Sheaves of modules on ringed sites

Liping Li Hunan Normal University ICRA 2024, Shanghai

Aug. 8, 2024

K ロ ト K 御 ト K ヨ ト

 \rightarrow \equiv \rightarrow

 $2Q$

Liping Li Hunan Normal University ICRA 2024, Shanghai [Sheaves of modules on ringed sites](#page-58-0)

O Grothendieck topologies and sheaves

Liping Li Hunan Normal University ICRA 2024, Shanghai [Sheaves of modules on ringed sites](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

重

 298

O Grothendieck topologies and sheaves

² A torsion theoretic interpretation

K ロ ▶ K 御 ▶ K 舌

一 三つ

 \sim

 $2Q$

∍

- **1** Grothendieck topologies and sheaves
- **2** A torsion theoretic interpretation
- **3** Applications in group representation theory

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \sim $\left\{ \begin{array}{c} 1 \end{array} \right.$

C: a (skeletal) small category.

メロメ メタメ メミメ メミメ

重

- C: a (skeletal) small category.
- A sieve S on $x \in Ob(\mathcal{C})$ is a subfunctor of $\mathcal{C}(-,x)$.

メロト メタト メミト メミト

 $2Q$

€

- C: a (skeletal) small category.
- A sieve S on $x \in Ob(\mathcal{C})$ is a subfunctor of $\mathcal{C}(-,x)$.
- \bullet Equivalently, S can be viewed as a set of morphisms ending at x satisfying:

$$
\forall (f: y \to x) \in S, \forall (g: z \to y) \Rightarrow f \circ g \in S;
$$

イロメ マ桐 メメモ レマモメ

 $2Q$

that is, a **right ideal** of the morphism set.

Grothendieck topologies

Definition

A Grothendieck topology on $\mathcal C$ is a rule J assigning to each $x \in Ob(\mathcal{C})$ a collection $J(x)$ of sieves on x such that:

つへへ

4 m * 4 m * 4 m

Grothendieck topologies

Definition

A Grothendieck topology on $\mathfrak C$ is a rule J assigning to each $x \in Ob(\mathcal{C})$ a collection $J(x)$ of sieves on x such that:

• Maximal axiom: $C(-, x) \in J(x)$;

メロト メタト メミト メミト

Grothendieck topologies

Definition

- A Grothendieck topology on $\mathfrak C$ is a rule J assigning to each $x \in Ob(\mathcal{C})$ a collection $J(x)$ of sieves on x such that:
	- Maximal axiom: $\mathcal{C}(-,x) \in J(x)$;
	- Stability axiom: for each morphism $f : y \rightarrow x$ and $S \in J(x)$,

$$
f^*(S) = \{g : \bullet \to y \mid f \circ g \in S\}
$$

イロト イタト イミト イミト

へのへ

is contained in $J(y)$;

Grothendieck topologies

Definition

- A Grothendieck topology on $\mathfrak C$ is a rule J assigning to each $x \in Ob(\mathcal{C})$ a collection $J(x)$ of sieves on x such that:
	- Maximal axiom: $\mathcal{C}(-,x) \in J(x)$;
	- Stability axiom: for each morphism $f : y \rightarrow x$ and $S \in J(x)$,

$$
f^*(S) = \{g : \bullet \to y \mid f \circ g \in S\}
$$

イロメ マ桐 メメモ レマモメ

へのへ

is contained in $J(y)$;

• Transitivity axiom: Given $T \subseteq \mathcal{C}(-,x)$, if $\exists S \in J(x)$ with $f^*(T) \in J(y)$ for $(f: y \to x) \in S$, then $T \in J(x)$.

Grothendieck topologies

Definition

- A Grothendieck topology on $\mathfrak C$ is a rule J assigning to each $x \in Ob(\mathcal{C})$ a collection $J(x)$ of sieves on x such that:
	- Maximal axiom: $\mathcal{C}(-,x) \in J(x)$;
	- Stability axiom: for each morphism $f : y \rightarrow x$ and $S \in J(x)$,

$$
f^*(S) = \{g : \bullet \to y \mid f \circ g \in S\}
$$

メロト メタト メミト メミト

へのへ

is contained in $J(y)$;

- Transitivity axiom: Given $T \subseteq \mathcal{C}(-,x)$, if $\exists S \in J(x)$ with $f^*(T) \in J(y)$ for $(f: y \to x) \in S$, then $T \in J(x)$.
- The pair $(\mathcal{C}, \mathcal{J})$ is called a **Grothendieck site**.

Examples

• Trivial topology: $J(x) = \{ \mathcal{C}(-, x) \}.$

Liping Li Hunan Normal University ICRA 2024, Shanghai [Sheaves of modules on ringed sites](#page-0-0)

メロト メタト メミト メミト

重

Examples

- Trivial topology: $J(x) = \{ \mathcal{C}(-,x) \}.$
- Maximal topology: $J(x)$ is the set of all sieves on x (including the empty one).

メロト メタト メミト メミト

Examples

- Trivial topology: $J(x) = \{ \mathcal{C}(-,x) \}.$
- Maximal topology: $J(x)$ is the set of all sieves on x (including the empty one).
- Atomic topology: $J(x)$ is the set of all nonempty sieves on x (Ore condition required).

イロメ マ桐 メメモ レマモメ

つくい

Examples

- Trivial topology: $J(x) = \{ \mathcal{C}(-,x) \}.$
- Maximal topology: $J(x)$ is the set of all sieves on x (including the empty one).
- Atomic topology: $J(x)$ is the set of all nonempty sieves on x (Ore condition required).
- Subcategory topology: Given a full subcategory $\mathcal D$ of $\mathcal C$, for object y in C , define

$$
S_y = \bigsqcup_{x \in Ob(\mathcal{D})} \mathcal{C}(x, y) \circ \mathcal{C}(-, x)
$$

メロト メタト メミト メミト

へのへ

and $J(y) = \{S \subset \mathcal{C}(-, y) \mid S \supset S_{y}\}.$

A classification

• It is hopeless to classify all Grothendieck topologies on C.

メロメ メタメ メミメ メミメー

 $2Q$

€

A classification

- \bullet It is hopeless to classify all Grothendieck topologies on \mathcal{C} .
- For finite categories (AGV) and artinian posets (Lindenhovius), every Grothendieck topology is a subcategory topology.

イロメ マ桐 メメモ レマモメ

A classification

- \bullet It is hopeless to classify all Grothendieck topologies on \mathcal{C} .
- For finite categories (AGV) and artinian posets (Lindenhovius), every Grothendieck topology is a subcategory topology.
- C is **directed** if the relation $x \leq y$ if $\mathcal{C}(x, y) \neq \emptyset$ is a partial order on $Ob(\mathcal{C})$; it is **EI** if every endomorphism is an isomorphism.

イロメ イタメ オラメイラメ

A classification

- \bullet It is hopeless to classify all Grothendieck topologies on \mathcal{C} .
- For finite categories (AGV) and artinian posets (Lindenhovius), every Grothendieck topology is a subcategory topology.
- C is **directed** if the relation $x \leq y$ if $\mathcal{C}(x, y) \neq \emptyset$ is a partial order on $Ob(\mathcal{C})$; it is **EI** if every endomorphism is an isomorphism.

Theorem (DLL, 2023)

Let C be a directed category. Then every Grothendieck topology on it is a subcategory topology if and only if $\mathfrak C$ is an artinian EI category.

メロト メタト メミト メミト

Sheaves

A **presheaf of sets** is a covariant functor $F : C^{op} \to \text{Set}$.

イロメ イ母メ イヨメ イヨメー

重

 298

Sheaves

- A **presheaf of sets** is a covariant functor $F : C^{op} \to \text{Set}$.
- Given $(\mathcal{C}, \mathcal{J})$, a presheaf is called a sheaf of sets if

$$
Nat(\mathcal{C}(-,x), F) \cong Nat(S, F), \forall S \in J(x), \forall x \in Ob(\mathcal{C}).
$$

メロメ メ御 メメ ミメメ ミメ

 $2Q$

∍

Sheaves

- A **presheaf of sets** is a covariant functor $F : C^{op} \to \text{Set}$.
- Given $(\mathcal{C}, \mathcal{J})$, a presheaf is called a sheaf of sets if

$$
Nat(\mathcal{C}(-,x), F) \cong Nat(S, F), \forall S \in J(x), \forall x \in Ob(\mathcal{C}).
$$

イロメ マ桐 トマ ヨ トマ ヨメ

 Ω

A structure sheaf is a functor $\mathcal{O}: \mathbb{C}^{op} \to \mathrm{Ring}$ whose underlying presheaf of sets is a sheaf of sets.

Sheaves

- A **presheaf of sets** is a covariant functor $F : C^{op} \to \text{Set}$.
- Given $(\mathcal{C}, \mathcal{J})$, a presheaf is called a sheaf of sets if

$$
Nat(\mathcal{C}(-,x), F) \cong Nat(S, F), \forall S \in J(x), \forall x \in Ob(\mathcal{C}).
$$

イロメ マ桐 トマ ヨ トマ ヨメ

 Ω

- A structure sheaf is a functor $\mathcal{O}: \mathbb{C}^{op} \to \mathrm{Ring}$ whose underlying presheaf of sets is a sheaf of sets.
- The triple $(\mathcal{C}, \mathcal{J}, \mathcal{O})$ is called a ringed site.

Sheaves

- A **presheaf of sets** is a covariant functor $F : C^{op} \to \text{Set}$.
- Given $(\mathcal{C}, \mathcal{J})$, a presheaf is called a **sheaf of sets** if

$$
Nat(\mathcal{C}(-,x), F) \cong Nat(S, F), \forall S \in J(x), \forall x \in Ob(\mathcal{C}).
$$

- A structure sheaf is a functor $\mathcal{O}: \mathbb{C}^{op} \to \mathrm{Ring}$ whose underlying presheaf of sets is a sheaf of sets.
- The triple $(\mathcal{C}, \mathcal{J}, \mathcal{O})$ is called a ringed site.
- An $\mathcal{O}\textrm{-module}$ is a functor $V: \mathbb{C}^\mathrm{op} \to \mathrm{Ab}$ such that each V_x is an \mathcal{O}_{x} -module and and $\mathsf{V}_{\mathsf{f}}:\mathsf{V}_{\mathsf{x}}\to\mathsf{V}_{\mathsf{y}}$ is \mathcal{O}_{x} -linear for any morphism f in C^{op} .

メロメ メタメ メミメ メミメー

Sheaves

- A **presheaf of sets** is a covariant functor $F : C^{op} \to \text{Set}$.
- Given $(\mathcal{C}, \mathcal{F})$, a presheaf is called a sheaf of sets if

$$
Nat(\mathcal{C}(-,x), F) \cong Nat(S, F), \forall S \in J(x), \forall x \in Ob(\mathcal{C}).
$$

- A structure sheaf is a functor $\mathcal{O}: \mathbb{C}^{op} \to \mathrm{Ring}$ whose underlying presheaf of sets is a sheaf of sets.
- The triple $(\mathcal{C}, \mathcal{J}, \mathcal{O})$ is called a ringed site.
- An $\mathcal{O}\textrm{-module}$ is a functor $V: \mathbb{C}^\mathrm{op} \to \mathrm{Ab}$ such that each V_x is an \mathcal{O}_{x} -module and and $\mathsf{V}_{\mathsf{f}}:\mathsf{V}_{\mathsf{x}}\to\mathsf{V}_{\mathsf{y}}$ is \mathcal{O}_{x} -linear for any morphism f in C^{op} .
- \bullet An \mathcal{O} -module is a sheaf of modules if the underling presheaf of sets is a sheaf of sets.

メロメ メ御 メメ ヨメメ ヨメー

Motivation

The above definitions are hard to check in practice for representation theorists. Want to obtain a **more homological** (rather than categorical) interpretation.

メロト メタト メミト メミト

J-torsion theory

• Given an \mathcal{O} -module $V, x \in Ob(\mathcal{C})$, an element $v \in V$ is called *J*-torsion if $v \cdot f = 0$, $\forall f \in \mathcal{C}(-,x)$.

メロメ メ御 メメ ミメメ ミメ

J-torsion theory

- Given an \mathcal{O} -module $V, x \in Ob(\mathcal{C})$, an element $v \in V$ is called *J*-torsion if $v \cdot f = 0$, $\forall f \in \mathcal{C}(-,x)$.
- The subset of *J*-torsion elements form an \mathcal{O} -submodule by the stability axiom.

メロト メタト メミト メミト

J-torsion theory

- Given an \mathcal{O} -module $V, x \in Ob(\mathcal{C})$, an element $v \in V$ is called *J*-torsion if $v \cdot f = 0$, $\forall f \in \mathcal{C}(-,x)$.
- The subset of *J*-torsion elements form an \mathcal{O} -submodule by the stability axiom.
- \bullet One can define *J*-torsion $\mathcal O$ -modules and *J*-torsion free O-modules.

イロメ マ桐 メメモ レマモメ

J-torsion theory

- Given an \mathcal{O} -module $V, x \in Ob(\mathcal{C})$, an element $v \in V$ is called J-torsion if $v \cdot f = 0$, $\forall f \in \mathcal{C}(-,x)$.
- The subset of *J*-torsion elements form an \mathcal{O} -submodule by the stability axiom.
- \bullet One can define J-torsion $\mathcal O$ -modules and J-torsion free O-modules.

Proposition

The full subcategories of J-torsion O-modules and J-torsion free O-modules form a hereditary torsion pair.

メロト メタト メミト メミト

A homological characterization

Theorem (DLL, 2023)

Let V an O -module. The following are equivalent:

メロト メタト メミト メミト

É

A homological characterization

Theorem (DLL, 2023)

Let V an O-module. The following are equivalent:

 \bullet V is a sheaf of $\mathcal{O}\text{-modules}$:

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 $2Q$

€

A homological characterization

Theorem (DLL, 2023)

Let V an O-module. The following are equivalent:

- \bullet V is a sheaf of $\mathcal{O}\text{-modules}$:
- \bullet for every J-torsion $\mathcal O$ -module W, one has

$$
\operatorname{Hom}_{\mathcal{O}\text{-Mod}}(W,V)=0=\operatorname{Ext}^1_{\mathcal{O}\text{-Mod}}(W,V).
$$

K ロ ⊁ K 倒 ≯ K 目

 $2Q$

ia ⊞is

A homological characterization

Theorem (DLL, 2023)

Let V an O-module. The following are equivalent:

- \bullet V is a sheaf of $\mathcal{O}\text{-modules}$:
- \bullet for every J-torsion $\mathcal O$ -module W, one has

 $\mathsf{Hom}_{\mathcal{O}\text{-}\mathsf{Mod}}(W,V)=0=\mathsf{Ext}^1_{\mathcal{O}\text{-}\mathsf{Mod}}(W,V).$

4 n + 4 n + 4 =

つくい

 \bullet TV = 0 = R¹TV where T is the torsion functor.

A homological characterization

Theorem (DLL, 2023)

Let V an O -module. The following are equivalent:

- V is a sheaf of $\mathcal O$ -modules;
- \bullet for every J-torsion $\mathcal O$ -module W, one has

$$
\operatorname{Hom}_{\mathcal{O}\text{-}\mathsf{Mod}}(W,V)=0=\operatorname{Ext}^1_{\mathcal{O}\text{-}\mathsf{Mod}}(W,V).
$$

 \bullet TV = 0 = R¹TV where T is the torsion functor.

Moreover, one has

$$
Sh(\mathcal{C}, J, \mathcal{O}) \simeq \mathcal{O} \text{-Mod } / \mathcal{O} \text{-Mod}^{\text{tor}}.
$$

4 n + 4 n + 4 =

Artin's theorem

• $G:$ a topological group; $X:$ a G -set equipped with the discrete topology such that the action of G on it is continuous.

イロメ マ桐 メメモ レマモメ

Artin's theorem

- $G:$ a topological group; $X:$ a G -set equipped with the discrete topology such that the action of G on it is continuous.
- The orbit category θ of G has objects G/H with H open subgroups and morphisms G-equivariant maps.

イロメ マ桐 メメモ レマモメ

Artin's theorem

- \bullet G: a topological group; X: a G-set equipped with the discrete topology such that the action of G on it is continuous.
- The orbit category θ of G has objects G/H with H open subgroups and morphisms G-equivariant maps.

Theorem (Artin)

There is an equivalence $\text{Sh}(0, J_{at}) \simeq BG$ where J_{at} is the atomic topology and BG is the category of discrete G-sets.

イロメ マ桐 メメモ レマモメ

∽≏ດ

Artin's theorem

- \bullet G: a topological group; X: a G-set equipped with the discrete topology such that the action of G on it is continuous.
- The **orbit category** 0 of G has objects G/H with H open subgroups and morphisms G-equivariant maps.

Theorem (Artin)

There is an equivalence $\text{Sh}(0, J_{at}) \simeq BG$ where J_{at} is the atomic topology and BG is the category of discrete G-sets.

• We obtain a bijective correspondence between structure sheaves A over $(0, J_{at})$ and commutative rings A on which G acts as automorphisms continuously. Moreover, $\mathrm{Sh}(\mathcal{O},J_{at},\mathcal{A})\simeq \mathcal{A}\sharp \mathcal{G}$ -Mod^{dis}. K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

Permutation groups

 \bullet S: an infinite set.

メロメ メタメ メミメ メミメ

重

Permutation groups

- \bullet S: an infinite set.
- $G \leqslant \text{Sym}(S)$: a permutation group over S.

メロメ メ御 メメ ミメメ ミメ

Permutation groups

- S: an infinite set.
- $G \leqslant \text{Sym}(S)$: a permutation group over S.
- Conf_n(S) = {f : [n] \rightarrow S | f is injective}.

メロメ メ御 メメ ミメメ ミメー

Permutation groups

- S: an infinite set.
- $G \leqslant \text{Sym}(S)$: a permutation group over S.
- $\text{Conf}_n(S) = \{f : [n] \to S \mid f \text{ is injective}\}.$
- \bullet The action of G on S is finitely transitive if G acts transitively on each $Conf_n(S)$.

イロメ イ押 トラ ミトラ ミント

Permutation groups

- S: an infinite set.
- $G \leqslant \text{Sym}(S)$: a permutation group over S.
- $\text{Conf}_n(S) = \{f : [n] \to S \mid f \text{ is injective}\}.$
- \bullet The action of G on S is finitely transitive if G acts transitively on each $Conf_n(S)$.
- a linear order \leq on S is **homogeneous** if $(a, b) \simeq (S, \leq)$ for every $a < b$.

イロメ イ押 トラ ミトラ ミント

Permutation groups

- S: an infinite set.
- $G \leqslant \text{Sym}(S)$: a permutation group over S.
- $\text{Conf}_n(S) = \{f : [n] \to S \mid f \text{ is injective}\}.$
- \bullet The action of G on S is finitely transitive if G acts transitively on each $Conf_n(S)$.
- a linear order \leq on S is **homogeneous** if $(a, b) \simeq (S, \leq)$ for every $a < b$.
- $\bullet \leqslant$ is homogeneous iff there is an order-preserving permutation group G whose action on (S, \leqslant) is finitely transitively.

イロメ イ押 トラ ミトラ ミント

Permutation groups

- S: an infinite set.
- $G \leqslant \text{Sym}(S)$: a permutation group over S.
- $\text{Conf}_n(S) = \{f : [n] \to S \mid f \text{ is injective}\}.$
- \bullet The action of G on S is finitely transitive if G acts transitively on each $Conf_n(S)$.
- a linear order \leq on S is **homogeneous** if $(a, b) \simeq (S, \leq)$ for every $a < b$.
- $\bullet \leqslant$ is homogeneous iff there is an order-preserving permutation group G whose action on (S, \leqslant) is finitely transitively.

Theorem (LPY, 2024)

Every infinite set can be equipped with a homogeneous linear order.

メロト メタト メミト メミト

Noetherianinity up to symmetry

 \bullet k: a commutative Noetherian ring.

メロト メタト メミト メミト

Noetherianinity up to symmetry

- \bullet k: a commutative Noetherian ring.
- $A = k[x_s \mid s \in S].$

メロメ メ御 メメ ミメメ ミメー

Noetherianinity up to symmetry

- \bullet k: a commutative Noetherian ring.
- $A = k[x_s \mid s \in S].$

Theorem (LPY, 2024)

If the action of $G \leqslant \mathrm{Sym}(S)$ on S is finitely transitive, then A is a Noetherian discrete A♯G-module. That is, G-invariant ideals of A satisfy the A.C.C.

メロト メタト メミト メミト

Noetherianinity up to symmetry

- \bullet k: a commutative Noetherian ring.
- $A = k[x_s \mid s \in S].$

Theorem (LPY, 2024)

If the action of $G \leqslant \mathrm{Sym}(S)$ on S is finitely transitive, then A is a Noetherian discrete A♯G-module. That is, G-invariant ideals of A satisfy the A.C.C.

Theorem (LPY, 2024)

If \leq is a homogeneous linear oder on S, and the action of $G \leqslant \mathrm{Aut}(S, \leqslant)$ on S is finitely transitive, then A is a Noetherian discrete A♯G-module.

メロト メタト メミト メミト

Classify irred. objects by DLLX, Nagpal, SS

 \bullet k: a field of characteristic 0.

メロメ メ御 メメ ミメメ ミメー

 $2Q$

∍

Classify irred. objects by DLLX, Nagpal, SS

- \bullet k: a field of characteristic 0.
- $G = \lim_{n \to \infty} S_n$, then kG -mod^{dis} \simeq FI-fdmod.

メロメ メ御 メメ ヨメメ ヨメー

Classify irred. objects by DLLX, Nagpal, SS

- \bullet k: a field of characteristic 0.
- $G = \lim_{n \to \infty} S_n$, then kG -mod^{dis} \simeq FI-fdmod.
- $G = \varinjlim_n \mathrm{GL}_n(\mathbb{F}_q)$, then kG -mod^{dis} $\simeq \mathrm{VI}_q$ -fdmod.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

 Ω

Classify irred. objects by DLLX, Nagpal, SS

- \bullet k: a field of characteristic 0.
- $G = \lim_{n \to \infty} S_n$, then kG -mod^{dis} \simeq FI-fdmod.
- $G = \varinjlim_n \mathrm{GL}_n(\mathbb{F}_q)$, then kG -mod^{dis} $\simeq \mathrm{VI}_q$ -fdmod.
- $G = \text{Aut}(\mathbb{Q}, \leqslant)$, then kG -mod^{dis} ≃ OI-fdmod.

メロメ メ御 メメ ヨメメ ヨメー

 Ω

Classify irred. objects by DLLX, Nagpal, SS

- \bullet k: a field of characteristic 0.
- $G = \lim_{n \to \infty} S_n$, then kG -mod^{dis} \simeq FI-fdmod.
- $G = \varinjlim_n \mathrm{GL}_n(\mathbb{F}_q)$, then kG -mod^{dis} $\simeq \mathrm{VI}_q$ -fdmod.
- \bullet $G = \text{Aut}(\mathbb{Q}, \leqslant)$, then kG -mod^{dis} ≃ OI-fdmod.
- $G = \mathbb{Z}$, θ the orbit category of finite cosets, $k = \overline{k}$, then $\mathrm{Sh}(\mathbb{C},\ J_{\mathsf{at}},\ \underline{k})\simeq \prod_{\xi} k$ -Mod, the Cartesian product of categories k -Mod indexed by all primitive roots of unit.

イロメ イ押 レイチャ イチャー

Classify irred. objects by DLLX, Nagpal, SS

- \bullet k: a field of characteristic 0.
- $G = \lim_{n \to \infty} S_n$, then kG -mod^{dis} \simeq FI-fdmod.
- $G = \varinjlim_n \mathrm{GL}_n(\mathbb{F}_q)$, then kG -mod^{dis} $\simeq \mathrm{VI}_q$ -fdmod.
- \bullet $G = \text{Aut}(\mathbb{Q}, \leqslant)$, then kG -mod^{dis} ≃ OI-fdmod.
- $G = \mathbb{Z}$. O the orbit category of finite cosets, $k = \overline{k}$, then $\mathrm{Sh}(\mathbb{C},\ J_{\mathsf{at}},\ \underline{k})\simeq \prod_{\xi} k$ -Mod, the Cartesian product of categories k -Mod indexed by all primitive roots of unit.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

へのへ

C: finitely generated $\mathbb{Z}/p^n\mathbb{Z}$ -modules and surjective homomorphisms, then $\sh(\mathcal{C}, \mathcal{J}_{at}, \underline{k}) \simeq \mathcal{C}^{\mathrm{op}}$ -fdmod.

Classify irred. objects by DLLX, Nagpal, SS

- \bullet k: a field of characteristic 0.
- $G = \lim_{n \to \infty} S_n$, then kG -mod^{dis} \simeq FI-fdmod.
- $G = \varinjlim_n \mathrm{GL}_n(\mathbb{F}_q)$, then kG -mod^{dis} $\simeq \mathrm{VI}_q$ -fdmod.
- \bullet $G = \text{Aut}(\mathbb{Q}, \leqslant)$, then kG -mod^{dis} ≃ OI-fdmod.
- $G = \mathbb{Z}$, θ the orbit category of finite cosets, $k = \overline{k}$, then $\mathrm{Sh}(\mathbb{C},\ J_{\mathsf{at}},\ \underline{k})\simeq \prod_{\xi} k$ -Mod, the Cartesian product of categories k -Mod indexed by all primitive roots of unit.
- C: finitely generated $\mathbb{Z}/p^n\mathbb{Z}$ -modules and surjective homomorphisms, then $\sh(\mathcal{C}, \mathcal{J}_{at}, \underline{k}) \simeq \mathcal{C}^{\mathrm{op}}$ -fdmod.
- \bullet C: finite abelian p-groups and conjugacy classes of surjective homomorphisms, then $\sh(\mathcal{C}, \mathcal{J}_{at}, \underline{k}) \simeq \mathcal{C}^{\mathrm{op}}$ -fdmod.

イロメ イ団 メイミメイミメー

Thanks

Any questions?

メロメ メタメ メミメ メミメ

重

 $2Q$

Liping Li Hunan Normal University ICRA 2024, Shanghai [Sheaves of modules on ringed sites](#page-0-0)