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Sieves

C: a (skeletal) small category.

A sieve S on x ∈ Ob(C) is a subfunctor of C(−, x).

Equivalently, S can be viewed as a set of morphisms ending at
x satisfying:

∀ (f : y → x) ∈ S , ∀ (g : z → y) ⇒ f ◦ g ∈ S ;

that is, a right ideal of the morphism set.
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Grothendieck topologies

Definition

A Grothendieck topology on C is a rule J assigning to each
x ∈ Ob(C) a collection J(x) of sieves on x such that:

Maximal axiom: C(−, x) ∈ J(x);

Stability axiom: for each morphism f : y → x and S ∈ J(x),

f ∗(S) = {g : • → y | f ◦ g ∈ S}

is contained in J(y);

Transitivity axiom: Given T ⊆ C(−, x), if ∃S ∈ J(x) with
f ∗(T ) ∈ J(y) for (f : y → x) ∈ S , then T ∈ J(x).

The pair (C, J) is called a Grothendieck site.
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Examples

Trivial topology: J(x) = {C(−, x)}.

Maximal topology: J(x) is the set of all sieves on x
(including the empty one).

Atomic topology: J(x) is the set of all nonempty sieves on x
(Ore condition required).

Subcategory topology: Given a full subcategory D of C, for
object y in C, define

Sy =
⊔

x∈Ob(D)

C(x , y) ◦ C(−, x)

and J(y) = {S ⊆ C(−, y) | S ⊇ Sy}.
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A classification

It is hopeless to classify all Grothendieck topologies on C.

For finite categories (AGV) and artinian posets
(Lindenhovius), every Grothendieck topology is a
subcategory topology.

C is directed if the relation x ⩽ y if C(x , y) ̸= ∅ is a partial
order on Ob(C); it is EI if every endomorphism is an
isomorphism.

Theorem (DLL, 2023)

Let C be a directed category. Then every Grothendieck topology
on it is a subcategory topology if and only if C is an artinian EI
category.
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Sheaves

A presheaf of sets is a covariant functor F : Cop → Set.

Given (C, J), a presheaf is called a sheaf of sets if

Nat(C(−, x), F ) ∼= Nat(S , F ), ∀S ∈ J(x), ∀ x ∈ Ob(C).

A structure sheaf is a functor O : Cop → Ring whose
underlying presheaf of sets is a sheaf of sets.

The triple (C, J, O) is called a ringed site.

An O-module is a functor V : Cop → Ab such that each Vx

is an Ox -module and and Vf : Vx → Vy is Ox -linear for any
morphism f in Cop.

An O-module is a sheaf of modules if the underling presheaf
of sets is a sheaf of sets.
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Motivation

The above definitions are hard to check in practice for
representation theorists. Want to obtain a more homological
(rather than categorical) interpretation.
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J-torsion theory

Given an O-module V , x ∈ Ob(C), an element v ∈ V is
called J-torsion if v · f = 0, ∀ f ∈ C(−, x).

The subset of J-torsion elements form an O-submodule by
the stability axiom.

One can define J-torsion O-modules and J-torsion free
O-modules.

Proposition

The full subcategories of J-torsion O-modules and J-torsion free
O-modules form a hereditary torsion pair.
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A homological characterization

Theorem (DLL, 2023)

Let V an O-module. The following are equivalent:

V is a sheaf of O-modules;

for every J-torsion O-module W , one has

HomO -Mod(W ,V ) = 0 = Ext1O -Mod(W ,V ).

TV = 0 = R1TV where T is the torsion functor.

Moreover, one has

Sh(C, J, O) ≃ O -Mod /O -Modtor .
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Artin’s theorem

G : a topological group; X : a G -set equipped with the
discrete topology such that the action of G on it is
continuous.

The orbit category O of G has objects G/H with H open
subgroups and morphisms G -equivariant maps.

Theorem (Artin)

There is an equivalence Sh(O, Jat) ≃ BG where Jat is the atomic
topology and BG is the category of discrete G-sets.

We obtain a bijective correspondence between structure
sheaves A over (O, Jat) and commutative rings A on which G
acts as automorphisms continuously. Moreover,
Sh(O, Jat ,A) ≃ A♯G -Moddis.
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Permutation groups

S : an infinite set.

G ⩽ Sym(S): a permutation group over S .

Confn(S) = {f : [n] → S | f is injective}.
The action of G on S is finitely transitive if G acts
transitively on each Confn(S).

a linear order ⩽ on S is homogeneous if (a, b) ≃ (S ,⩽) for
every a < b.

⩽ is homogeneous iff there is an order-preserving permutation
group G whose action on (S ,⩽) is finitely transitively.

Theorem (LPY, 2024)

Every infinite set can be equipped with a homogeneous linear order.
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Noetherianinity up to symmetry

k: a commutative Noetherian ring.

A = k[xs | s ∈ S ].

Theorem (LPY, 2024)

If the action of G ⩽ Sym(S) on S is finitely transitive, then A is a
Noetherian discrete A♯G-module. That is, G-invariant ideals of A
satisfy the A.C.C.

Theorem (LPY, 2024)

If ⩽ is a homogeneous linear oder on S, and the action of
G ⩽ Aut(S ,⩽) on S is finitely transitive, then A is a Noetherian
discrete A♯G-module.
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Classify irred. objects by DLLX, Nagpal, SS

k: a field of characteristic 0.

G = lim−→n
Sn, then kG -moddis ≃ FI -fdmod.

G = lim−→n
GLn(Fq), then kG -moddis ≃ VIq -fdmod.

G = Aut(Q,⩽), then kG -moddis ≃ OI -fdmod.

G = Z, O the orbit category of finite cosets, k = k̄ , then
Sh(C, Jat , k) ≃

∏
ξ k -Mod, the Cartesian product of

categories k -Mod indexed by all primitive roots of unit.

C: finitely generated Z/pnZ-modules and surjective
homomorphisms, then sh(C, Jat , k) ≃ Cop -fdmod.

C: finite abelian p-groups and conjugacy classes of surjective
homomorphisms, then sh(C, Jat , k) ≃ Cop -fdmod.
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Thanks

Any questions?
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