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Preliminaries

A – basic, finite dimensional K -algebra
(over a fixed algebraically closed field K )

A ∼= KQA/I , where QA = (Q0,Q1) is the ordinary quiver of A and I is
an admissible ideal in the path algebra KQA of QA

modA – category of finite dimensional right A-modules

indA – full subcategory of modA formed by all indecomposable
modules

radA – Jacobson radical of modA
(the ideal of modA generated by all irreducible
homomorphisms between modules in indA)

rad∞A =
⋂

i≥1 radi
A – infinite Jacobson radical of modA

rad∞A = 0
Auslander⇐===⇒ A is of finite representation type

A is of infinite representation type
Coelho-Marcos-Merklen-Skowroński

===============⇒ (rad∞A )2 6= 0
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P. Malicki (Toruń) Characterizations of tame algebras with ... ICRA 21 2 / 15



Preliminaries

A – basic, finite dimensional K -algebra
(over a fixed algebraically closed field K )

A ∼= KQA/I , where QA = (Q0,Q1) is the ordinary quiver of A and I is
an admissible ideal in the path algebra KQA of QA

modA – category of finite dimensional right A-modules

indA – full subcategory of modA formed by all indecomposable
modules

radA – Jacobson radical of modA
(the ideal of modA generated by all irreducible
homomorphisms between modules in indA)

rad∞A =
⋂

i≥1 radi
A – infinite Jacobson radical of modA

rad∞A = 0
Auslander⇐===⇒ A is of finite representation type

A is of infinite representation type
Coelho-Marcos-Merklen-Skowroński
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Preliminaries

ΓA – Auslander-Reiten quiver of A;

τA – Auslander-Reiten translation;

Γ – connected component of ΓA;

Γ is generalized standard if rad∞A (X ,Y ) = 0 for all modules X and Y
from Γ.

Remark (Skowroński)

Let A be an algebra. Then every generalized standard component Γ of ΓA

is almost periodic (all but finitely many τA-orbits in Γ are periodic).

Examples

Postprojective components, preinjective components, connecting
components of tilted algebras, tubes over tame tilted, tubular and
canonical algebras.
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Separating family of components

C = (Ci )i∈I – family of connected components of ΓA

C is sincere if every simple module in modA occurs as a composition
factor of a module in C
C = (Ci )i∈I is said to be separating if the components in ΓA split
into three disjoint classes PA, CA = C and QA such that:

1 CA is a sincere family of pairwise orthogonal gen. stand. comp.;
2 HomA(QA,PA) = 0, HomA(QA,CA) = 0, HomA(CA,PA) = 0;
3 any morphism from PA to QA in modA factors through add(CA).

��vv ��vv

PA CA QA

��

ii

Then we write: indA = PA ∪ CA ∪QA (CA separates PA from QA).

PA and QA are uniquely determined by CA
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P. Malicki (Toruń) Characterizations of tame algebras with ... ICRA 21 4 / 15



Separating family of components

C = (Ci )i∈I – family of connected components of ΓA

C is sincere if every simple module in modA occurs as a composition
factor of a module in C
C = (Ci )i∈I is said to be separating if the components in ΓA split
into three disjoint classes PA, CA = C and QA such that:

1 CA is a sincere family of pairwise orthogonal gen. stand. comp.;

2 HomA(QA,PA) = 0, HomA(QA,CA) = 0, HomA(CA,PA) = 0;
3 any morphism from PA to QA in modA factors through add(CA).

��vv ��vv

PA CA QA

��

ii

Then we write: indA = PA ∪ CA ∪QA (CA separates PA from QA).

PA and QA are uniquely determined by CA
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P. Malicki (Toruń) Characterizations of tame algebras with ... ICRA 21 4 / 15



Separating family of components

C = (Ci )i∈I – family of connected components of ΓA

C is sincere if every simple module in modA occurs as a composition
factor of a module in C
C = (Ci )i∈I is said to be separating if the components in ΓA split
into three disjoint classes PA, CA = C and QA such that:

1 CA is a sincere family of pairwise orthogonal gen. stand. comp.;
2 HomA(QA,PA) = 0, HomA(QA,CA) = 0, HomA(CA,PA) = 0;
3 any morphism from PA to QA in modA factors through add(CA).

��vv ��vv

PA CA QA

��

ii

Then we write: indA = PA ∪ CA ∪QA (CA separates PA from QA).

PA and QA are uniquely determined by CA
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Almost cyclic and coherent components

A – algebra, Γ – component of ΓA

Γ is almost cyclic if all but finitely many modules in Γ lie on oriented
cycles contained entirely in Γ

Γ is coherent if the following two conditions are satisfied:

1 For each projective module P in Γ there is an infinite sectional path
P = X1 → X2 → · · · → Xi → Xi+1 → Xi+2 → · · · in Γ
(Xi 6= τAXi+2 for any i ≥ 1)

2 For each injective module I in Γ there is an infinite sectional path
· · · → Yj+2 → Yj+1 → Yj → · · · → Y2 → Y1 = I in Γ
(Yj+2 6= τAYj for any j ≥ 1)

Note that the stable tubes, ray tubes and coray tubes of ΓA are special
types of coherent almost cyclic components.
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P. Malicki (Toruń) Characterizations of tame algebras with ... ICRA 21 5 / 15



Separating family of almost cyclic coherent components

Theorem (M.–Skowroński)

Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA, and indA = PA ∪ CA ∪QA. Then

1 gl dimA ≤ 3.

2 pdAX ≤ 1 for any module X in PA.

3 idAX ≤ 1 for any module X in QA.

4 pdAX ≤ 2 and idAX ≤ 2 for any module X in CA.

5 There is a unique quotient algebra Al of A which is a quasitilted
algebra of canonical type having a separating family TAl

of coray
tubes such that indAl = PAl

∪ TAl
∪QAl

, PAl
= PA.

6 There is a unique quotient algebra Ar of A which is a quasitilted
algebra of canonical type having a separating family TAr of ray tubes
such that indAr = PAr ∪ TAr ∪QAr , QAr = QA.

7 A is tame if and only if Al and Ar are tame.
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∪ TAl
∪QAl

, PAl
= PA.

6 There is a unique quotient algebra Ar of A which is a quasitilted
algebra of canonical type having a separating family TAr of ray tubes
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Tits quadratic form

A = KQA/I – triangular algebra with QA = (Q0,Q1)
(QA has no oriented cycles), I – admissible ideal in KQA

R – minimal set of relations generating the ideal I

R decomposes into the disjoint union
⋃

i ,j∈Q0
Ri ,j ,

where Ri ,j denotes the set of the elements starting at the vertex i and
ending at j

ri ,j := |Ri ,j |

Remark (Bongartz)

Although R is not uniquely determined by I , the numbers ri ,j do not
depend on the set R.
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Tits quadratic form

Tits quadratic form of A is the integer quadratic form qA : Zn → Z,
n = |Q0| defined for x = (xi ) ∈ Zn by the formula

qA(x) =
∑
i∈Q0

x2
i −

∑
(i→j)∈Q1

xixj +
∑
i ,j∈Q0

ri ,jxixj

A is of finite representation type
Bongartz

=======⇒ qA is weakly positive
(qA(x) > 0 for all non-zero vectors x with all coordinates nonnegative)

A is tame
de la Peña

=======⇒ qA is weakly nonnegative
(qA(x) ≥ 0 for all vectors x with all coordinates nonnegative)
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A = KQA/I – algebra with QA = (Q0,Q1), I – admissible ideal in KQA

The support algebra B(X ) is the full subcategory of A generated by
the idempotents corresponding to the vertices of the support
supp(X ) = {i ∈ Q0 | X (i) 6= 0}.

m(X ) = min{dimK X (i) | i ∈ supp(X )}
An indecomposable module X from modA is called directing if it
does not lie on a cycle in modA.

Lemma (de la Peña–Skowroński)

Let A be a tame algebra with only finitely many indecomposable sincere
directing modules. Let X be an indecomposable sincere directing
A-module, then m(X ) ≤ 2.

Proposition (de la Peña–Skowroński)

Let A be any tame algebra. Assume X is a directing module with
m(X ) ≥ 3. Then B(X ) is a representation-infinite tilted algebra of
Euclidean type and X is a postprojective or preinjective B(X )-module.
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P. Malicki (Toruń) Characterizations of tame algebras with ... ICRA 21 9 / 15



A = KQA/I – algebra with QA = (Q0,Q1), I – admissible ideal in KQA

The support algebra B(X ) is the full subcategory of A generated by
the idempotents corresponding to the vertices of the support
supp(X ) = {i ∈ Q0 | X (i) 6= 0}.
m(X ) = min{dimK X (i) | i ∈ supp(X )}
An indecomposable module X from modA is called directing if it
does not lie on a cycle in modA.

Lemma (de la Peña–Skowroński)
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Lemma

Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA and X be an indecomposable module in modA. Then
Ext2

A(X ,X ) = 0.

Sketch of the proof:
indA = PA ∪ CA ∪QA – induced decomposition of indA, X ∈ indA

If X ∈ PA, then by Theorem M.-S. we get pdAX ≤ 1, and
consequently Ext2

A(X ,X ) = 0.

If X ∈ QA, then idAX ≤ 1, and Ext2
A(X ,X ) = 0.

Let X ∈ CA. Consider the projective cover π : P(X )→ X of X in
modA. Then

0→ Ker π → P(X )→ X → 0 (Ω(X ) = Ker π)

· · · → Ext1
A(X ,X )→ Ext1

A(P(X ),X )→ Ext1
A(Ω(X ),X )→ Ext2

A(X ,X )

→ Ext2
A(P(X ),X )→ · · ·
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P. Malicki (Toruń) Characterizations of tame algebras with ... ICRA 21 10 / 15



Lemma

Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA and X be an indecomposable module in modA. Then
Ext2

A(X ,X ) = 0.

Sketch of the proof:
indA = PA ∪ CA ∪QA – induced decomposition of indA, X ∈ indA

If X ∈ PA, then by Theorem M.-S. we get pdAX ≤ 1, and
consequently Ext2

A(X ,X ) = 0.

If X ∈ QA, then idAX ≤ 1, and Ext2
A(X ,X ) = 0.

Let X ∈ CA. Consider the projective cover π : P(X )→ X of X in
modA. Then

0→ Ker π → P(X )→ X → 0 (Ω(X ) = Ker π)

· · · → Ext1
A(X ,X )→ Ext1

A(P(X ),X )→ Ext1
A(Ω(X ),X )→ Ext2

A(X ,X )

→ Ext2
A(P(X ),X )→ · · ·
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Sketch of the proof:

Ext2
A(X ,X ) ∼= Ext1

A(Ω(X ),X )

Ω(X ) = X1 ⊕ X2, where X1 is a projective module and X2 ∈ addPA
We have HomA(CA,PA) = 0, because CA separates PA from QA.

Finally, by the Auslander-Reiten formula, we obtain

Ext1
A(Ω(X ),X ) ∼= DHomA(X , τAΩ(X )) ∼= DHomA(X , τAX2) = 0.
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Proposition

Let A be an algebra with a separating family CA of almost cyclic coherent
components in ΓA. Assume that for every indecomposable A-module X we
have qA(dimX ) ∈ {0, 1}. Then A is tame.

Sketch of the proof:
indA = PA ∪ CA ∪QA – induced decomposition of indA

Assume that A is not tame.

Then, by Theorem M.-S. one of the quasitilted algebras Al and Ar is
wild.

We know that A is a triangular algebra, so the Tits form qA and the
Euler form χA are well defined.

Because any quasitilted algebra Λ is of global dimension at most two,
applying result of Bongartz, we deduce that qΛ and χΛ coincide.

Therefore, for every Λ-module Y we have the equality

qΛ(dimY ) = dimK EndΛ(Y )− dimK Ext1
Λ(Y ,Y ) + dimK Ext2

Λ(Y ,Y ).
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Sketch of the proof:

Applying the results of Lenzing-Meltzer and Lenzing-Skowroński
about the structure of module categories of quasitilted algebras of
wild canonical type, we conclude ΓA admits a component Γ which is
postprojective or preinjective and the quotient algebra
B = A/ annA(Γ) is a wild tilted algebra.

Then by results of Kerner, we get that there is an indecomposable
B-module X such that dimK Ext1

B(X ,X ) > dimK EndB(X ).

Moreover, EndB(X ) = EndA(X ) and
dimK Ext1

A(X ,X ) ≥ dimK Ext1
B(X ,X ).

Finally,

qA(dimX ) = dimK EndA(X )− dimK Ext1
A(X ,X ) < 0,

because by the above Lemma Ext2
A(X ,X ) = 0 for any X ∈ indA.
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Corollary

Let A be a wild algebra with a separating family of almost cyclic coherent
components in ΓA. Then there is an indecomposable A-module X such
that qA(dimX ) < 0.
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Main Theorem

Let A be an algebra with a separating family of almost cyclic coherent
components in ΓA. The following statements are equivalent:

1 A is tame.

2 For every X ∈ indA with qA(dimX ) ≤ 0, the support algebra B(X )
is a tame concealed or a tubular algebra. Moreover, B(X ) is convex in
A.

3 For every X ∈ indA with m(X ) ≥ 3, the support algebra B(X ) is
either a representation-infinite tilted algebra of Euclidean type or a
tubular algebra.

4 For every X ∈ indA with m(X ) ≥ 3 and qA(dimX ) = 1, the support
algebra B(X ) is either a representation-infinite tilted algebra of
Euclidean type or a tubular algebra.

5 For every X ∈ indA with m(X ) ≥ 2, we have qA(dimX ) ∈ {0, 1}.
6 The form qA is weakly nonnegative and for every X ∈ indA with

qA(dimX ) ≥ 2, we have m(X ) = 1.
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