Irreducible representations of the free algebra $K < x_1, \dots, x_n >$ through Leavitt path algebras

Francesca Mantese Università di Verona

(joint project with Pham Ngoc Anh)

ICRA, August 2024

伺 と く ヨ と く ヨ と 二 ヨ

The goal: Let K be a field and x_1, \ldots, x_n non commuting

variables. We want to investigate the arithmetic of polynomials in x_1, \ldots, x_n (i.e. elements of the free algebra $K < x_1, \cdots, x_n >$), generalising the classical theory for one variable and using Leavitt path algebras. For instance:

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, · · · , x_n >? Which are the finite-dimensional simple modules over K < x₁, · · · , x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n > ?$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q (や

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, · · · , x_n >? Which are the finite-dimensional simple modules over K < x₁, · · · , x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n > ?$

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, · · · , x_n >? Which are the finite-dimensional simple modules over K < x₁, · · · , x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n > ?$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q (や

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, ..., x_n >? Which are the finite-dimensional simple modules over K < x₁, ..., x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n >$?

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, ..., x_n >? Which are the finite-dimensional simple modules over K < x₁, ..., x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n >$?

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, ..., x_n >? Which are the finite-dimensional simple modules over K < x₁, ..., x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n > ?$

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, ..., x_n >? Which are the finite-dimensional simple modules over K < x₁, ..., x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n > ?$

- f ∈ K[x] is irreducible ⇔ (f) is a maximal ideal ⇔ K[x]/(f) is a finite-dimensional simple K[x]-module. What about if f ∈ K < x₁, ..., x_n >? Which are the finite-dimensional simple modules over K < x₁, ..., x_n >?
- if f and g are in K[x], then the GCD exists and (d) = (f) + (g). What about if $f, g \in K < x_1, \dots, x_n > ?$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

- The free algebra $K < x_1, \cdots, x_n >$
- **2** The Leavitt algebra $L_{\mathcal{K}}(1, n)$
- Onnections
- esults and open problems

▲御▶▲臣▶▲臣▶ 臣 のへで

- A has a weak division algorithm (i.e. if $\Lambda f \cap \Lambda g \neq 0$, then f = qg + r)
- ② Λ is a weak Bézout ring (i.e. if $\Lambda f \cap \Lambda g \neq 0$, then $\Lambda f + \Lambda g$ is principal)
- ③ A is a UFR (i.e. for any f ∈ A, f = p₁ · · · p_s, where the p_i are irreducible and unique up to similarity)

- A has a weak division algorithm (i.e. if $\Lambda f \cap \Lambda g \neq 0$, then f = qg + r)
- ② Λ is a weak Bézout ring (i.e. if $\Lambda f \cap \Lambda g \neq 0$, then $\Lambda f + \Lambda g$ is principal)
- ③ A is a UFR (i.e. for any f ∈ A, f = p₁ · · · p_s, where the p_i are irreducible and unique up to similarity)

同 ト イヨ ト イヨ ト ヨ うくや

- A has a weak division algorithm (i.e. if $\Lambda f \cap \Lambda g \neq 0$, then f = qg + r)
- ② Λ is a weak Bézout ring (i.e. if $\Lambda f \cap \Lambda g \neq 0$, then $\Lambda f + \Lambda g$ is principal)
- **③** Λ is a UFR (i.e. for any *f* ∈ Λ , *f* = *p*₁ · · · *p*_s, where the *p_i* are irreducible and unique up to similarity)

同 ト イ ヨ ト イ ヨ ト う へ ()

- f ∈ Λ irreducible ⇔ Λf is maximal in the poset of the proper principal left ideals of Λ.
- $f \in \Lambda$ irreducible $\Rightarrow \Lambda/\Lambda f$ is a simple left Λ -module
- $f,g \in \Lambda$ right coprime $\Rightarrow \Lambda f + \Lambda g = \Lambda$

- f ∈ Λ irreducible ⇔ Λf is maximal in the poset of the proper principal left ideals of Λ.
- $f \in \Lambda$ irreducible $\Rightarrow \Lambda/\Lambda f$ is a simple left Λ -module
- $f, g \in \Lambda$ right coprime $\Rightarrow \Lambda f + \Lambda g = \Lambda$

- f ∈ Λ irreducible ⇔ Λf is maximal in the poset of the proper principal left ideals of Λ.
- $f \in \Lambda$ irreducible $\Rightarrow \Lambda/\Lambda f$ is a simple left Λ -module
- $f,g \in \Lambda$ right coprime $\Rightarrow \Lambda f + \Lambda g = \Lambda$

同 ト イ ヨ ト イ ヨ ト う へ ()

Definition: The Leavitt algebra $\mathbb{L} = L_K(1, n)$ is the *K*-algebra with generators $x_1, \dots, x_n, x_1^* \dots, x_n^*$ and relations $x_i^* x_i = 1$, $x_i^* x_j = 0, x_1 x_1^* + \dots + x_n x_n^* = 1$.

Remarks:

- $\Lambda \leq \mathbb{L}$ and $\Lambda^* = K < x_1^*, \cdots, x_n^* > \leq \mathbb{L}$.
- L can be described as the *Leavitt path algebra* associated to the direct graph

「ア・イヨト・イヨト・ヨー

Definition: The Leavitt algebra $\mathbb{L} = L_{\mathcal{K}}(1, n)$ is the *K*-algebra with generators $x_1, \dots, x_n, x_1^* \dots, x_n^*$ and relations $x_i^* x_i = 1$, $x_i^* x_j = 0, x_1 x_1^* + \dots + x_n x_n^* = 1$.

Remarks:

- $\Lambda \leq \mathbb{L}$ and $\Lambda^* = K < x_1^*, \cdots, x_n^* > \leq \mathbb{L}$.
- L can be described as the *Leavitt path algebra* associated to the direct graph

Definition: The Leavitt algebra $\mathbb{L} = L_{\mathcal{K}}(1, n)$ is the *K*-algebra with generators $x_1, \dots, x_n, x_1^* \dots, x_n^*$ and relations $x_i^* x_i = 1$, $x_i^* x_j = 0, x_1 x_1^* + \dots + x_n x_n^* = 1$.

Remarks:

- $\Lambda \leq \mathbb{L}$ and $\Lambda^* = K < x_1^*, \cdots, x_n^* > \leq \mathbb{L}$.
- L can be described as the *Leavitt path algebra* associated to the direct graph

Any Leavitt path algebra is a Bézout ring, i.e., any finitely generated ideal is principal. In particular \mathbb{L} is a Bézout ring.

Leavitt path algebras are not UFR.

伺 ト イヨ ト イヨ ト

Any Leavitt path algebra is a <u>Bézout ring</u>, i.e., any finitely generated ideal is principal. In particular \mathbb{L} is a Bézout ring.

Leavitt path algebras are not UFR.

何 ト イヨ ト イヨ ト

Any Leavitt path algebra is a <u>Bézout ring</u>, i.e., any finitely generated ideal is principal. In particular \mathbb{L} is a Bézout ring.

Leavitt path algebras are not UFR.

何 ト イヨ ト イヨ ト

Theorem (Ara-Brustenga '10): The Leavitt algebra \mathbb{L} is a *perfect left localisation* of the free algebra $\Lambda^* = K < x_1^*, \cdots, x_n^* >$

Indeed the canonical inclusion $\Lambda^* \to \mathbb{L}$ is an epimorphism of rings. It is the universal localisation w.r.t a suitable set of maps between fin. gen. projective Λ^* -modules. And \mathbb{L} is flat as right Λ^* -module.

Corollary: The category of finitely presented left \mathbb{L} -modules is equivalent to a quotient category of the finite-dimensional left Λ^* -modules (w.r.t a suitable Serre subcategory).

Theorem (Ara-Brustenga '10): The Leavitt algebra \mathbb{L} is a *perfect left localisation* of the free algebra $\Lambda^* = K < x_1^*, \cdots, x_n^* >$

Indeed the canonical inclusion $\Lambda^* \to \mathbb{L}$ is an epimorphism of rings. It is the universal localisation w.r.t a suitable set of maps between fin. gen. projective Λ^* -modules. And \mathbb{L} is flat as right Λ^* -module.

Corollary: The category of finitely presented left \mathbb{L} -modules is equivalent to a quotient category of the finite-dimensional left Λ^* -modules (w.r.t a suitable Serre subcategory).

Theorem (Ara-Brustenga '10): The Leavitt algebra \mathbb{L} is a *perfect left localisation* of the free algebra $\Lambda^* = K < x_1^*, \cdots, x_n^* >$

Indeed the canonical inclusion $\Lambda^* \to \mathbb{L}$ is an epimorphism of rings. It is the universal localisation w.r.t a suitable set of maps between fin. gen. projective Λ^* -modules. And \mathbb{L} is flat as right Λ^* -module.

Corollary: The category of finitely presented left \mathbb{L} -modules is equivalent to a quotient category of the finite-dimensional left Λ^* -modules (w.r.t a suitable Serre subcategory).

「ア・イヨト・イヨト・ヨー

Corollary: There is a bijection between isomorphism classes of finitely presented simple left \mathbb{L} -modules and isomorphism classes of finite dimensional simple left Λ^* -modules.

Remark: The classification problem for finite dimensional simple modules in the free algebra Λ is equivalent to the classification problem in the free algebra Λ^* and so it is equivalent to the classification problem for finitely presented simple modules in \mathbb{L} .

向下 イヨト イヨト

Corollary: There is a bijection between isomorphism classes of finitely presented simple left \mathbb{L} -modules and isomorphism classes of finite dimensional simple left Λ^* -modules.

Remark: The classification problem for finite dimensional simple modules in the free algebra Λ is equivalent to the classification problem in the free algebra Λ^* and so it is equivalent to the classification problem for finitely presented simple modules in \mathbb{L} .

何 ト イヨ ト イヨ ト

Corollary: There is a bijection between isomorphism classes of finitely presented simple left \mathbb{L} -modules and isomorphism classes of finite dimensional simple left Λ^* -modules.

Remark: The classification problem for finite dimensional simple modules in the free algebra Λ is equivalent to the classification problem in the free algebra Λ^* and so it is equivalent to the classification problem for finitely presented simple modules in \mathbb{L} .

何 ト イヨ ト イヨ ト

Example: Consider $f = x_1^2 x_2 + x_1 x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 , hence 1.

Let V_f be the finite dimensional K-vector space generated by the cofactors of f.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example: Consider $f = x_1^2 x_2 + x_1 x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 hence 1.

Let V_f be the finite dimensional K-vector space generated by the cofactors of f.

Example: Consider $f = x_1^2 x_2 + x_1 x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 , hence 1.

Let V_f be the finite dimensional K-vector space generated by the cofactors of f.

Example: Consider $f = x_1^2 x_2 + x_1 x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2 x_2$ and to $x_1^2 x_2$ and to $x_1 x_2^2$, hence 1.

Let *V_f* be the finite dimensional *K*-vector space generated by the cofactors of *f*.

Example: Consider $f = x_1^2 x_2 + x_1 x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 , hence 1.

Let *V_f* be the finite dimensional *K*-vector space generated by the cofactors of *f*.

Example: Consider $f = x_1^2x_2 + x_1x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 , hence 1.

Let V_f be the finite dimensional K-vector space generated by the cofactors of f.

Example: Consider $f = x_1^2x_2 + x_1x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 , hence x_1^2 , hence 1.

Let V_f be the finite dimensional K-vector space generated by the cofactors of f.

Example: Consider $f = x_1^2x_2 + x_1x_2^2 + 1$ in $K < x_1, x_2 >$. The cofactors of f of length 1 are those associated to x_1 and x_2 , so $x_1x_2 + x_2^2$ and 0, respectively. The cofactors of length 2 are those associated to x_1^2 and to x_1x_2 , hence x_2 . The cofactors of length 3 are those associated to $x_1^2x_2$ and to x_1x_2 , hence $x_1x_2^2$, hence 1.

Let V_f be the finite dimensional *K*-vector space generated by the cofactors of f.

Theorem: Let $f \in \Lambda$ comonic and let V_f as before. Given $\gamma = k + \sum x_i \gamma_i \in V_f$, define $x_i \star_f \gamma = -kf_{x_i} + \gamma_{x_i}$, for $i = 1 \dots n$. Then V_f is a left Λ -module.

- f is irreducible if and only if V_f is a simple Λ -module
- V_f has finite length.
- If $f = p_1 \cdots p_m$ is a factorization in irreducible polynomials, then *m* is the length of V_f . The composition factors of V_f are the V_{p_i} 's.
- $V_f \cong V_g$ if and only if f and g are similar (i.e. $\Lambda/\Lambda f \cong \Lambda/\Lambda g$)

- f is irreducible if and only if V_f is a simple Λ -module
- V_f has finite length.
- If $f = p_1 \cdots p_m$ is a factorization in irreducible polynomials, then *m* is the length of V_f . The composition factors of V_f are the V_{p_i} 's.
- $V_f \cong V_g$ if and only if f and g are similar (i.e. $\Lambda/\Lambda f \cong \Lambda/\Lambda g$)

- f is irreducible if and only if V_f is a simple Λ -module
- V_f has finite length.
- If $f = p_1 \cdots p_m$ is a factorization in irreducible polynomials, then *m* is the length of V_f . The composition factors of V_f are the V_{p_i} 's.
- $V_f \cong V_g$ if and only if f and g are similar (i.e. $\Lambda/\Lambda f \cong \Lambda/\Lambda g$)

- f is irreducible if and only if V_f is a simple Λ -module
- V_f has finite length.
- If $f = p_1 \cdots p_m$ is a factorization in irreducible polynomials, then *m* is the length of V_f . The composition factors of V_f are the V_{p_i} 's.
- $V_f \cong V_g$ if and only if f and g are similar (i.e. $\Lambda/\Lambda f \cong \Lambda/\Lambda g$)

- f is irreducible if and only if V_f is a simple Λ -module
- V_f has finite length.
- If $f = p_1 \cdots p_m$ is a factorization in irreducible polynomials, then *m* is the length of V_f . The composition factors of V_f are the V_{p_i} 's.
- $V_f \cong V_g$ if and only if f and g are similar (i.e. $\Lambda/\Lambda f \cong \Lambda/\Lambda g$)

Corollary: If f is irreducible, then $\mathbb{L}f$ is a maximal left ideal and so $\mathbb{L}/\mathbb{L}f$ is a finitely presented simple \mathbb{L} -module.

Hence, to conclude the proof, we show that $\mathbb{L}/\mathbb{L}f$ corresponds to V_f in the previously stated bijection, so that V_f is a simple Λ -module.

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary: If f is irreducible, then $\mathbb{L}f$ is a maximal left ideal and so $\mathbb{L}/\mathbb{L}f$ is a finitely presented simple \mathbb{L} -module.

Hence, to conclude the proof, we show that $\mathbb{L}/\mathbb{L}f$ corresponds to V_f in the previously stated bijection, so that V_f is a simple Λ -module.

Corollary: If f is irreducible, then $\mathbb{L}f$ is a maximal left ideal and so $\mathbb{L}/\mathbb{L}f$ is a finitely presented simple \mathbb{L} -module.

Hence, to conclude the proof, we show that $\mathbb{L}/\mathbb{L}f$ corresponds to V_f in the previously stated bijection, so that V_f is a simple Λ -module.

Corollary: If f is irreducible, then $\mathbb{L}f$ is a maximal left ideal and so $\mathbb{L}/\mathbb{L}f$ is a finitely presented simple \mathbb{L} -module.

Hence, to conclude the proof, we show that $\mathbb{L}/\mathbb{L}f$ corresponds to V_f in the previously stated bijection, so that V_f is a simple Λ -module.

What about *f* without constant term?

Does the theorem give a complete classification for the finite dimensional simple modules in Λ ?

In terms of finite presented simple module over an arbitrary LPA, could we apply this approach to construct new classes of simple modules?

・ 同 ト ・ ヨ ト ・ ヨ ト …

What about *f* without constant term?

Does the theorem give a complete classification for the finite dimensional simple modules in Λ ?

In terms of finite presented simple module over an arbitrary LPA, could we apply this approach to construct new classes of simple modules?

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What about *f* without constant term?

Does the theorem give a complete classification for the finite dimensional simple modules in Λ ?

In terms of finite presented simple module over an arbitrary LPA, could we apply this approach to construct new classes of simple modules?

What about *f* without constant term?

Does the theorem give a complete classification for the finite dimensional simple modules in Λ ?

In terms of finite presented simple module over an arbitrary LPA, could we apply this approach to construct new classes of simple modules?

伺 と く き と く き と … き