 2017, 937-953.

X.-F. Mao and J.-W. He, A special class of Koszul Calabi-Yau DG algebras, Acta
Math. Sinica, Chinese series, 60 (2017), 475-504.

P. Jørgensen, Duality for cochain DG algebras, Sci. China Math. 56 (2013),
79–89.

X.-F. Mao and Q.-S. Wu, Compact DG modules and Gorenstein DG algebras,
Sci. china Ser. A 52 (2009), 648–676.



beamer-tu-logo

Motivations Main Results Applications References

X.-F. Mao and Q.-S. Wu, Homological invariants for connected DG algebra,
Comm. Algebra 36 (2008), 3050-3072.

J.-W. He and Q.-S. Wu, Koszul differential graded algebras and BGG
correspondence, J. Algebra, 320, (2008), 2934-2962.

B. Keller, Calabi-Yau triangulated categories, pp.467-489 in “Trends in
representation theory of algebras and related topics”, papers from ICRA XII,
2007, EMS Ser. Congr. Rep., EMS Zürich, 2008.
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Thanks for your listening!
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