Main results

Sketch of proof

The maximality of weakly separated collections under boundary maps

Lujun Zhang

Zhejiang University

This is partially based on joint work with Fang Li and Gleb.A.Koshevoy.

August 9, 2024

Introduction

In 2019, Nick Early introduced a polyhedral subdivision of hypersimplex $\Delta_{k,n}$ by moving blades to its vertices. He proved that this subdivision is positroidial if and only if the vertices correspond to a weakly seperated collection.

Question: How to characterize this positroid subdivision? And how to characterize the flips of this subdivision as the maximal weakly spearated collection do cluster mutations?

Main results

Sketch of proof

Weakly Separated Collections

Nick Early's Construction

Main results

Sketch of proof

Nick Early's Construction

Main results 00 Sketch of proof

Weakly Separated Collections

Definition (Leclerc, Zelevinsky 1998)

Given $I, J \in {[n] \choose k}$. The subsets I, J are weakly separated if there does not exist four elements a, b, c, d with $a, c \in I \setminus J$ and $b, d \in J \setminus I$ have

a < b < c < d

or its cyclic rotations. Subsets $\{J_1, J_2, \dots, J_m\}$ are pairwise weakly separated, then $W = \{J_1, J_2, \dots, J_m\}$ is called a weakly separated collection.

Nick Early's Construction

Main results 00 Sketch of proof

Weakly Separated Collections

Definition (Mutations)

A **mutation**(flip) of a maximal weakly separated collection is a replacement

$$W \longleftrightarrow (W \setminus \{Lac\} \cup \{Lbd\})$$

where W is a maximal weakly separated collection in $\binom{[n]}{k}$ and $\{Lab, Lbc, Lcd, Lad, Lac\} \subset W$ with a, b.c.d in cyclic order in $[n] \setminus L$.

Nick Early's Construction

Main results

Sketch of proof

Weakly Separated Collections

Theorem (OPS2011, DKK2010)

Every maximal weakly separated collection of $\binom{[n]}{k}$ has cardinality k(n-k) + 1. Any two maximal weakly separated collections are linked by a sequence of mutations

Nick Early's Construction

Main results

Sketch of proof

Hypersimplex

Definition (Hypersimplex)

$$\Delta_{k,n} := \{x \in [0,1]^n \mid \sum_{i=1}^n x_i = k, \ 2 \le k \le n-2\} \text{ is a}$$

polytope with vertices $\{e_J := \sum_{j \in J} e_j \mid J \in \binom{[n]}{k}\}$. For any $L \subset [n]$ with $|L| \le k-2$, there is a natural isomorphism

 $L \subset [n]$ with $|L| \leq k - 2$, there is a natural isomorphism

$$\partial_L(\Delta_{k,n}) := (\bigcap_{i \in L} \{x_i = 1\}) \cap \Delta_{k,n} \cong \Delta_{k-|L|,n-|L|},$$

where ∂_L is called a **boundary map** on hypersimplex $\Delta_{k,n}$

Nick Early's Construction

Main results

Sketch of proof

Positroid polytopes

Definition (Postnikov 2006)

For $\mathcal{M} \subset \binom{[n]}{k}$, let

 $S_{\mathcal{M}} := \{ V \in Gr_{k,n}^{\geq 0}(\mathbb{R}) \mid p_I(V) > 0 \text{ if and only if } I \in \mathcal{M} \}.$

If $S_{\mathcal{M}} \neq \emptyset$, then \mathcal{M} is called a **positroid** and $S_{\mathcal{M}}$ a **positroid cell**. $P_{\mathcal{M}} := Conv\{e_J \mid J \in \mathcal{M}\}$ is the **positroid polytope** related to \mathcal{M} .

Main results

Sketch of proof

Weakly Separated Collections

Nick Early's Construction

Main results

Sketch of proof

Weakly Separated	Collections
000000	

Blades

Denote by
$$[S_1^{(s_1)}, \dots, S_l^{(s_l)}]$$
 the polyhedral cone in
 $\mathcal{H}_{k,n} := \{x \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = k\}$ formulated by the following facet inequalities

i meguanties

 $x_{S_1} > s_1$ $x_{S_1 \cup S_2} \ge s_1 + s_2$: $x_{S_1\cup\cdots\cup S_{l-1}} \ge s_1 + \cdots + s_{l-1}.$

where $\{S_1, \dots, S_l\}$ is an ordered set partition of [n] with $0 \le s_i \le |S_i| - 1.$

Weakly Separated	Collections
000000	

Main results

Blades

Cones
$$[S_1^{(s_1)}, S_2^{(s_2)} \cdots, S_l^{(s_l)}]$$
, $[S_2^{(s_2)}, S_3^{(s_3)} \cdots, S_1^{(s_1)}] \cdots$
 $[S_l^{(s_l)}, S_1^{(s_1)} \cdots, S_{l-1}^{(s_{l-1})}]$ form a complete simplicial fan in $\mathcal{H}_{k,n}$

Definition

The **blade** $\left< S_1^{(s_1)}, \cdots, S_l^{(s_l)} \right>$ is the union of codimension 1 faces of this fan, that is

$$\left\langle S_1^{(s_1)}, \cdots, S_l^{(s_l)} \right\rangle = \bigcup_{j=1}^l \partial [S_j^{(s_j)}, S_{j+1}^{(s_{j+1})}, \cdots, S_{j-1}^{(s_{j-1})}].$$

Besides, if $s_j = 0$ for some $j = 1, \dots, l$ then the superscript (s_j) will be omitted.

Zhang, Zhejiang University

Weakly Separated Collections	Nick Early's Construction 000●0000	Main results 00	Sketch of proof

Blades

The standrad blade $\beta = \langle 1, 2, \cdots, n \rangle$ is characterized as follows

$$\beta = \langle 1, 2, \cdots, n \rangle = \bigcup_{j=1}^{n} \partial[j, j+1, \cdots, j-1].$$

Let $\beta_J := \langle 1, 2, \cdots, n \rangle_{e_J}$ be the translation of β from origin to the vertex e_J of $\Delta_{k,n}$.

Main results 00 Sketch of proof

Nick Early's Construction

Theorem (Nick Early 2019)

Given a collection of vertices $\{e_{I_1}, e_{I_2}, \cdots, e_{I_m}\}$ of $\Delta_{k,n}$, the blade arrangements

$$\langle 1, 2, \cdots, n \rangle_{e_{I_1}}, \cdots, \langle 1, 2, \cdots, n \rangle_{e_{I_m}}$$

induce a positroid subdivision of $\Delta_{k,n}$ if and only if I_1 , I_2 , \cdots , I_m are weakly separated collections.

Nick Early's Construction

Main results

Boundary map

Proposition (Nick Early 2019)

The subdivision on the boundary $\partial_j(\Delta_{k,n})$ induced by $\langle 1, 2, \cdots, n \rangle_{e_J}$ is characterized as follows

$$\partial_j(\langle 1, 2, \cdots, n \rangle_{e_J} \cap \Delta_{k,n}) = \left\langle 1, 2, \cdots, \widehat{j}, \cdots n \right\rangle_{e_{J'}} \cap \partial_j(\Delta_{k,n})$$

where $J = \{j_1, \dots, j_k\}$ and $J' = J \setminus \{j_{a+1}\}$ if j satisfies $j_a < j \le j_{a+1}$ (the indices are cyclic).

Nick Early's Construction

Main results

Boundary map

Definition

Denote by $\partial_j(J) := J'$ the **boundary map** ∂_j on k-set J. If W is a collection of k-sets, let $\partial_j(W) := \{\partial_j(J) \mid J \in W\}.$

Example: For
$$k = 5, n = 8$$
 and $J = \{1, 3, 4, 5, 7\}$, then

$$\partial_2(\langle 1, 2, \cdots, 8 \rangle_{e_J} \cap \Delta_{5,8}) = \langle 1, 3, 4, 5, 6, 7, 8 \rangle_{e_{1457}} \cap \partial_2(\Delta_{5,8})$$

Therefore, $\partial_2(\{1,3,4,5,7\}) = \{1,4,5,7\}.$

Nick Early's Construction

Main results

Boundary map

Question(Nick Early2019) If W is a maximal weakly separated collection in $\binom{[n]}{k}$, is $\partial_j(W)$ a maximal weakly separated collection in $\binom{[n]\setminus\{j\}}{k-1}$?

Nick Early's Construction

Main results

Sketch of proof

Weakly Separated	Collections

Main results ○●

Main results

Theorem

Let
$$W$$
 be a maximal w-collection in $\binom{[n]}{k}$, then $\partial_j(W)$ is also a maximal w-collection in $\binom{[n]\setminus\{j\}}{k-1}$ for any $j \in [n]$

Corollary

The translated blades $\{\beta_J | J \in W\}$ corresponding to a maximal weakly separated collection W induce a finest regular positroid subdivison of $\Delta_{k,n}$.

Main results

Sketch of proof

Weakly Separated Collections

Nick Early's Construction

Main results

Main results

Plabic graphs

Theorem(Oh,Postnikov,Speyer,2011)

Let $\mathcal{F}(G)$ denotes the collection of labels of a reduced biparite plabic graph G of type (k, n). Then there is a one-to-one correspondence between maximal weakly separated collections $\{W\}$ to $\{\mathcal{F}(G)\}$.

Let W be a maximal w-collection in $\binom{[n]}{k}$, and $\Sigma_0(W)$ be the biparite reduced plabic graph obtained from the duality of plabic tiling.

Main results

Operations on plabic graphs

Definition

Without loss of generality, we take j = n. The plabic graph $\partial_n(\Sigma_0(W))$ is obtained from $\Sigma_0(W)$ through the following steps

- Delete the vertex labeled n k on the boundary and the unique edge adjacent to it, but preserve the internal vertex of this edge.
- Delete all the edge with vertices \mathcal{B} and \mathcal{W} such that $\mathcal{B} \setminus \mathcal{W} = M_2^n(\mathcal{B}).$

Main results

Operations on plabic graphs

- \bullet Relabel the boundary vertices $n,1,2,\cdots,n-k-1$ by
 - $1, 2, \cdots, n-k$ clockwise.
- Delete all the single points and bivalent points, use moves (M2) to get a biparite plabic graph.

Then we can prove the following proposition

Proposition

Let W be a maximal weakly separated collection, then there is an isomorphism $\partial_n(\Sigma_0(W)) \cong \Sigma_0(\partial_n(W))$ and $\partial_n(\Sigma_0(W))$ is a reduced biaparite graph of type (k-1, n-1).

Nick Early's Construction

Main results

An example

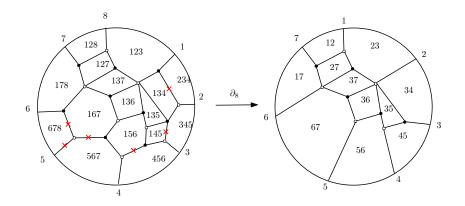


Figure: An example of producing reduced plabic graph $\partial_8(\Sigma_0(W))$

What can we get?

- Every positroid subdivision induced by a maximal weakly separated collection corresponds to a maximal cone of ${\rm Trop}^+{\rm Gr}_{k,n}.$
- This subdivision is a positroid tiling researched by [Lukowski-Parisi-Williams 2020] where every positroid tile can be parameterized by a tree plabic graph.
- There are exact $\binom{n-2}{k-1}$ tree plabic graphs to parameterize such a subdivision.

Nick Early's Construction

Main results

Sketch of proof

Cluster mutations

Example

Take k = 3, n = 5, $W = \{123, 234, 345, 145, 125, 235, 245\}$. Consider the mutation

$$W \longleftrightarrow (W \setminus \{235\}) \cup \{124\}$$

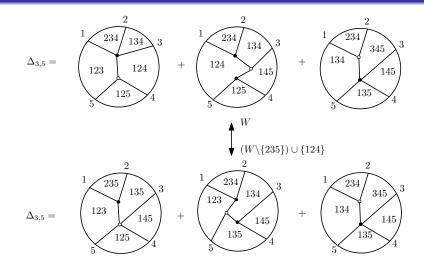
How does the positroid subdivision change under this mutation?

Nick Early's Construction

Main results

Sketch of proof

An example



Thank you

Main results

Main References

- Suho Oh, Alexander Postnikov, and David E Speyer. Weak separation and plabic graphs. Proceedings of the London Mathematical Society, 110(3):721–754, 2015.
- Vladimir I. Danilov, Alexander V. Karzanov, Gleb A. Koshevoy, Plücker environments, wiring and tiling diagrams, and weakly separated set-systems, Advances in Mathematics, Volume 224, Issue 1, page 1-44, 2010.

Tomasz Lukowski, Matteo Parisi, and Lauren K. Williams. The positive tropical Grassmannian, the hypersimplex, and the m = 2 amplituhedron, 2020.

Early N., From weakly separated collections to matroid subdivisions, arXiv:1910.11522.