Characterizations of tame algebras with separating families of almost cyclic coherent components

Piotr Malicki

Nicolaus Copernicus University, Toruń, Poland

International Conference on Representations of Algebras

August 2024, Shanghai

つひひ

 \bullet A – basic, finite dimensional K-algebra (over a fixed algebraically closed field K)

4 D F

 \rightarrow \rightarrow 299

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- \bullet ind A full subcategory of mod A formed by all indecomposable modules

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- \bullet ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- \bullet ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

rad $_{A}^{\infty}=\bigcap_{i\geq1}$ rad $_{A}^{i}$ — infinite Jacobson radical of mod A

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- \bullet ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

rad $_{A}^{\infty}=\bigcap_{i\geq1}$ rad $_{A}^{i}$ — infinite Jacobson radical of mod A

rad $A^{\infty}_A=0 \stackrel{\text{Auslander}}{\Longleftrightarrow} A$ is of finite representation type

- \bullet A basic, finite dimensional K-algebra (over a fixed algebraically closed field K)
- \bullet A \cong KQ_A/I, where $Q_A = (Q_0, Q_1)$ is the ordinary quiver of A and I is an admissible ideal in the path algebra KQ_A of Q_A
- mod A category of finite dimensional right A-modules
- \bullet ind A full subcategory of mod A formed by all indecomposable modules
- rad_A Jacobson radical of mod A

(the ideal of mod A generated by all irreducible homomorphisms between modules in ind A)

rad $_{A}^{\infty}=\bigcap_{i\geq1}$ rad $_{A}^{i}$ — infinite Jacobson radical of mod A

rad $A^{\infty}_A=0 \stackrel{\text{Auslander}}{\Longleftrightarrow} A$ is of finite representation type

 A is of infinite representation type $=$ $\frac{\textsf{\tiny Coelho-Marcos-Merklen-Skowroński}}{\textsf{\tiny McWronski}}}$ $(\textsf{rad}_A^{\infty})^2 \neq 0$

• Γ_A – Auslander-Reiten quiver of A;

イロト イ押 トイヨト イヨ

 299

- \bullet Γ_A Auslander-Reiten quiver of A;
- \bullet τ_A Auslander-Reiten translation;

 298

Biskop

æ

4 D F

- \bullet Γ_A Auslander-Reiten quiver of A;
- \bullet τ_A Auslander-Reiten translation;
- $Γ$ connected component of $Γ$ _A;

 \leftarrow

 QQ

- Γ_A Auslander-Reiten quiver of A;
- \bullet τ_A Auslander-Reiten translation;
- $Γ$ connected component of $Γ$ _A;
- Γ is generalized standard if rad $_{A}^{\infty}(X,Y)=0$ for all modules X and Y from Γ.

 200

- Γ_A Auslander-Reiten quiver of A;
- \bullet τ_A Auslander-Reiten translation;
- Γ connected component of Γ_{A} ;
- Γ is generalized standard if rad $_{A}^{\infty}(X,Y)=0$ for all modules X and Y from Γ.

Remark (Skowroński)

Let A be an algebra. Then every generalized standard component Γ of Γ_A is almost periodic (all but finitely many τ_A -orbits in Γ are periodic).

 200

- Γ_A Auslander-Reiten quiver of A;
- \bullet τ_A Auslander-Reiten translation;
- Γ connected component of Γ_{A} ;
- Γ is generalized standard if rad $_{A}^{\infty}(X,Y)=0$ for all modules X and Y from Γ.

Remark (Skowroński)

Let A be an algebra. Then every generalized standard component Γ of Γ_A is almost periodic (all but finitely many τ_A -orbits in Γ are periodic).

Examples

Postprojective components, preinjective components, connecting components of tilted algebras, tubes over tame tilted, tubular and canonical algebras.

 QQ

 $\mathcal{C} = (\mathcal{C}_i)_{i \in I}$ – family of connected components of Γ_A

4 D F

 QQ

- $\mathcal{C} = (\mathcal{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$

- $\mathcal{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$
- $\mathscr{C}=(\mathscr{C}_{i})_{i\in I}$ is said to be separating if the components in $\mathsf{\Gamma}_A$ split into three disjoint classes \mathcal{P}_A , $\mathcal{C}_A = \mathcal{C}$ and \mathcal{Q}_A such that:

- $\mathcal{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$
- $\mathscr{C}=(\mathscr{C}_{i})_{i\in I}$ is said to be separating if the components in $\mathsf{\Gamma}_A$ split into three disjoint classes \mathcal{P}_A , $\mathcal{C}_A = \mathcal{C}$ and \mathcal{Q}_A such that:

 \bigcirc \mathscr{C}_A is a sincere family of pairwise orthogonal gen. stand. comp.;

- $\mathcal{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$
- $\mathscr{C}=(\mathscr{C}_{i})_{i\in I}$ is said to be separating if the components in $\mathsf{\Gamma}_A$ split into three disjoint classes \mathcal{P}_A , $\mathcal{C}_A = \mathcal{C}$ and \mathcal{Q}_A such that:
	- \bigcirc \mathscr{C}_A is a sincere family of pairwise orthogonal gen. stand. comp.;
	- **2** Hom_A $(Q_A, P_A) = 0$, Hom_A $(Q_A, \mathcal{C}_A) = 0$, Hom_A $(\mathcal{C}_A, P_A) = 0$;

- $\mathcal{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$
- $\mathscr{C}=(\mathscr{C}_{i})_{i\in I}$ is said to be separating if the components in $\mathsf{\Gamma}_A$ split into three disjoint classes \mathcal{P}_A , $\mathcal{C}_A = \mathcal{C}$ and \mathcal{Q}_A such that:
	- \bigcirc \mathscr{C}_A is a sincere family of pairwise orthogonal gen. stand. comp.;
	- **2** Hom_A $(Q_A, P_A) = 0$, Hom_A $(Q_A, \mathcal{C}_A) = 0$, Hom_A $(\mathcal{C}_A, P_A) = 0$;
	- 3 any morphism from P_A to Q_A in mod A factors through add(\mathcal{C}_A).

- $\mathcal{C} = (\mathcal{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$
- $\mathscr{C}=(\mathscr{C}_{i})_{i\in I}$ is said to be separating if the components in $\mathsf{\Gamma}_A$ split into three disjoint classes P_A , $\mathscr{C}_A = \mathscr{C}$ and \mathcal{Q}_A such that:
	- \bigcirc \mathscr{C}_A is a sincere family of pairwise orthogonal gen. stand. comp.;
	- **2** Hom_A $(Q_A, P_A) = 0$, Hom_A $(Q_A, \mathcal{C}_A) = 0$, Hom_A $(\mathcal{C}_A, P_A) = 0$;
	- 3 any morphism from P_A to Q_A in mod A factors through add(\mathcal{C}_A).

Then we write: ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$ (\mathcal{C}_A separates \mathcal{P}_A from \mathcal{Q}_A).

- $\mathcal{C} = (\mathscr{C}_i)_{i \in I}$ family of connected components of Γ_A
- \bullet $\mathscr C$ is sincere if every simple module in mod A occurs as a composition factor of a module in $\mathscr C$
- $\mathscr{C}=(\mathscr{C}_{i})_{i\in I}$ is said to be separating if the components in $\mathsf{\Gamma}_A$ split into three disjoint classes P_A , $\mathscr{C}_A = \mathscr{C}$ and \mathcal{Q}_A such that:
	- \bigcirc \mathscr{C}_A is a sincere family of pairwise orthogonal gen. stand. comp.;
	- **2** Hom_A $(Q_A, P_A) = 0$, Hom_A $(Q_A, \mathcal{C}_A) = 0$, Hom_A $(\mathcal{C}_A, P_A) = 0$;
	- 3 any morphism from P_A to Q_A in mod A factors through add(\mathcal{C}_A).

Then we write: ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$ (\mathcal{C}_A separates \mathcal{P}_A from \mathcal{Q}_A).

 P_A and Q_A are uniquely determined by \mathscr{C}_A

Almost cyclic and coherent components

A – algebra, Γ – component of Γ_A

 \Box

 298

Almost cyclic and coherent components

- A algebra, Γ component of Γ_A
	- Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ

Almost cyclic and coherent components

- A algebra, Γ component of Γ_A
	- Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
	- Γ is coherent if the following two conditions are satisfied:

- A algebra, Γ component of Γ_A
	- Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
	- Γ is coherent if the following two conditions are satisfied:
		- \bullet For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2}$ for any $i > 1$)

- A algebra, Γ component of Γ_A
	- Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
	- Γ is coherent if the following two conditions are satisfied:
		- \bullet For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2}$ for any $i \geq 1$) ² For each injective module I in Γ there is an infinite sectional path

$$
\cdots \rightarrow Y_{j+2} \rightarrow Y_{j+1} \rightarrow Y_j \rightarrow \cdots \rightarrow Y_2 \rightarrow Y_1 = I \text{ in } \Gamma
$$

$$
(Y_{j+2} \neq \tau_A Y_j \text{ for any } j \ge 1)
$$

- A algebra, Γ component of Γ^A
	- Γ is almost cyclic if all but finitely many modules in Γ lie on oriented cycles contained entirely in Γ
	- Γ is coherent if the following two conditions are satisfied:
		- \bullet For each projective module P in Γ there is an infinite sectional path $P = X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_i \rightarrow X_{i+1} \rightarrow X_{i+2} \rightarrow \cdots$ in Γ $(X_i \neq \tau_A X_{i+2}$ for any $i \geq 1$) ² For each injective module I in Γ there is an infinite sectional path $\cdots \rightarrow Y_{i+2} \rightarrow Y_{i+1} \rightarrow Y_i \rightarrow \cdots \rightarrow Y_2 \rightarrow Y_1 = I$ in Γ $(Y_{i+2} \neq \tau_A Y_i$ for any $i > 1$)

Note that the stable tubes, ray tubes and coray tubes of Γ_A are special types of coherent almost cyclic components.

 200

Theorem (M.–Skowroński)

Theorem (M.–Skowroński)

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A , and ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$. Then

 \bullet gl dim $A \leq 3$.

Theorem (M.–Skowroński)

- \bullet gl dim $A \leq 3$.
- **2** $\text{pd}_A X \leq 1$ for any module X in \mathcal{P}_A .

Theorem (M.–Skowroński)

- \bullet gl dim $A \leq 3$.
- 2 $\text{pd}_A X \leq 1$ for any module X in \mathcal{P}_A .
- \bullet id_AX < 1 for any module X in \mathcal{Q}_A .

Theorem (M.–Skowroński)

- \bullet gl dim $A \leq 3$.
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .
- \bullet id_AX < 1 for any module X in \mathcal{Q}_A .
- \bullet pd_AX < 2 and id_AX < 2 for any module X in \mathcal{C}_{A} .

Theorem (M.–Skowroński)

- \bullet gl dim $A \leq 3$.
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .
- \bullet id_AX < 1 for any module X in \mathcal{Q}_A .
- Θ pd_AX \leq 2 and id_AX \leq 2 for any module X in \mathcal{C}_A .
- \bullet There is a unique quotient algebra A_i of A which is a quasitilted algebra of canonical type having a separating family $\mathcal{T}_{\mathsf{A}_l}$ of coray tubes such that ind $A_{l} = \mathcal{P}_{A_{l}} \cup \mathcal{T}_{A_{l}} \cup \mathcal{Q}_{A_{l}}, \ \mathcal{P}_{A_{l}} = \mathcal{P}_{A}$.

Theorem (M.–Skowroński)

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A , and ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$. Then

- \bullet gl dim $A \leq 3$.
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .

 \bullet id_AX < 1 for any module X in \mathcal{Q}_A .

 Θ pd_AX \leq 2 and id_AX \leq 2 for any module X in \mathcal{C}_A .

- \bullet There is a unique quotient algebra A_i of A which is a quasitilted algebra of canonical type having a separating family $\mathcal{T}_{\mathsf{A}_l}$ of coray tubes such that ind $A_{l} = \mathcal{P}_{A_{l}} \cup \mathcal{T}_{A_{l}} \cup \mathcal{Q}_{A_{l}}, \ \mathcal{P}_{A_{l}} = \mathcal{P}_{A}$.
- \bullet There is a unique quotient algebra A_r of A which is a quasitilted algebra of canonical type having a separating family $\mathcal{T}_{\mathsf{A}_r}$ of ray tubes such that ind $A_r = \mathcal{P}_{A_r} \cup \mathcal{T}_{A_r} \cup \mathcal{Q}_{A_r}, \ \mathcal{Q}_{A_r} = \mathcal{Q}_{A}$.
Separating family of almost cyclic coherent components

Theorem (M.–Skowroński)

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A , and ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$. Then

- \bullet gl dim $A \leq 3$.
- 2 $pd_A X \leq 1$ for any module X in \mathcal{P}_A .

 \bullet id_AX < 1 for any module X in \mathcal{Q}_A .

 Θ pd_AX \leq 2 and id_AX \leq 2 for any module X in \mathcal{C}_A .

- \bullet There is a unique quotient algebra A_i of A which is a quasitilted algebra of canonical type having a separating family $\mathcal{T}_{\mathsf{A}_l}$ of coray tubes such that ind $A_{l} = \mathcal{P}_{A_{l}} \cup \mathcal{T}_{A_{l}} \cup \mathcal{Q}_{A_{l}}, \ \mathcal{P}_{A_{l}} = \mathcal{P}_{A}$.
- \bullet There is a unique quotient algebra A_r of A which is a quasitilted algebra of canonical type having a separating family $\mathcal{T}_{\mathsf{A}_r}$ of ray tubes such that ind $A_r = \mathcal{P}_{A_r} \cup \mathcal{T}_{A_r} \cup \mathcal{Q}_{A_r}, \ \mathcal{Q}_{A_r} = \mathcal{Q}_{A}$.
- \bullet A is tame if and only if A_1 and A_r are tame.

 $A = KQ_A/I$ – triangular algebra with $Q_A = (Q_0, Q_1)$ $(Q_A$ has no oriented cycles), I – admissible ideal in KQ_A

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ $(Q_A$ has no oriented cycles), I – admissible ideal in KQ_A
- \bullet R minimal set of relations generating the ideal I

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ $(Q_A$ has no oriented cycles), I – admissible ideal in KQ_A
- \bullet R minimal set of relations generating the ideal I
- R decomposes into the disjoint union $\bigcup_{i,j\in Q_0} R_{i,j}$, where $R_{i,j}$ denotes the set of the elements starting at the vertex i and ending at *i*

つひひ

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ $(Q_A$ has no oriented cycles), I – admissible ideal in KQ_A
- \bullet R minimal set of relations generating the ideal I
- R decomposes into the disjoint union $\bigcup_{i,j\in Q_0} R_{i,j}$, where $R_{i,j}$ denotes the set of the elements starting at the vertex i and ending at $$
- $r_{i,j} := |R_{i,j}|$

つひひ

- $A = KQ_A/I$ triangular algebra with $Q_A = (Q_0, Q_1)$ $(Q_A$ has no oriented cycles), I – admissible ideal in KQ_A
- \bullet R minimal set of relations generating the ideal I
- R decomposes into the disjoint union $\bigcup_{i,j\in Q_0} R_{i,j}$, where $R_{i,j}$ denotes the set of the elements starting at the vertex i and ending at $$
- $r_{i,j} := |R_{i,j}|$

Remark (Bongartz)

Although R is not uniquely determined by I, the numbers $r_{i,j}$ do not depend on the set R.

Tits quadratic form

Tits quadratic form of A is the integer quadratic form $q_A : \mathbb{Z}^n \to \mathbb{Z}$, $n = |Q_0|$ defined for $x = (x_i) \in \mathbb{Z}^n$ by the formula

$$
q_A(x) = \sum_{i \in Q_0} x_i^2 - \sum_{(i \to j) \in Q_1} x_i x_j + \sum_{i,j \in Q_0} r_{i,j} x_i x_j
$$

Tits quadratic form of A is the integer quadratic form $q_A : \mathbb{Z}^n \to \mathbb{Z}$, $n = |Q_0|$ defined for $x = (x_i) \in \mathbb{Z}^n$ by the formula

$$
q_A(x) = \sum_{i \in Q_0} x_i^2 - \sum_{(i \to j) \in Q_1} x_i x_j + \sum_{i,j \in Q_0} r_{i,j} x_i x_j
$$

A is of finite representation type $\stackrel{\textnormal{\tiny{Bongartz}}}{=\!\!\!=} q_A$ is weakly positive $(q_A(x) > 0$ for all non-zero vectors x with all coordinates nonnegative)

 200

Tits quadratic form of A is the integer quadratic form $q_A : \mathbb{Z}^n \to \mathbb{Z}$, $n = |Q_0|$ defined for $x = (x_i) \in \mathbb{Z}^n$ by the formula

$$
q_A(x) = \sum_{i \in Q_0} x_i^2 - \sum_{(i \to j) \in Q_1} x_i x_j + \sum_{i,j \in Q_0} r_{i,j} x_i x_j
$$

A is of finite representation type $\stackrel{\textnormal{\tiny{Bongartz}}}{=\!\!\!=} q_A$ is weakly positive $(q_A(x) > 0$ for all non-zero vectors x with all coordinates nonnegative)

A is tame $\frac{d}{dx}$ de la Peña q_A is weakly nonnegative $(q_A(x) > 0$ for all vectors x with all coordinates nonnegative)

• The support algebra $B(X)$ is the full subcategory of A generated by the idempotents corresponding to the vertices of the support $supp(X) = \{i \in Q_0 \mid X(i) \neq 0\}.$

• The support algebra $B(X)$ is the full subcategory of A generated by the idempotents corresponding to the vertices of the support $supp(X) = \{i \in Q_0 \mid X(i) \neq 0\}.$

$$
\bullet \ \ m(X) = \min\{\dim_K X(i) \mid i \in \mathrm{supp}(X)\}\
$$

- The support algebra $B(X)$ is the full subcategory of A generated by the idempotents corresponding to the vertices of the support $supp(X) = \{i \in Q_0 \mid X(i) \neq 0\}.$
- $m(X) = min\{dim_K X(i) \mid i \in supp(X)\}\$
- An indecomposable module X from mod A is called directing if it does not lie on a cycle in mod A.

- The support algebra $B(X)$ is the full subcategory of A generated by the idempotents corresponding to the vertices of the support $supp(X) = \{i \in Q_0 \mid X(i) \neq 0\}.$
- $m(X) = min\{dim_K X(i) \mid i \in supp(X)\}$
- An indecomposable module X from mod A is called directing if it does not lie on a cycle in mod A.

Lemma (de la Peña–Skowroński)

Let A be a tame algebra with only finitely many indecomposable sincere directing modules. Let X be an indecomposable sincere directing A-module, then $m(X) \leq 2$.

- The support algebra $B(X)$ is the full subcategory of A generated by the idempotents corresponding to the vertices of the support $supp(X) = \{i \in Q_0 \mid X(i) \neq 0\}.$
- $m(X) = min\{dim_K X(i) \mid i \in supp(X)\}$
- An indecomposable module X from mod A is called directing if it does not lie on a cycle in mod A.

Lemma (de la Peña–Skowroński)

Let A be a tame algebra with only finitely many indecomposable sincere directing modules. Let X be an indecomposable sincere directing A-module, then $m(X) \leq 2$.

Proposition (de la Peña–Skowroński)

Let A be any tame algebra. Assume X is a directing module with $m(X) \geq 3$. Then $B(X)$ is a representation-infinite tilted algebra of Euclidean type and X is a postprojective or preinjective $B(X)$ -module.

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $Ext^2_A(X,X) = 0.$

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $Ext^2_A(X,X) = 0.$

Sketch of the proof:

ind $A = P_A \cup C_A \cup Q_A$ – induced decomposition of ind A, $X \in \text{ind } A$

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $Ext^2_A(X,X) = 0.$

Sketch of the proof:

ind $A = P_A \cup C_A \cup Q_A$ – induced decomposition of ind A, $X \in \text{ind } A$

• If $X \in \mathcal{P}_A$, then by Theorem M.-S. we get $\text{pd}_A X \leq 1$, and consequently $\mathsf{Ext}^2_A(X,X) = 0$.

つへへ

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $Ext^2_A(X,X) = 0.$

Sketch of the proof:

ind $A = P_A \cup C_A \cup Q_A$ – induced decomposition of ind A, $X \in \text{ind } A$

- If $X \in \mathcal{P}_A$, then by Theorem M.-S. we get $\text{pd}_A X \leq 1$, and consequently $\mathsf{Ext}^2_A(X,X) = 0$.
- If $X \in \mathcal{Q}_A$, then $\mathrm{id}_A X \leq 1$, and $\mathsf{Ext}^2_A(X,X) = 0$.

つへへ

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A and X be an indecomposable module in mod A. Then $Ext^2_A(X,X) = 0.$

Sketch of the proof:

ind $A = P_A \cup C_A \cup Q_A$ – induced decomposition of ind A, $X \in \text{ind } A$

- If $X \in \mathcal{P}_A$, then by Theorem M.-S. we get $\text{pd}_A X \leq 1$, and consequently $\mathsf{Ext}^2_A(X,X) = 0$.
- If $X \in \mathcal{Q}_A$, then $\mathrm{id}_A X \leq 1$, and $\mathsf{Ext}^2_A(X,X) = 0$.
- Let $X \in \mathcal{C}_A$. Consider the projective cover $\pi : P(X) \to X$ of X in mod A. Then

$$
0 \to \text{Ker } \pi \to P(X) \to X \to 0 \quad (\Omega(X) = \text{Ker } \pi)
$$

 $\cdots \rightarrow \textup{Ext}^1_{A}(X,X) \rightarrow \textup{Ext}^1_{A}(P(X),X) \rightarrow \textup{Ext}^1_{A}(\Omega(X),X) \rightarrow \textup{Ext}^2_{A}(X,X)$ \rightarrow Ext_A $(P(X), X) \rightarrow \cdots$

 200

K 御 ▶ K 君 ▶ K 君

$\mathsf{Ext}^2_A(X,X) \cong \mathsf{Ext}^1_A(\Omega(X),X)$

4 D F

E K

 299

- $\mathsf{Ext}^2_A(X,X) \cong \mathsf{Ext}^1_A(\Omega(X),X)$
- $\bullet \Omega(X) = X_1 \oplus X_2$, where X_1 is a projective module and $X_2 \in \mathsf{add}\,\mathcal{P}_A$

- $\mathsf{Ext}^2_A(X,X) \cong \mathsf{Ext}^1_A(\Omega(X),X)$
- $\bullet \Omega(X) = X_1 \oplus X_2$, where X_1 is a projective module and $X_2 \in \mathsf{add}\,\mathcal{P}_A$
- We have $Hom_A(\mathcal{C}_A,\mathcal{P}_A)=0$, because \mathcal{C}_A separates \mathcal{P}_A from \mathcal{Q}_A .

- $\mathsf{Ext}^2_A(X,X) \cong \mathsf{Ext}^1_A(\Omega(X),X)$
- $\bullet \Omega(X) = X_1 \oplus X_2$, where X_1 is a projective module and $X_2 \in \mathsf{add}\,\mathcal{P}_A$
- We have $Hom_A(\mathcal{C}_A,\mathcal{P}_A)=0$, because \mathcal{C}_A separates \mathcal{P}_A from \mathcal{Q}_A .
- **•** Finally, by the Auslander-Reiten formula, we obtain

 $\operatorname{\mathsf{Ext}}^1_A(\Omega(X),X)\cong D\overline{\operatorname{Hom}}_{\mathcal{A}}(X,\tau_A\Omega(X))\cong D\overline{\operatorname{Hom}}_{\mathcal{A}}(X,\tau_A X_2)=0.$

 200

Let A be an algebra with a separating family \mathcal{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\text{dim } X) \in \{0,1\}$. Then A is tame.

つひひ

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\text{dim } X) \in \{0,1\}$. Then A is tame.

Sketch of the proof:

ind $A = P_A \cup C_A \cup Q_A$ – induced decomposition of ind A

• Assume that A is not tame.

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\text{dim } X) \in \{0,1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A_l and A_r is wild.

つひひ

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\text{dim } X) \in \{0,1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A_l and A_r is wild.
- \bullet We know that A is a triangular algebra, so the Tits form q_A and the Euler form χ_A are well defined.

つひひ

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\text{dim } X) \in \{0,1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A_l and A_r is wild.
- \bullet We know that A is a triangular algebra, so the Tits form q_A and the Euler form χ_A are well defined.
- \bullet Because any quasitilted algebra Λ is of global dimension at most two, applying result of Bongartz, we deduce that q_{Λ} and χ_{Λ} coincide.

つへへ

Let A be an algebra with a separating family \mathscr{C}_A of almost cyclic coherent components in Γ_A . Assume that for every indecomposable A-module X we have $q_A(\text{dim } X) \in \{0,1\}$. Then A is tame.

Sketch of the proof:

ind $A = \mathcal{P}_A \cup \mathcal{C}_A \cup \mathcal{Q}_A$ – induced decomposition of ind A

- Assume that A is not tame.
- Then, by Theorem M.-S. one of the quasitilted algebras A_l and A_r is wild.
- \bullet We know that A is a triangular algebra, so the Tits form q_A and the Euler form χ_A are well defined.
- \bullet Because any quasitilted algebra Λ is of global dimension at most two, applying result of Bongartz, we deduce that q_{Λ} and χ_{Λ} coincide.
- Therefore, for every Λ-module Y we have the equality

 $q_\Lambda(\text{dim } Y) = \dim_K \text{End}_\Lambda(Y) - \dim_K \text{Ext}^1_\Lambda(Y, Y) + \dim_K \text{Ext}^2_\Lambda(Y, Y).$

 QQ

• Applying the results of Lenzing-Meltzer and Lenzing-Skowronski about the structure of module categories of quasitilted algebras of wild canonical type, we conclude $Γ_A$ admits a component $Γ$ which is postprojective or preinjective and the quotient algebra $B = A/\text{ann}_A(\Gamma)$ is a wild tilted algebra.

- Applying the results of Lenzing-Meltzer and Lenzing-Skowronski about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra $B = A/\text{ann}_A(\Gamma)$ is a wild tilted algebra.
- Then by results of Kerner, we get that there is an indecomposable B-module X such that dim_K $\mathsf{Ext}^1_B(X,X) > \dim_K \mathsf{End}_B(X)$.

- Applying the results of Lenzing-Meltzer and Lenzing-Skowronski about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra $B = A/\text{ann}_A(\Gamma)$ is a wild tilted algebra.
- Then by results of Kerner, we get that there is an indecomposable B-module X such that dim_K $\mathsf{Ext}^1_B(X,X) > \dim_K \mathsf{End}_B(X)$.
- Moreover, $\text{End}_B(X) = \text{End}_A(X)$ and $\dim_K \text{Ext}^1_A(X,X) \ge \dim_K \text{Ext}^1_B(X,X).$

- Applying the results of Lenzing-Meltzer and Lenzing-Skowronski about the structure of module categories of quasitilted algebras of wild canonical type, we conclude Γ_A admits a component Γ which is postprojective or preinjective and the quotient algebra $B = A/\text{ann}_A(\Gamma)$ is a wild tilted algebra.
- Then by results of Kerner, we get that there is an indecomposable B-module X such that dim_K $\mathsf{Ext}^1_B(X,X) > \dim_K \mathsf{End}_B(X)$.
- Moreover, $\text{End}_B(X) = \text{End}_A(X)$ and $\dim_K \text{Ext}^1_A(X,X) \ge \dim_K \text{Ext}^1_B(X,X).$

• Finally,

$$
q_A(\dim X) = \dim_K \operatorname{End}_A(X) - \dim_K \operatorname{Ext}^1_A(X,X) < 0,
$$

because by the above Lemma $\mathsf{Ext}^2_A(X,X) = 0$ for any $X \in \mathsf{ind}\, A.$

Corollary

Let A be a wild algebra with a separating family of almost cyclic coherent components in Γ_A . Then there is an indecomposable A-module X such that $q_A(\text{dim } X) < 0$.

Main Theorem

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

 \bullet A is tame.

∢ ⊡

 299

Main Theorem

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

- \bullet A is tame.
- **●** For every $X \in \text{ind } A$ with $q_A(\text{dim } X) \leq 0$, the support algebra $B(X)$ is a tame concealed or a tubular algebra. Moreover, $B(X)$ is convex in \mathcal{A}_{\cdot}
Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

- \bullet A is tame.
- **2** For every $X \in \text{ind } A$ with $q_A(\text{dim } X) \leq 0$, the support algebra $B(X)$ is a tame concealed or a tubular algebra. Moreover, $B(X)$ is convex in A.
- **3** For every $X \in \text{ind } A$ with $m(X) \geq 3$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

- \bullet A is tame.
- **2** For every $X \in \text{ind } A$ with $q_A(\text{dim } X) \leq 0$, the support algebra $B(X)$ is a tame concealed or a tubular algebra. Moreover, $B(X)$ is convex in A.
- **3** For every $X \in \text{ind } A$ with $m(X) \geq 3$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- **4** For every $X \in \text{ind } A$ with $m(X) > 3$ and $q_A(\dim X) = 1$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

- \bullet A is tame.
- **2** For every $X \in \text{ind } A$ with $q_A(\text{dim } X) \leq 0$, the support algebra $B(X)$ is a tame concealed or a tubular algebra. Moreover, $B(X)$ is convex in A.
- **3** For every $X \in \text{ind } A$ with $m(X) \geq 3$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- **4** For every $X \in \text{ind } A$ with $m(X) > 3$ and $q_A(\text{dim } X) = 1$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- **5** For every $X \in \text{ind } A$ with $m(X) \geq 2$, we have $q_A(\text{dim } X) \in \{0,1\}$.

Let A be an algebra with a separating family of almost cyclic coherent components in Γ_A . The following statements are equivalent:

- \bullet A is tame.
- **2** For every $X \in \text{ind } A$ with $q_A(\dim X) \leq 0$, the support algebra $B(X)$ is a tame concealed or a tubular algebra. Moreover, $B(X)$ is convex in A.
- **3** For every $X \in \text{ind } A$ with $m(X) \geq 3$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- **4** For every $X \in \text{ind } A$ with $m(X) > 3$ and $q_A(\text{dim } X) = 1$, the support algebra $B(X)$ is either a representation-infinite tilted algebra of Euclidean type or a tubular algebra.
- **5** For every $X \in \text{ind } A$ with $m(X) \geq 2$, we have $q_A(\text{dim } X) \in \{0,1\}$.
- **•** The form q_A is weakly nonnegative and for every $X \in \text{ind } A$ with $q_A(\text{dim } X) \geq 2$, we have $m(X) = 1$.