A METHOD TO CONSTRUCT MODEL **STRUCTURES** Joint work with Zhenxing Di and Liping Li

Li Liang

Lanzhou Jiaotong University

ICRA 2024 6 August 2024

- ¹ Model structures
- ² A correspondence on model structures
- **3** Some examples
- **1** Model structures
- ² A correspondence on model structures
- **3** Some examples

SETUP

E: bicomplete category — A: bicomplete abelian category

• $l : A \rightarrow B$, $r : C \rightarrow D$ morphisms in E. I has the left lifting property with respect to r (or r has the right lifting property with respect to *l*), if for every pair of morphisms $f : A \rightarrow C$ and $g : B \to D$ such that $rf = gl$, $\exists t : B \to C$ s.t. $f = tl$ and $g = rt$, i.e., the next diagram commutes:

• $l : A \rightarrow B$, $r : C \rightarrow D$ morphisms in E. I has the left lifting property with respect to r (or r has the right lifting property with respect to *l*), if for every pair of morphisms $f : A \rightarrow C$ and $g : B \to D$ such that $rf = gl$, $\exists t : B \to C$ s.t. $f = tl$ and $g = rt$, i.e., the next diagram commutes:

• C: class of morphisms in E.

• $l : A \rightarrow B$, $r : C \rightarrow D$ morphisms in E. I has the left lifting property with respect to r (or r has the right lifting property with respect to *l*), if for every pair of morphisms $f : A \rightarrow C$ and $g : B \to D$ such that $rf = gl$, $\exists t : B \to C$ s.t. $f = tl$ and $g = rt$, i.e., the next diagram commutes:

 $C:$ class of morphisms in E. C^{\Box} : the class of all morphisms r in E having the right lifting property with respect to all morphisms $l \in \mathcal{C}$.

• $l : A \rightarrow B$, $r : C \rightarrow D$ morphisms in E. I has the left lifting property with respect to r (or r has the right lifting property with respect to *l*), if for every pair of morphisms $f : A \rightarrow C$ and $g : B \to D$ such that $rf = gl$, $\exists t : B \to C$ s.t. $f = tl$ and $g = rt$, i.e., the next diagram commutes:

 $C:$ class of morphisms in E. C^{\Box} : the class of all morphisms r in E having the right lifting property with respect to all morphisms $l \in \mathbb{C}$. The class ^{$\Box \mathbb{C}$} is defined similarly.

• A pair $(\mathcal{C}, \mathcal{F})$ of classes of morphisms in E is called a weak factorization system if

• A pair (C, \mathcal{F}) of classes of morphisms in E is called a weak factorization system if $\mathcal{C}^{\square} = \mathcal{F}$, $\Box \mathcal{F} = \mathcal{C}$,

• A pair $(\mathcal{C}, \mathcal{F})$ of classes of morphisms in E is called a weak factorization system if $\mathbb{C}^{\square}=\mathcal{F},\ {}^{\square}\mathcal{F}=\mathcal{C}$, and every morphism α in E can be decomposed as $\alpha = fc$ with $c \in \mathcal{C}$ and $f \in \mathcal{F}$.

- A pair $(\mathcal{C}, \mathcal{F})$ of classes of morphisms in E is called a weak factorization system if $\mathbb{C}^{\square}=\mathcal{F},\ {}^{\square}\mathcal{F}=\mathcal{C}$, and every morphism α in E can be decomposed as $\alpha = fc$ with $c \in \mathcal{C}$ and $f \in \mathcal{F}$.
- \bullet A pair (C, F) of classes of objects in A is called a complete cotorsion pair if $C^{\perp} = F$ and $^{\perp}F = C$, and for each object M in A, \exists s.e.s. $0 \rightarrow M \rightarrow F \rightarrow C \rightarrow 0$ and $0 \to F' \to C' \to M \to 0$ with $C, C' \in \mathsf{C}$ and $F, F' \in \mathsf{F}.$
- A pair $(\mathcal{C}, \mathcal{F})$ of classes of morphisms in E is called a weak factorization system if $\mathbb{C}^{\square}=\mathcal{F},\ {}^{\square}\mathcal{F}=\mathcal{C}$, and every morphism α in E can be decomposed as $\alpha = fc$ with $c \in \mathcal{C}$ and $f \in \mathcal{F}$.
- \bullet A pair (C, F) of classes of objects in A is called a complete cotorsion pair if $C^{\perp} = F$ and $^{\perp}F = C$, and for each object M in A, \exists s.e.s. $0 \rightarrow M \rightarrow F \rightarrow C \rightarrow 0$ and $0 \to F' \to C' \to M \to 0$ with $C,C' \in \mathsf{C}$ and $F,F' \in \mathsf{F}$. Here

$$
C^{\perp} = \{ N \in A \mid \operatorname{Ext}^1_A(C, N) = 0 \text{ for all } C \in C \},
$$

$$
{}^{\perp}F = \{M \in A \mid \mathsf{Ext}^1_A(M,F) = 0 \text{ for all } F \in F\}.
$$

 (C, F) : a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms $(Mon(C), Epi(F))$ is a weak factorization system in A.

 (C, F) : a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms $(Mon(C), Epi(F))$ is a weak factorization system in A.

 $\mathrm{Mon}(\mathsf{C}) = \big\{\alpha \mid \alpha \text{ is a monomorphism with Coker } \alpha \in \mathsf{C} \big\}$,

THEOREM (HOVEY, 2002)

 (C, F) : a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms $(Mon(C), Epi(F))$ is a weak factorization system in A.

$$
Mon(C) = \{ \alpha \mid \alpha \text{ is a monomorphism with Coker } \alpha \in C \}
$$

 $\text{Epi}(\mathsf{F}) = \{ \alpha \mid \alpha \text{ is an epimorphism with } \text{Ker } \alpha \in \mathsf{F} \ \}$

• A morphism $f : A \rightarrow B$ in E is said to be a retract of a morphism $g: C \to D$ in E if f is a retract of g as objects of the category of morphisms in E.

• A morphism $f : A \rightarrow B$ in E is said to be a retract of a morphism $g: C \to D$ in E if f is a retract of g as objects of the category of morphisms in E. I.e., \exists i, i', p, p' with $pi = \mathrm{id}_A$ and $p'i' = \mathrm{id}_B$ s.t. the following diagram commutes:

A model structure on a category E is a triple of classes of morphisms (C, W, \mathcal{F}) satisfying:

 \bullet (C, W \cap F) and (C \cap W, F) are weak factorization systems.

A model structure on a category E is a triple of classes of morphisms (C, W, \mathcal{F}) satisfying:

- \bullet (C, W \cap F) and (C \cap W, F) are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property:

A model structure on a category E is a triple of classes of morphisms $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfying:

- \bullet (C, W \cap F) and (C \cap W, F) are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g , and gf belong to W, then the third one also does.

A model structure on a category E is a triple of classes of morphisms $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfying:

- \bullet (C, W \cap F) and (C \cap W, F) are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g , and gf belong to W, then the third one also does.
- Morphisms in the classes C, W and F are called cofibrations, weak equivalences and fibrations, respectively.

A model structure on a category E is a triple of classes of morphisms $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfying:

- \bullet (C, W \cap F) and (C \cap W, F) are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g , and gf belong to W , then the third one also does.
- Morphisms in the classes C, W and F are called cofibrations, weak equivalences and fibrations, respectively.
- A model category is a bicomplete category with a model structure.

 \bullet An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration.

 \bullet An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration. An object F in A is said to be fibrant if the morphism $F \rightarrow 0$ is a fibration.

 \bullet An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration. An object F in A is said to be fibrant if the morphism $F \rightarrow 0$ is a fibration. An object W in A is said to be trivial if the morphism $0 \rightarrow W$ is a weak equivalence (or the morphism $W \rightarrow 0$ is a weak equivalence).

- \bullet An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration. An object F in A is said to be fibrant if the morphism $F \rightarrow 0$ is a fibration. An object W in A is said to be trivial if the morphism $0 \rightarrow W$ is a weak equivalence (or the morphism $W \rightarrow 0$ is a weak equivalence).
- A model structure (C, W, \mathcal{F}) on A is called abelian if C is the class of all monomorphisms with cofibrant cokernels and $\mathcal F$ is the class of all epimorphisms with fibrant kernels.
- \bullet An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration. An object F in A is said to be fibrant if the morphism $F \rightarrow 0$ is a fibration. An object W in A is said to be trivial if the morphism $0 \rightarrow W$ is a weak equivalence (or the morphism $W \rightarrow 0$ is a weak equivalence).
- A model structure (C, W, \mathcal{F}) on A is called abelian if C is the class of all monomorphisms with cofibrant cokernels and $\mathcal F$ is the class of all epimorphisms with fibrant kernels.
- A model category is said to be abelian if its underlying category is abelian and the model structure is abelian.

THEOREM (HOVEY, 2002)

An abelian model structure (C, W, \mathcal{F}) on A corresponds bijectively to a Hovey triple (C, W, F) of classes of objects.

- \bullet (C, W \cap F) and (C \cap W, F) are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.

- \bullet (C, W \cap F) and (C \cap W, F) are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$, \exists a Hovey triple (C, W, F) :

- \bullet (C, W \cap F) and (C \cap W, F) are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$, \exists a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.

- \bullet (C, W \cap F) and (C \cap W, F) are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$, \exists a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.
- Given a Hovey triple (C, W, F), ∃ an abelian model structure $(Mon(C), W, Epi(F))$,

- \bullet (C, W \cap F) and (C \cap W, F) are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure $(\mathcal{C}, \mathcal{W}, \mathcal{F})$, \exists a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.
- Given a Hovey triple (C, W, F), ∃ an abelian model structure $(Mon(C), W, Epi(F))$, where $W = \{w \mid w = fc \text{ with } c \in \text{Mon}(C \cap W), f \in \text{Epi}(W \cap F)\}.$

Theorem (Gillespie, 2015)

Suppose that (C, \widetilde{F}) and (\widetilde{C}, F) are two complete hereditary cotorsion pairs in A such that they are compatible, i.e., $C \subset C$ (or $\widetilde{F} \subseteq F$) and $C \cap \widetilde{F} = \widetilde{C} \cap F$. Then \exists an unique thick subcategory W for which (C, W, F) forms a Hovey triple. Moreover, this thick subcategory can be described as follows:

 $W = \{M \mid \exists s.e.s\ M \rightarrowtail A \rightarrowtail B \text{ with } A \in \widetilde{F} \text{ and } B \in \widetilde{C}\}\$ $= \{M \mid \exists \text{ s.e. s } A' \rightarrowtail B' \rightarrowtail M \text{ with } A' \in \widetilde{F} \text{ and } B' \in \widetilde{C} \}.$

Theorem (Gillespie, 2015)

Suppose that (C, \widetilde{F}) and (\widetilde{C}, F) are two complete hereditary cotorsion pairs in A such that they are compatible, i.e., $C \subset C$ (or $\widetilde{F} \subseteq F$) and $C \cap \widetilde{F} = \widetilde{C} \cap F$. Then \exists an unique thick subcategory W for which (C, W, F) forms a Hovey triple. Moreover, this thick subcategory can be described as follows:

$$
W = \{M \mid \exists \text{ s.e. s } M \rightarrowtail A \rightarrowtail B \text{ with } A \in \widetilde{F} \text{ and } B \in \widetilde{C} \}
$$

=
$$
\{M \mid \exists \text{ s.e. s } A' \rightarrowtail B' \rightarrowtail M \text{ with } A' \in \widetilde{F} \text{ and } B' \in \widetilde{C} \}.
$$

DEFINITION (QUILLEN, 1967)

A model structure on a category E is a triple of classes of morphisms (C, W, \mathcal{F}) satisfying:

- \bullet (C, W \cap F) and (C \cap W, F) are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property

A CORRESPONDENCE ON MODEL STRUCTURES

A cotorsion pair (C, F) in A is called hereditary if C is closed under the kernels of epimorphisms and F is closed under the cokernels of monomorphisms.

A cotorsion pair (C, F) in A is called hereditary if C is closed under the kernels of epimorphisms and F is closed under the cokernels of monomorphisms.

DEFINITION (JOYAL, 2008)

A class C of morphisms in E is said to satisfy left cancellation property if $\beta \alpha \in \mathcal{C}$ and $\beta \in \mathcal{C} \Rightarrow \alpha \in \mathcal{C}$. A class $\mathcal F$ of morphisms in E is said to satisfy right cancellation property if $\beta \alpha \in \mathcal{F}$ and $\alpha \in \mathcal{F}$ $\Rightarrow \beta \in \mathcal{F}$.

A cotorsion pair (C, F) in A is called hereditary if C is closed under the kernels of epimorphisms and F is closed under the cokernels of monomorphisms.

DEFINITION (JOYAL, 2008)

A class C of morphisms in E is said to satisfy left cancellation property if $\beta \alpha \in \mathcal{C}$ and $\beta \in \mathcal{C} \Rightarrow \alpha \in \mathcal{C}$. A class $\mathcal F$ of morphisms in E is said to satisfy right cancellation property if $\beta \alpha \in \mathcal{F}$ and $\alpha \in \mathcal{F}$ $\Rightarrow \beta \in \mathcal{F}$.

Theorem (Di-Li-Liang, 2024)

 (C, F) is a hereditary and complete cotorsion pair if and only if $(Mon(C), Epi(F))$ is a weak factorization system such that $Mon(C)$ satisfies left cancellation property and $Epi(F)$ satisfies right cancellation property.

 \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:

- \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:
	- $\widetilde{C} \subset C$ (or equivalently $\widetilde{F} \subset F$).

 \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:

•
$$
\widetilde{C} \subseteq C
$$
 (or equivalently $\widetilde{F} \subseteq F$).

$$
\bullet \ \mathsf{C} \cap \widetilde{\mathsf{F}} = \widetilde{\mathsf{C}} \cap \mathsf{F}.
$$

- \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:
	- $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
	- \circ C \cap F = C \cap F.
- \bullet Two weak factorization systems $(\mathcal{C}, \widetilde{\mathcal{F}})$ and $(\widetilde{\mathcal{C}}, \mathcal{F})$ in E are called compatible if the following conditions hold:

- \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:
	- $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
	- \circ C \cap F = C \cap F.
- \bullet Two weak factorization systems $(\mathcal{C}, \widetilde{\mathcal{F}})$ and $(\widetilde{\mathcal{C}}, \mathcal{F})$ in E are called compatible if the following conditions hold:
	- $\widetilde{\mathcal{C}} \subseteq \mathcal{C}$ (or equivalently $\widetilde{\mathcal{F}} \subseteq \mathcal{F}$).

CORRESPONDENCE ON MODEL STRUCTURES

- \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:
	- $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
	- \circ C \cap F = C \cap F.
- \bullet Two weak factorization systems $(\mathcal{C}, \widetilde{\mathcal{F}})$ and $(\widetilde{\mathcal{C}}, \mathcal{F})$ in E are called compatible if the following conditions hold:
	- $\widetilde{\mathcal{C}} \subseteq \mathcal{C}$ (or equivalently $\widetilde{\mathcal{F}} \subseteq \mathcal{F}$).
	- If $\alpha: X \to Y$ and $\beta: Y \to Z$ are morphisms in \mathcal{F} , then two of the three morphisms α , β and $\beta\alpha$ are in $\mathcal F$ imply the third one is in F .

CORRESPONDENCE ON MODEL STRUCTURES

- \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:
	- $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
	- \circ C \cap F = C \cap F.
- \bullet Two weak factorization systems $(\mathcal{C}, \widetilde{\mathcal{F}})$ and $(\widetilde{\mathcal{C}}, \mathcal{F})$ in E are called compatible if the following conditions hold:
	- $\widetilde{\mathcal{C}} \subseteq \mathcal{C}$ (or equivalently $\widetilde{\mathcal{F}} \subseteq \mathcal{F}$).
	- If $\alpha: X \to Y$ and $\beta: Y \to Z$ are morphisms in \mathcal{F} , then two of the three morphisms α , β and $\beta\alpha$ are in $\mathcal F$ imply the third one is in F .
	- (Span Property) If $g = fc$ is in \widetilde{C} with $c \in \widetilde{C}$ and $f \in \mathcal{F}$ then one has $f \in \widetilde{\mathcal{F}}$.

- \bullet Two cotorsion pairs (C, \widetilde{F}) and (\widetilde{C}, F) in A are called compatible if the following conditions holds:
	- $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
	- $\overline{C} \cap \widetilde{F} = \widetilde{C} \cap F.$
- \bullet Two weak factorization systems $(\mathcal{C}, \widetilde{\mathcal{F}})$ and $(\widetilde{\mathcal{C}}, \mathcal{F})$ in E are called compatible if the following conditions hold:
	- $\widetilde{\mathcal{C}} \subseteq \mathcal{C}$ (or equivalently $\widetilde{\mathcal{F}} \subseteq \mathcal{F}$).
	- If $\alpha: X \to Y$ and $\beta: Y \to Z$ are morphisms in \mathcal{F} , then two of the three morphisms α , β and $\beta\alpha$ are in $\mathcal F$ imply the third one is in F .
	- (Span Property) If $g = fc$ is in \widetilde{C} with $c \in \widetilde{C}$ and $f \in \mathcal{F}$ then one has $f \in \widetilde{\mathcal{F}}$.

Theorem (Di-Li-Liang, 2024)

 (C, \widetilde{F}) and (\widetilde{C}, F) are two compatible and complete cotorsion pairs if and only if $(\text{Mon}(C), \text{Epi}(F))$ and $(\text{Mon}(C), \text{Epi}(F))$ are two compatible weak factorization systems.

Theorem (Gillespie, 2015)

 (C, \widetilde{F}) and (\widetilde{C}, F) are two compatible hereditary complete cotorsion *pairs in* A. Then ∃ an unique $W_{\widetilde{C}, \widetilde{F}}$ for which $(C, W_{\widetilde{C}, \widetilde{F}}, F)$ forms a Hovey triple. Moreover,

$$
W_{\widetilde{C},\widetilde{F}} = \{M \mid \exists \text{ s.e. s } M \rightarrowtail A \rightarrowtail B \text{ with } A \in \widetilde{F} \text{ and } B \in \widetilde{C} \}
$$

= $\{M \mid \exists \text{ s.e. s } A' \rightarrowtail B' \rightarrowtail M \text{ with } A' \in \widetilde{F} \text{ and } B' \in \widetilde{C} \}$.

Theorem (Gillespie, 2015)

 (C, \widetilde{F}) and (\widetilde{C}, F) are two compatible hereditary complete cotorsion pairs in A. Then ∃ an unique $W_{\widetilde{C}, \widetilde{F}}$ for which $(C, W_{\widetilde{C}, \widetilde{F}}, F)$ forms a Hovey triple. Moreover,

$$
W_{\widetilde{C},\widetilde{F}} = \{M \mid \exists \text{ s.e. s } M \rightarrowtail A \rightarrowtail B \text{ with } A \in \widetilde{F} \text{ and } B \in \widetilde{C} \}
$$

= $\{M \mid \exists \text{ s.e. s } A' \rightarrowtail B' \rightarrowtail M \text{ with } A' \in \widetilde{F} \text{ and } B' \in \widetilde{C} \}$.

Theorem (Di-Li-Liang, 2024)

 $(C, \widetilde{\mathcal{F}})$ and $(\widetilde{C}, \mathcal{F})$ are two compatible weak factorization systems on E such that $(\mathcal{C}, \mathcal{F})$ satisfies the Frobenius property, and \mathcal{C} and \mathcal{C} satisfy the left cancellation property. Then \exists an unique $\mathcal{W}_{\widetilde{\mathcal{C}},\widetilde{\mathcal{F}}}$ for which $(C, W_{\widetilde{\rho},\widetilde{\Phi}},\mathcal{F})$ forms a model structure on E. Moreover,

$$
\mathcal{W}_{\widetilde{\mathcal{C}},\widetilde{\mathcal{F}}} = \{ \alpha \mid \alpha = \text{fc with } c \in \widetilde{\mathcal{C}} \text{ and } f \in \widetilde{\mathcal{F}} \}
$$

DEFINITION (GAMBINO AND SATTLER, 2017)

A weak factorization system (C, \mathcal{F}) is said to satisfy the Frobenius property if the morphisms in C are preserved under pullback along the morphisms in F.

DEFINITION (GAMBINO AND SATTLER, 2017)

A weak factorization system $(\mathcal{C}, \mathcal{F})$ is said to satisfy the Frobenius property if the morphisms in $\mathcal C$ are preserved under pullback along the morphisms in F.

Theorem (Di-Li-Liang, 2024)

Let (C, F) be a complete cotorsion pair in A. Then $(Mon(C), Epi(F))$ is a weak factorization system satisfying the Frobenius property.

Theorem (Di-Li-Liang, 2024)

 $(C, \widetilde{\mathcal{F}})$ and $(\widetilde{C}, \mathcal{F})$ are two compatible weak factorization systems on E such that $(\mathcal{C}, \mathcal{F})$ satisfies the Frobenius property, and \mathcal{C} and \mathcal{C} satisfy the left cancellation property. Then \exists an unique $\mathcal{W}_{\widetilde{\mathcal{C}},\widetilde{\mathcal{F}}}$ for which $(\mathcal{C}, \mathcal{W}_{\widetilde{\rho}}\widetilde{\sigma}, \mathcal{F})$ forms a model structure on E.

Theorem (Di-Li-Liang, 2024)

 $(C, \widetilde{\mathcal{F}})$ and $(\widetilde{C}, \mathcal{F})$ are two compatible weak factorization systems on E such that $(\mathcal{C}, \mathcal{F})$ satisfies the Frobenius property, and \mathcal{C} and \mathcal{C} satisfy the left cancellation property. Then \exists an unique $\mathcal{W}_{\widetilde{\rho}}$ or which $(\mathcal{C}, \mathcal{W}_{\widetilde{\rho}}\widetilde{\sigma}, \mathcal{F})$ forms a model structure on E.

EXAMPLE

Let (C, \widetilde{F}) and (\widetilde{C}, F) be compatible complete hereditary cotorsion pairs in an abelian category A. Then

$(Mon(C),$ $Epi(\widetilde{F}))$ and $(Mon(\widetilde{C}),$ $Epi(F))$

are compatible weak factorization systems such that $(Mon(C), Epi(F))$ satisfies the Frobenius property and $Mon(C)$ and $Mon(\tilde{C})$ satisfy the left cancellation property.

EXAMPLE

Consider the category $\mathsf{Ch}_{\geq 0}(R)$, which is a bicomplete abelian category. Let

- C: the monomorphisms $f: X \to Y$ in $\mathsf{Ch}_{\geq 0}(R)$ such that each cokernel of $f_k : X_k \to Y_k$ is a projective R-module for $k > 0$;
- W: the quasi-isomorphisms in $\text{Ch}_{\geq 0}(R)$;
- F: the morphisms $f : X \to Y$ in $\text{Ch}_{\geq 0}(R)$ such that all $f_k: X_k \to Y_k$ are epimorphisms for $k > 0$.

Then $(C, \mathcal{F} \cap \mathcal{W})$ and $(C \cap \mathcal{W}, \mathcal{F})$ are compatible weak factorization systems such that $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ satisfies the Frobenius property and C and $C \cap W$ satisfy the left cancellation property.

EXAMPLE

Let sSet denote the category of simplicial sets, defined as usual to be the category of presheaves over the simplex category \triangle . Let

- C: monomorphisms, i.e., morphisms $f : X \rightarrow Y$ in sSet such that $f_k : X_k \to Y_k$ is an injection of sets for each $k \in \mathbb{N}$;
- \bullet W: morphisms $f : X \rightarrow Y$ in sSet whose geometric realization $|f|$ is a weak homotopy equivalence of topological spaces;
- \bullet \mathcal{F} : the Kan fibrations, i.e., morphisms $f : X \rightarrow Y$ in sSet that have the right lifting property with respect to all horn inclusions.

Then $(C, \mathcal{F} \cap \mathcal{W})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are compatible weak factorization systems such that $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ satisfies the Frobenius property and C and $\mathcal{C} \cap \mathcal{W}$ satisfy the left cancellation property.

A METHOD TO CONSTRUCT MODEL **STRUCTURES**

Joint work with Zhenxing Di and Liping Li

Li Liang

Lanzhou Jiaotong University

Zhenxing Di, Liping Li and Li Liang, Compatible weak factorization systems and model structures, arXiv: 2405.00312.