Characterizations of tame algebras with separating families of almost cyclic coherent components

Piotr Malicki

Nicolaus Copernicus University, Toruń, Poland

International Conference on Representations of Algebras

August 2024, Shanghai

 A – basic, finite dimensional K-algebra (over a fixed algebraically closed field K)

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- A ≃ KQ_A/I, where Q_A = (Q₀, Q₁) is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- A ≃ KQ_A/I, where Q_A = (Q₀, Q₁) is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- A ≃ KQ_A/I, where Q_A = (Q₀, Q₁) is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- ind A full subcategory of mod A formed by all indecomposable modules

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- A ≃ KQ_A/I, where Q_A = (Q₀, Q₁) is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- A ≃ KQ_A/I, where Q_A = (Q₀, Q₁) is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

• $\operatorname{rad}_A^\infty = \bigcap_{i>1} \operatorname{rad}_A^i$ – infinite Jacobson radical of mod A

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- A ≃ KQ_A/I, where Q_A = (Q₀, Q₁) is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

• $\operatorname{rad}_{A}^{\infty} = \bigcap_{i>1} \operatorname{rad}_{A}^{i}$ – infinite Jacobson radical of mod A

$\operatorname{rad}_{A}^{\infty} = 0 \xleftarrow{\operatorname{Auslander}} A$ is of finite representation type

- A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- $A \cong KQ_A/I$, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

• $\operatorname{rad}_{A}^{\infty} = \bigcap_{i>1} \operatorname{rad}_{A}^{i}$ – infinite Jacobson radical of mod A

$$\operatorname{rad}_{A}^{\infty} = 0 \xleftarrow{\operatorname{Auslander}}{A}$$
 is of finite representation type

A is of infinite representation type =

 $\xrightarrow{\text{Coelho-Marcos-Merklen-Skowroński}} (\operatorname{rad}_A^\infty)^2 \neq 0$

P. Malicki (Toruń)

Characterizations of tame algebras with ...

ICRA 21 2 / 15

• Γ_A – Auslander-Reiten quiver of A;

< ロ > < 同 > < 三 > < 三

- Γ_A Auslander-Reiten quiver of A;
- τ_A Auslander-Reiten translation;

- 4 ⊒ →

- 一司

- Γ_A Auslander-Reiten quiver of A;
- τ_A Auslander-Reiten translation;
- Γ connected component of Γ_A ;

- Γ_A Auslander-Reiten quiver of A;
- τ_A Auslander-Reiten translation;
- Γ connected component of Γ_A ;
- Γ is generalized standard if rad[∞]_A(X, Y) = 0 for all modules X and Y from Γ.

- Γ_A Auslander-Reiten quiver of A;
- τ_A Auslander-Reiten translation;
- Γ connected component of Γ_A ;
- Γ is generalized standard if rad[∞]_A(X, Y) = 0 for all modules X and Y from Γ.

Remark (Skowroński)

Let A be an algebra. Then every generalized standard component Γ of Γ_A is almost periodic (all but finitely many τ_A -orbits in Γ are periodic).

- Γ_A Auslander-Reiten quiver of A;
- τ_A Auslander-Reiten translation;
- Γ connected component of Γ_A ;
- Γ is generalized standard if rad[∞]_A(X, Y) = 0 for all modules X and Y from Γ.

Remark (Skowroński)

Let A be an algebra. Then every generalized standard component Γ of Γ_A is almost periodic (all but finitely many τ_A -orbits in Γ are periodic).

Examples

Postprojective components, preinjective components, connecting components of tilted algebras, tubes over tame tilted, tubular and canonical algebras.

ICRA 21 3 / 15

• $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ – family of connected components of Γ_A

イロト イヨト イヨト イヨ

- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C

- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- 𝔅 = (𝔅_i)_{i∈I} is said to be separating if the components in Γ_A split into three disjoint classes 𝒫_A, 𝔅_A = 𝔅 and Q_A such that:

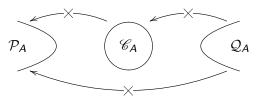
- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- 𝔅 = (𝔅_i)_{i∈I} is said to be separating if the components in Γ_A split into three disjoint classes 𝒫_A, 𝔅_A = 𝔅 and Q_A such that:

() C_A is a sincere family of pairwise orthogonal gen. stand. comp.;

- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- 𝔅 = (𝔅_i)_{i∈I} is said to be separating if the components in Γ_A split into three disjoint classes 𝒫_A, 𝔅_A = 𝔅 and Q_A such that:
 - **(**) \mathscr{C}_A is a sincere family of pairwise orthogonal gen. stand. comp.;
 - 2 Hom_A(Q_A, P_A) = 0, Hom_A(Q_A, C_A) = 0, Hom_A(C_A, P_A) = 0;

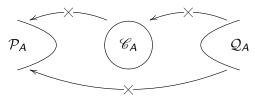
- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- 𝔅 = (𝔅_i)_{i∈I} is said to be separating if the components in Γ_A split into three disjoint classes 𝒫_A, 𝔅_A = 𝔅 and Q_A such that:
 - $\ \, { \ 0 } \ \, { \ { \ C } }_A \ \, \text{is a sincere family of pairwise orthogonal gen. stand. comp.; }$
 - 2 Hom_A(Q_A, P_A) = 0, Hom_A(Q_A, C_A) = 0, Hom_A(C_A, P_A) = 0;
 - **3** any morphism from \mathcal{P}_A to \mathcal{Q}_A in mod A factors through $\operatorname{add}(\mathscr{C}_A)$.

- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- 𝔅 = (𝔅_i)_{i∈I} is said to be separating if the components in Γ_A split into three disjoint classes 𝒫_A, 𝔅_A = 𝔅 and Q_A such that:
 - **(**) C_A is a sincere family of pairwise orthogonal gen. stand. comp.;
 - 2 Hom_A(Q_A, P_A) = 0, Hom_A(Q_A, C_A) = 0, Hom_A(C_A, P_A) = 0;
 - **3** any morphism from \mathcal{P}_A to \mathcal{Q}_A in mod A factors through $\operatorname{add}(\mathscr{C}_A)$.



Then we write: ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ (\mathscr{C}_A separates \mathcal{P}_A from \mathcal{Q}_A).

- $\mathscr{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- C is sincere if every simple module in mod A occurs as a composition factor of a module in C
- 𝔅 = (𝔅_i)_{i∈I} is said to be separating if the components in Γ_A split into three disjoint classes 𝒫_A, 𝔅_A = 𝔅 and Q_A such that:
 - **(**) C_A is a sincere family of pairwise orthogonal gen. stand. comp.;
 - 2 Hom_A(Q_A, P_A) = 0, Hom_A(Q_A, C_A) = 0, Hom_A(C_A, P_A) = 0;
 - **3** any morphism from \mathcal{P}_A to \mathcal{Q}_A in mod A factors through $\operatorname{add}(\mathscr{C}_A)$.



Then we write: ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ (\mathscr{C}_A separates \mathcal{P}_A from \mathcal{Q}_A).

 \mathcal{P}_A and \mathcal{Q}_A are uniquely determined by \mathscr{C}_A

Almost cyclic and coherent components

A – algebra, Γ – component of Γ_A

Almost cyclic and coherent components

- A algebra, Γ component of Γ_A
 - Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ

Almost cyclic and coherent components

- A algebra, Γ component of Γ_A
 - Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
 - Γ is coherent if the following two conditions are satisfied:

- A algebra, Γ component of Γ_A
 - Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
 - Γ is coherent if the following two conditions are satisfied:
 - For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2} \text{ for any } i \geq 1)$

- A algebra, Γ component of Γ_A
 - Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
 - Γ is coherent if the following two conditions are satisfied:
 - For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2} \text{ for any } i \geq 1)$
 - **2** For each injective module I in Γ there is an infinite sectional path $\dots \rightarrow Y_{j+2} \rightarrow Y_{j+1} \rightarrow Y_j \rightarrow \dots \rightarrow Y_2 \rightarrow Y_1 = I$ in Γ $(Y_{j+2} \neq \tau_A Y_j \text{ for any } j \ge 1)$

A – algebra, Γ – component of Γ_A

- Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
- Γ is coherent if the following two conditions are satisfied:
 - For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2} \text{ for any } i \geq 1)$
 - **2** For each injective module I in Γ there is an infinite sectional path $\dots \rightarrow Y_{j+2} \rightarrow Y_{j+1} \rightarrow Y_j \rightarrow \dots \rightarrow Y_2 \rightarrow Y_1 = I$ in Γ $(Y_{j+2} \neq \tau_A Y_j \text{ for any } j \ge 1)$

Note that the stable tubes, ray tubes and coray tubes of Γ_A are special types of coherent almost cyclic components.

< 回 ト < 三 ト < 三 ト

Theorem (M.–Skowroński)

Theorem (M.–Skowroński)

Let A be an algebra with a separating family C_A of almost cyclic coherent components in Γ_A , and ind $A = \mathcal{P}_A \cup C_A \cup \mathcal{Q}_A$. Then

 $I gl \dim A \leq 3.$

Theorem (M.–Skowroński)

- $I gl \dim A \leq 3.$
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .

Theorem (M.–Skowroński)

- $I gl \dim A \leq 3.$
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .
- **3** $\operatorname{id}_A X \leq 1$ for any module X in \mathcal{Q}_A .

Theorem (M.–Skowroński)

- $I gl \dim A \leq 3.$
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .
- **3** $\operatorname{id}_A X \leq 1$ for any module X in \mathcal{Q}_A .
- $\operatorname{pd}_A X \leq 2$ and $\operatorname{id}_A X \leq 2$ for any module X in \mathscr{C}_A .

Theorem (M.–Skowroński)

- $I gl \dim A \leq 3.$
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .
- **③** $id_A X ≤ 1$ for any module X in Q_A .
- $\operatorname{pd}_A X \leq 2$ and $\operatorname{id}_A X \leq 2$ for any module X in \mathscr{C}_A .
- So There is a unique quotient algebra A_I of A which is a quasitilted algebra of canonical type having a separating family T_{A_I} of coray tubes such that ind A_I = P_{AI} ∪ T_{AI} ∪ Q_{AI}, P_{AI} = P_A.

Theorem (M.–Skowroński)

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A , and ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$. Then

- $I gl \dim A \leq 3.$
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .

3 $\operatorname{id}_A X \leq 1$ for any module X in \mathcal{Q}_A .

• $\operatorname{pd}_A X \leq 2$ and $\operatorname{id}_A X \leq 2$ for any module X in \mathscr{C}_A .

- So There is a unique quotient algebra A_l of A which is a quasitilted algebra of canonical type having a separating family T_{Al} of coray tubes such that ind A_l = P_{Al} ∪ T_{Al} ∪ Q_{Al}, P_{Al} = P_A.
- There is a unique quotient algebra A_r of A which is a quasitilted algebra of canonical type having a separating family \mathcal{T}_{A_r} of ray tubes such that ind $A_r = \mathcal{P}_{A_r} \cup \mathcal{T}_{A_r} \cup \mathcal{Q}_{A_r}$, $\mathcal{Q}_{A_r} = \mathcal{Q}_A$.

Separating family of almost cyclic coherent components

Theorem (M.–Skowroński)

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A , and ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$. Then

- $I gl \dim A \leq 3.$
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .

③ $id_A X ≤ 1$ for any module X in Q_A .

• $\operatorname{pd}_A X \leq 2$ and $\operatorname{id}_A X \leq 2$ for any module X in \mathscr{C}_A .

- There is a unique quotient algebra A_I of A which is a quasitilted algebra of canonical type having a separating family \mathcal{T}_{A_I} of coray tubes such that ind $A_I = \mathcal{P}_{A_I} \cup \mathcal{T}_{A_I} \cup \mathcal{Q}_{A_I}$, $\mathcal{P}_{A_I} = \mathcal{P}_A$.
- There is a unique quotient algebra A_r of A which is a quasitilted algebra of canonical type having a separating family \mathcal{T}_{A_r} of ray tubes such that ind $A_r = \mathcal{P}_{A_r} \cup \mathcal{T}_{A_r} \cup \mathcal{Q}_{A_r}$, $\mathcal{Q}_{A_r} = \mathcal{Q}_A$.
- A is tame if and only if A_l and A_r are tame.

• $A = KQ_A/I$ – triangular algebra with $Q_A = (Q_0, Q_1)$ (Q_A has no oriented cycles), I – admissible ideal in KQ_A

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ (Q_A has no oriented cycles), I – admissible ideal in KQ_A
- R minimal set of relations generating the ideal I

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ (Q_A has no oriented cycles), I – admissible ideal in KQ_A
- R minimal set of relations generating the ideal I
- *R* decomposes into the disjoint union ⋃_{i,j∈Q0} *R_{i,j}*, where *R_{i,j}* denotes the set of the elements starting at the vertex *i* and ending at *j*

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ (Q_A has no oriented cycles), I – admissible ideal in KQ_A
- R minimal set of relations generating the ideal I
- *R* decomposes into the disjoint union ⋃_{i,j∈Q0} *R_{i,j}*, where *R_{i,j}* denotes the set of the elements starting at the vertex *i* and ending at *j*

•
$$r_{i,j} := |R_{i,j}|$$

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ (Q_A has no oriented cycles), I – admissible ideal in KQ_A
- R minimal set of relations generating the ideal I
- *R* decomposes into the disjoint union ⋃_{i,j∈Q0} *R_{i,j}*, where *R_{i,j}* denotes the set of the elements starting at the vertex *i* and ending at *j*
- $r_{i,j} := |R_{i,j}|$

Remark (Bongartz)

Although *R* is not uniquely determined by *I*, the numbers $r_{i,j}$ do not depend on the set *R*.

Tits quadratic form

• Tits quadratic form of A is the integer quadratic form $q_A : \mathbb{Z}^n \to \mathbb{Z}$, $n = |Q_0|$ defined for $x = (x_i) \in \mathbb{Z}^n$ by the formula

$$q_A(x) = \sum_{i \in Q_0} x_i^2 - \sum_{(i \to j) \in Q_1} x_i x_j + \sum_{i,j \in Q_0} r_{i,j} x_i x_j$$

• Tits quadratic form of A is the integer quadratic form $q_A : \mathbb{Z}^n \to \mathbb{Z}$, $n = |Q_0|$ defined for $x = (x_i) \in \mathbb{Z}^n$ by the formula

$$q_A(x) = \sum_{i \in Q_0} x_i^2 - \sum_{(i \to j) \in Q_1} x_i x_j + \sum_{i,j \in Q_0} r_{i,j} x_i x_j$$

A is of finite representation type $\xrightarrow{\text{Bongartz}} q_A$ is weakly positive $(q_A(x) > 0 \text{ for all non-zero vectors } x \text{ with all coordinates nonnegative})$

• Tits quadratic form of A is the integer quadratic form $q_A : \mathbb{Z}^n \to \mathbb{Z}$, $n = |Q_0|$ defined for $x = (x_i) \in \mathbb{Z}^n$ by the formula

$$q_A(x) = \sum_{i \in Q_0} x_i^2 - \sum_{(i \to j) \in Q_1} x_i x_j + \sum_{i,j \in Q_0} r_{i,j} x_i x_j$$

A is of finite representation type $\xrightarrow{\text{Bongartz}} q_A$ is weakly positive $(q_A(x) > 0 \text{ for all non-zero vectors } x \text{ with all coordinates nonnegative})$

A is tame $\xrightarrow{\text{de la Peña}} q_A$ is weakly nonnegative $(q_A(x) \ge 0 \text{ for all vectors } x \text{ with all coordinates nonnegative})$

 $A = K Q_A / I$ – algebra with $Q_A = (Q_0, Q_1)$, I – admissible ideal in $K Q_A$

 The support algebra B(X) is the full subcategory of A generated by the idempotents corresponding to the vertices of the support supp(X) = {i ∈ Q₀ | X(i) ≠ 0}. $A = K Q_A / I$ – algebra with $Q_A = (Q_0, Q_1)$, I – admissible ideal in $K Q_A$

 The support algebra B(X) is the full subcategory of A generated by the idempotents corresponding to the vertices of the support supp(X) = {i ∈ Q₀ | X(i) ≠ 0}.

•
$$m(X) = \min\{\dim_K X(i) \mid i \in \operatorname{supp}(X)\}$$

 $A = K Q_A / I$ – algebra with $Q_A = (Q_0, Q_1)$, I – admissible ideal in $K Q_A$

- The support algebra B(X) is the full subcategory of A generated by the idempotents corresponding to the vertices of the support supp(X) = {i ∈ Q₀ | X(i) ≠ 0}.
- $m(X) = \min\{\dim_{\mathcal{K}} X(i) \mid i \in \operatorname{supp}(X)\}$
- An indecomposable module X from mod A is called directing if it does not lie on a cycle in mod A.

 $A = {\it KQ_A}/{\it I}$ – algebra with ${\it Q_A} = ({\it Q_0}, {\it Q_1}),$ ${\it I}$ – admissible ideal in ${\it KQ_A}$

- The support algebra B(X) is the full subcategory of A generated by the idempotents corresponding to the vertices of the support supp(X) = {i ∈ Q₀ | X(i) ≠ 0}.
- $m(X) = \min\{\dim_{\mathcal{K}} X(i) \mid i \in \operatorname{supp}(X)\}$
- An indecomposable module X from mod A is called directing if it does not lie on a cycle in mod A.

Lemma (de la Peña-Skowroński)

Let A be a tame algebra with only finitely many indecomposable sincere directing modules. Let X be an indecomposable sincere directing A-module, then $m(X) \le 2$.

 $A = {\it KQ_A}/{\it I}$ – algebra with ${\it Q_A} = ({\it Q_0}, {\it Q_1}),$ ${\it I}$ – admissible ideal in ${\it KQ_A}$

- The support algebra B(X) is the full subcategory of A generated by the idempotents corresponding to the vertices of the support supp(X) = {i ∈ Q₀ | X(i) ≠ 0}.
- $m(X) = \min\{\dim_{\mathcal{K}} X(i) \mid i \in \operatorname{supp}(X)\}$
- An indecomposable module X from mod A is called directing if it does not lie on a cycle in mod A.

Lemma (de la Peña-Skowroński)

Let A be a tame algebra with only finitely many indecomposable sincere directing modules. Let X be an indecomposable sincere directing A-module, then $m(X) \le 2$.

Proposition (de la Peña-Skowroński)

Let A be any tame algebra. Assume X is a directing module with $m(X) \ge 3$. Then B(X) is a representation-infinite tilted algebra of Euclidean type and X is a postprojective or preinjective B(X)-module.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $\operatorname{Ext}^2_A(X,X) = 0$.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $\operatorname{Ext}^2_A(X,X) = 0$.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind $A, X \in \text{ind } A$

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $\operatorname{Ext}^2_A(X,X) = 0$.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind $A, X \in ind A$

• If $X \in \mathcal{P}_A$, then by Theorem M.-S. we get $pd_A X \leq 1$, and consequently $Ext_A^2(X, X) = 0$.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $\operatorname{Ext}^2_A(X,X) = 0$.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind $A, X \in ind A$

- If $X \in \mathcal{P}_A$, then by Theorem M.-S. we get $pd_A X \leq 1$, and consequently $Ext_A^2(X, X) = 0$.
- If $X \in \mathcal{Q}_A$, then $\mathrm{id}_A X \leq 1$, and $\mathrm{Ext}_A^2(X,X) = 0$.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $\operatorname{Ext}^2_A(X,X) = 0$.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind $A, X \in ind A$

- If $X \in \mathcal{P}_A$, then by Theorem M.-S. we get $pd_A X \leq 1$, and consequently $Ext_A^2(X, X) = 0$.
- If $X \in \mathcal{Q}_A$, then $\mathrm{id}_A X \leq 1$, and $\mathrm{Ext}_A^2(X,X) = 0$.
- Let $X \in \mathscr{C}_A$. Consider the projective cover $\pi : P(X) \to X$ of X in mod A. Then

$$0 o \operatorname{Ker} \pi o P(X) o X o 0$$
 $(\Omega(X) = \operatorname{Ker} \pi)$

 $\cdots \to \mathsf{Ext}^1_A(X,X) \to \mathsf{Ext}^1_A(P(X),X) \to \mathsf{Ext}^1_A(\Omega(X),X) \to \mathsf{Ext}^2_A(X,X) \\ \to \mathsf{Ext}^2_A(P(X),X) \to \cdots$

• $\operatorname{Ext}^2_A(X,X) \cong \operatorname{Ext}^1_A(\Omega(X),X)$

< ∃ >

- $\operatorname{Ext}^2_A(X,X) \cong \operatorname{Ext}^1_A(\Omega(X),X)$
- $\Omega(X) = X_1 \oplus X_2$, where X_1 is a projective module and $X_2 \in \operatorname{\mathsf{add}} \mathcal{P}_A$

- $\operatorname{Ext}^2_A(X,X) \cong \operatorname{Ext}^1_A(\Omega(X),X)$
- $\Omega(X) = X_1 \oplus X_2$, where X_1 is a projective module and $X_2 \in \operatorname{\mathsf{add}} \mathcal{P}_A$
- We have $\operatorname{Hom}_A(\mathcal{C}_A, \mathcal{P}_A) = 0$, because \mathcal{C}_A separates \mathcal{P}_A from \mathcal{Q}_A .

- $\operatorname{Ext}^2_A(X,X) \cong \operatorname{Ext}^1_A(\Omega(X),X)$
- $\Omega(X) = X_1 \oplus X_2$, where X_1 is a projective module and $X_2 \in \operatorname{\mathsf{add}} \mathcal{P}_A$
- We have $\operatorname{Hom}_{A}(\mathcal{C}_{A}, \mathcal{P}_{A}) = 0$, because \mathcal{C}_{A} separates \mathcal{P}_{A} from \mathcal{Q}_{A} .
- Finally, by the Auslander-Reiten formula, we obtain

 $\operatorname{Ext}^1_A(\Omega(X),X) \cong D\overline{\operatorname{Hom}}_A(X,\tau_A\Omega(X)) \cong D\overline{\operatorname{Hom}}_A(X,\tau_AX_2) = 0.$

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\dim X) \in \{0,1\}$. Then A is tame.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\dim X) \in \{0, 1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

• Assume that A is not tame.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\dim X) \in \{0, 1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A_l and A_r is wild.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\dim X) \in \{0, 1\}$. Then A is tame.

Sketch of the proof:

 $\mathsf{ind}\, A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A - \mathsf{induced} \text{ decomposition of ind } A$

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A₁ and A_r is wild.
- We know that A is a triangular algebra, so the Tits form q_A and the Euler form χ_A are well defined.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\dim X) \in \{0, 1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A₁ and A_r is wild.
- We know that A is a triangular algebra, so the Tits form q_A and the Euler form χ_A are well defined.
- Because any quasitilted algebra Λ is of global dimension at most two, applying result of Bongartz, we deduce that q_{Λ} and χ_{Λ} coincide.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\dim X) \in \{0, 1\}$. Then A is tame.

Sketch of the proof:

 $\mathsf{ind}\, A = \mathcal{P}_A \cup \mathscr{C}_A \cup \mathcal{Q}_A - \mathsf{induced} \text{ decomposition of } \mathsf{ind}\, A$

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A₁ and A_r is wild.
- We know that A is a triangular algebra, so the Tits form q_A and the Euler form χ_A are well defined.
- Because any quasitilted algebra Λ is of global dimension at most two, applying result of Bongartz, we deduce that q_{Λ} and χ_{Λ} coincide.
- Therefore, for every Λ -module Y we have the equality

 $q_{\Lambda}(\operatorname{\mathsf{dim}} Y) = \dim_{\mathcal{K}} \operatorname{End}_{\Lambda}(Y) - \dim_{\mathcal{K}} \operatorname{Ext}^{1}_{\Lambda}(Y,Y) + \dim_{\mathcal{K}} \operatorname{Ext}^{2}_{\Lambda}(Y,Y).$

 Applying the results of Lenzing-Meltzer and Lenzing-Skowroński about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra B = A/ann_A(Γ) is a wild tilted algebra.

- Applying the results of Lenzing-Meltzer and Lenzing-Skowroński about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra B = A/ann_A(Γ) is a wild tilted algebra.
- Then by results of Kerner, we get that there is an indecomposable *B*-module X such that $\dim_K \operatorname{Ext}^1_B(X, X) > \dim_K \operatorname{End}_B(X)$.

- Applying the results of Lenzing-Meltzer and Lenzing-Skowroński about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra B = A/ann_A(Γ) is a wild tilted algebra.
- Then by results of Kerner, we get that there is an indecomposable *B*-module X such that $\dim_K \operatorname{Ext}^1_B(X, X) > \dim_K \operatorname{End}_B(X)$.
- Moreover, $\operatorname{End}_B(X) = \operatorname{End}_A(X)$ and $\dim_K \operatorname{Ext}^1_A(X, X) \ge \dim_K \operatorname{Ext}^1_B(X, X)$.

- Applying the results of Lenzing-Meltzer and Lenzing-Skowroński about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra B = A/ann_A(Γ) is a wild tilted algebra.
- Then by results of Kerner, we get that there is an indecomposable *B*-module X such that $\dim_K \operatorname{Ext}^1_B(X, X) > \dim_K \operatorname{End}_B(X)$.
- Moreover, $\operatorname{End}_B(X) = \operatorname{End}_A(X)$ and $\dim_K \operatorname{Ext}^1_A(X, X) \ge \dim_K \operatorname{Ext}^1_B(X, X)$.

Finally,

$$q_A(\dim X) = \dim_K \operatorname{End}_A(X) - \dim_K \operatorname{Ext}^1_A(X,X) < 0,$$

because by the above Lemma $\operatorname{Ext}^2_{\mathcal{A}}(X,X)=0$ for any $X\in\operatorname{ind}{\mathcal{A}}.$

Corollary

Let A be a wild algebra with a separating family of almost cyclic coherent components in Γ_A . Then there is an indecomposable A-module X such that $q_A(\dim X) < 0$.

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

A is tame.

- A is tame.
- Provestigation Provide the support of the support algebra B(X) is a tame concealed or a tubular algebra. Moreover, B(X) is convex in A.

- A is tame.
- For every X ∈ ind A with q_A(dim X) ≤ 0, the support algebra B(X) is a tame concealed or a tubular algebra. Moreover, B(X) is convex in A.
- So For every X ∈ ind A with m(X) ≥ 3, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.

- A is tame.
- For every X ∈ ind A with q_A(dim X) ≤ 0, the support algebra B(X) is a tame concealed or a tubular algebra. Moreover, B(X) is convex in A.
- So For every X ∈ ind A with m(X) ≥ 3, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- For every X ∈ ind A with m(X) ≥ 3 and q_A(dim X) = 1, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

- A is tame.
- For every X ∈ ind A with q_A(dim X) ≤ 0, the support algebra B(X) is a tame concealed or a tubular algebra. Moreover, B(X) is convex in A.
- So For every X ∈ ind A with m(X) ≥ 3, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- For every X ∈ ind A with m(X) ≥ 3 and q_A(dim X) = 1, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.

So For every $X \in \text{ind } A$ with $m(X) \ge 2$, we have $q_A(\dim X) \in \{0, 1\}$.

- A is tame.
- For every X ∈ ind A with q_A(dim X) ≤ 0, the support algebra B(X) is a tame concealed or a tubular algebra. Moreover, B(X) is convex in A.
- So For every X ∈ ind A with m(X) ≥ 3, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- For every X ∈ ind A with m(X) ≥ 3 and q_A(dim X) = 1, the support algebra B(X) is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- So For every $X \in \text{ind } A$ with $m(X) \ge 2$, we have $q_A(\dim X) \in \{0, 1\}$.
- The form q_A is weakly nonnegative and for every $X \in \text{ind } A$ with $q_A(\dim X) \ge 2$, we have m(X) = 1.