A METHOD TO CONSTRUCT MODEL STRUCTURES Joint work with Zhenxing Di and Liping Li

Li Liang

Lanzhou Jiaotong University

ICRA 2024 6 August 2024

- Model structures
- ② A correspondence on model structures
- Some examples

- Model structures
- ② A correspondence on model structures
- Some examples

Setup

E: bicomplete category — A: bicomplete abelian category

I : *A* → *B*, *r* : *C* → *D* morphisms in E. *I* has the left lifting property with respect to *r* (or *r* has the right lifting property with respect to *I*), if for every pair of morphisms *f* : *A* → *C* and *g* : *B* → *D* such that *rf* = *gI*, ∃ *t* : *B* → *C* s.t. *f* = *tI* and *g* = *rt*, i.e., the next diagram commutes:

I: A → B, r: C → D morphisms in E. *I* has the left lifting property with respect to r (or r has the right lifting property with respect to *I*), if for every pair of morphisms f : A → C and g : B → D such that rf = gl, ∃ t : B → C s.t. f = tl and g = rt, i.e., the next diagram commutes:

• C: class of morphisms in E.

I: A → B, r: C → D morphisms in E. *I* has the left lifting property with respect to r (or r has the right lifting property with respect to *I*), if for every pair of morphisms f : A → C and g : B → D such that rf = gl, ∃ t : B → C s.t. f = tl and g = rt, i.e., the next diagram commutes:

 C: class of morphisms in E. C[□]: the class of all morphisms r in E having the right lifting property with respect to all morphisms l ∈ C.

I: A → B, r: C → D morphisms in E. *I* has the left lifting property with respect to r (or r has the right lifting property with respect to *I*), if for every pair of morphisms f : A → C and g : B → D such that rf = gl, ∃ t : B → C s.t. f = tl and g = rt, i.e., the next diagram commutes:

 C: class of morphisms in E. C[□]: the class of all morphisms r in E having the right lifting property with respect to all morphisms l ∈ C. The class [□]C is defined similarly. • A pair $({\mathfrak C},{\mathfrak F})$ of classes of morphisms in E is called a weak factorization system if

A pair (C, 𝔅) of classes of morphisms in E is called a weak factorization system if C[□] = 𝔅, [□]𝔅 = C,

A pair (C, F) of classes of morphisms in E is called a weak factorization system if C[□] = F, [□]F = C, and every morphism α in E can be decomposed as α = fc with c ∈ C and f ∈ F.

- A pair (C, 𝔅) of classes of morphisms in E is called a weak factorization system if C[□] = 𝔅, [□]𝔅 = C, and every morphism α in E can be decomposed as α = fc with c ∈ C and f ∈ 𝔅.
- A pair (C, F) of classes of objects in A is called a complete cotorsion pair if C[⊥] = F and [⊥]F = C, and for each object M in A, ∃ s.e.s. 0 → M → F → C → 0 and 0 → F' → C' → M → 0 with C, C' ∈ C and F, F' ∈ F.

- A pair (C, 𝔅) of classes of morphisms in E is called a weak factorization system if C[□] = 𝔅, [□]𝔅 = C, and every morphism α in E can be decomposed as α = fc with c ∈ C and f ∈ 𝔅.
- A pair (C, F) of classes of objects in A is called a complete cotorsion pair if C[⊥] = F and [⊥]F = C, and for each object M in A, ∃ s.e.s. 0 → M → F → C → 0 and 0 → F' → C' → M → 0 with C, C' ∈ C and F, F' ∈ F. Here

$$C^{\perp} = \{N \in A \mid \operatorname{Ext}^{1}_{A}(C, N) = 0 \text{ for all } C \in C\},\$$

$${}^{\perp}\mathsf{F} = \{M \in \mathsf{A} \mid \operatorname{\mathsf{Ext}}^1_\mathsf{A}(M,F) = 0 \text{ for all } F \in \mathsf{F}\}.$$

(C, F): a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms (Mon(C), Epi(F)) is a weak factorization system in A.

(C, F): a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms (Mon(C), Epi(F)) is a weak factorization system in A.

 $Mon(\mathsf{C}) = \left\{ \alpha \mid \alpha \text{ is a monomorphism with } \mathsf{Coker} \, \alpha \in \mathsf{C} \right\},\$

Theorem (Hovey, 2002)

(C, F): a pair of classes of objects in A. Then (C, F) is a complete cotorsion pair if and only if the pair of classes of morphisms (Mon(C), Epi(F)) is a weak factorization system in A.

$$Mon(\mathsf{C}) = \left\{ \alpha \mid \alpha \text{ is a monomorphism with } \mathsf{Coker} \, \alpha \in \mathsf{C} \right\},\$$

 $\operatorname{Epi}(\mathsf{F}) = \left\{ \alpha \mid \alpha \text{ is an epimorphism with } \operatorname{Ker} \alpha \in \mathsf{F} \right\}$

 A morphism f : A → B in E is said to be a retract of a morphism g : C → D in E if f is a retract of g as objects of the category of morphisms in E. A morphism f : A → B in E is said to be a retract of a morphism g : C → D in E if f is a retract of g as objects of the category of morphisms in E. I.e., ∃ i, i', p, p' with pi = id_A and p'i' = id_B s.t. the following diagram commutes:

A model structure on a category E is a triple of classes of morphisms $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ satisfying:

• $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.

- $(\mathfrak{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathfrak{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property:

- $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g, and gf belong to W, then the third one also does.

- $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g, and gf belong to W, then the third one also does.
- Morphisms in the classes C, $\mathcal W$ and $\mathcal F$ are called cofibrations, weak equivalences and fibrations, respectively.

- $(\mathcal{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathcal{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property: for any composable pair of morphisms f and g in E, if two of the three morphisms f, g, and gf belong to W, then the third one also does.
- Morphisms in the classes C, $\mathcal W$ and $\mathcal F$ are called cofibrations, weak equivalences and fibrations, respectively.
- A model category is a bicomplete category with a model structure.

• An object C in A is said to be cofibrant if the morphism $0 \rightarrow C$ is a cofibration.

An object C in A is said to be cofibrant if the morphism
 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration.

An object C in A is said to be cofibrant if the morphism
 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration. An object W in A is said to be trivial if the morphism 0 → W is a weak equivalence (or the morphism W → 0 is a weak equivalence).

- An object C in A is said to be cofibrant if the morphism 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration. An object W in A is said to be trivial if the morphism 0 → W is a weak equivalence (or the morphism W → 0 is a weak equivalence).
- A model structure (C, W, F) on A is called abelian if C is the class of all monomorphisms with cofibrant cokernels and F is the class of all epimorphisms with fibrant kernels.

- An object C in A is said to be cofibrant if the morphism 0 → C is a cofibration. An object F in A is said to be fibrant if the morphism F → 0 is a fibration. An object W in A is said to be trivial if the morphism 0 → W is a weak equivalence (or the morphism W → 0 is a weak equivalence).
- A model structure (C, W, F) on A is called abelian if C is the class of all monomorphisms with cofibrant cokernels and F is the class of all epimorphisms with fibrant kernels.
- A model category is said to be abelian if its underlying category is abelian and the model structure is abelian.

An abelian model structure $(\mathbb{C}, \mathcal{W}, \mathfrak{F})$ on A corresponds bijectively to a Hovey triple (C, W, F) of classes of objects.

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure ($\mathfrak{C}, \mathfrak{W}, \mathfrak{F}$), \exists a Hovey triple (C, W, F):

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure (C, W, F), ∃ a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure (C, W, F), ∃ a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.
- Given a Hovey triple (C, W, F), \exists an abelian model structure (Mon(C), W, Epi(F)),

- $\bullet~(\mathsf{C},\mathsf{W}\cap\mathsf{F})$ and $(\mathsf{C}\cap\mathsf{W},\mathsf{F})$ are complete cotorsion pairs.
- W is a thick subcategory; that is, it is closed under direct summands and satisfies the (2-3) property.
- Given an abelian model structure (C, W, F), ∃ a Hovey triple (C, W, F): C is the class of all cofibrant objects, W is the class of all trivial objects, and F is the class of all fibrant objects.
- Given a Hovey triple (C, W, F), ∃ an abelian model structure (Mon(C), W, Epi(F)), where
 W = {w | w = fc with c ∈ Mon(C ∩ W), f ∈ Epi(W ∩ F)}.

THEOREM (GILLESPIE, 2015)

Suppose that (C, \widetilde{F}) and (\widetilde{C}, F) are two complete hereditary cotorsion pairs in A such that they are compatible, i.e., $\widetilde{C} \subseteq C$ (or $\widetilde{F} \subseteq F$) and $C \cap \widetilde{F} = \widetilde{C} \cap F$. Then \exists an unique thick subcategory W for which (C, W, F) forms a Hovey triple. Moreover, this thick subcategory can be described as follows:

$$W = \{M \mid \exists s.e.s \ M \rightarrowtail A \twoheadrightarrow B \text{ with } A \in \widetilde{\mathsf{F}} \text{ and } B \in \widetilde{\mathsf{C}} \} \\ = \{M \mid \exists s.e.s \ A' \rightarrowtail B' \twoheadrightarrow M \text{ with } A' \in \widetilde{\mathsf{F}} \text{ and } B' \in \widetilde{\mathsf{C}} \}.$$

THEOREM (GILLESPIE, 2015)

Suppose that (C, \widetilde{F}) and (\widetilde{C}, F) are two complete hereditary cotorsion pairs in A such that they are compatible, i.e., $\widetilde{C} \subseteq C$ (or $\widetilde{F} \subseteq F$) and $C \cap \widetilde{F} = \widetilde{C} \cap F$. Then \exists an unique thick subcategory W for which (C, W, F) forms a Hovey triple. Moreover, this thick subcategory can be described as follows:

$$\begin{aligned} \mathsf{W} &= \{ M \mid \exists \text{ s.e.s } M \rightarrowtail A \twoheadrightarrow B \text{ with } A \in \widetilde{\mathsf{F}} \text{ and } B \in \widetilde{\mathsf{C}} \} \\ &= \{ M \mid \exists \text{ s.e.s } A' \rightarrowtail B' \twoheadrightarrow M \text{ with } A' \in \widetilde{\mathsf{F}} \text{ and } B' \in \widetilde{\mathsf{C}} \}. \end{aligned}$$

DEFINITION (QUILLEN, 1967)

- $(\mathfrak{C}, \mathcal{W} \cap \mathfrak{F})$ and $(\mathfrak{C} \cap \mathcal{W}, \mathfrak{F})$ are weak factorization systems.
- W is closed under retracts and satisfies the (2-3) property

A CORRESPONDENCE ON MODEL STRUCTURES

A cotorsion pair (C, F) in A is called hereditary if C is closed under the kernels of epimorphisms and F is closed under the cokernels of monomorphisms.

A cotorsion pair (C, F) in A is called hereditary if C is closed under the kernels of epimorphisms and F is closed under the cokernels of monomorphisms.

Definition (Joyal, 2008)

A class \mathcal{C} of morphisms in E is said to satisfy left cancellation property if $\beta \alpha \in \mathcal{C}$ and $\beta \in \mathcal{C} \Rightarrow \alpha \in \mathcal{C}$. A class \mathcal{F} of morphisms in E is said to satisfy right cancellation property if $\beta \alpha \in \mathcal{F}$ and $\alpha \in \mathcal{F}$ $\Rightarrow \beta \in \mathcal{F}$. A cotorsion pair (C, F) in A is called <u>hereditary</u> if C is closed under the kernels of epimorphisms and F is closed under the cokernels of monomorphisms.

Definition (Joyal, 2008)

A class \mathcal{C} of morphisms in E is said to satisfy left cancellation property if $\beta \alpha \in \mathcal{C}$ and $\beta \in \mathcal{C} \Rightarrow \alpha \in \mathcal{C}$. A class \mathcal{F} of morphisms in E is said to satisfy right cancellation property if $\beta \alpha \in \mathcal{F}$ and $\alpha \in \mathcal{F}$ $\Rightarrow \beta \in \mathcal{F}$.

THEOREM (DI-LI-LIANG, 2024)

(C, F) is a hereditary and complete cotorsion pair if and only if (Mon(C), Epi(F)) is a weak factorization system such that Mon(C) satisfies left cancellation property and Epi(F) satisfies right cancellation property.

 Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:

 Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:

•
$$\widetilde{C} \subseteq C$$
 (or equivalently $\widetilde{F} \subseteq F$).

 Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:

•
$$\widetilde{C} \subseteq C$$
 (or equivalently $\widetilde{F} \subseteq F$).

•
$$C \cap \widetilde{F} = \widetilde{C} \cap F$$
.

- Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:
 - $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
 - $C \cap \widetilde{F} = \widetilde{C} \cap F$.
- Two weak factorization systems (C, F) and (C, F) in E are called compatible if the following conditions hold:

- Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:
 - $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
 - $C \cap \widetilde{F} = \widetilde{C} \cap F$.
- Two weak factorization systems (C, F) and (C, F) in E are called compatible if the following conditions hold:
 - $\widetilde{\mathfrak{C}} \subseteq \mathfrak{C}$ (or equivalently $\widetilde{\mathfrak{F}} \subseteq \mathfrak{F}$).

- Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:
 - $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
 - $C \cap \widetilde{F} = \widetilde{C} \cap F$.
- Two weak factorization systems (C, F) and (C, F) in E are called compatible if the following conditions hold:
 - $\widetilde{\mathfrak{C}} \subseteq \mathfrak{C}$ (or equivalently $\widetilde{\mathfrak{F}} \subseteq \mathfrak{F}$).
 - If $\alpha: X \to Y$ and $\beta: Y \to Z$ are morphisms in \mathcal{F} , then two of the three morphisms α , β and $\beta\alpha$ are in $\widetilde{\mathcal{F}}$ imply the third one is in $\widetilde{\mathcal{F}}$.

- Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:
 - $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
 - $C \cap \widetilde{F} = \widetilde{C} \cap F$.
- Two weak factorization systems (C, F) and (C, F) in E are called compatible if the following conditions hold:
 - $\widetilde{\mathfrak{C}} \subseteq \mathfrak{C}$ (or equivalently $\widetilde{\mathfrak{F}} \subseteq \mathfrak{F}$).
 - If $\alpha: X \to Y$ and $\beta: Y \to Z$ are morphisms in \mathcal{F} , then two of the three morphisms α , β and $\beta\alpha$ are in $\widetilde{\mathcal{F}}$ imply the third one is in $\widetilde{\mathcal{F}}$.
 - (Span Property) If g = fc is in C̃ with c ∈ C̃ and f ∈ F then one has f ∈ F̃.

- Two cotorsion pairs (C, F) and (C, F) in A are called compatible if the following conditions holds:
 - $\widetilde{C} \subseteq C$ (or equivalently $\widetilde{F} \subseteq F$).
 - $C \cap \widetilde{F} = \widetilde{C} \cap F$.
- Two weak factorization systems (C, F) and (C, F) in E are called compatible if the following conditions hold:
 - $\widetilde{\mathfrak{C}} \subseteq \mathfrak{C}$ (or equivalently $\widetilde{\mathfrak{F}} \subseteq \mathfrak{F}$).
 - If $\alpha: X \to Y$ and $\beta: Y \to Z$ are morphisms in \mathcal{F} , then two of the three morphisms α , β and $\beta\alpha$ are in $\widetilde{\mathcal{F}}$ imply the third one is in $\widetilde{\mathcal{F}}$.
 - (Span Property) If g = fc is in C̃ with c ∈ C̃ and f ∈ F then one has f ∈ F̃.

THEOREM (DI-LI-LIANG, 2024)

 (C, \widetilde{F}) and (\widetilde{C}, F) are two compatible and complete cotorsion pairs if and only if $(Mon(C), Epi(\widetilde{F}))$ and $(Mon(\widetilde{C}), Epi(F))$ are two compatible weak factorization systems.

THEOREM (GILLESPIE, 2015)

 (C,\widetilde{F}) and (\widetilde{C},F) are two compatible hereditary complete cotorsion pairs in A. Then \exists an unique $W_{\widetilde{C},\widetilde{F}}$ for which $(C,W_{\widetilde{C},\widetilde{F}},F)$ forms a Hovey triple. Moreover,

$$\begin{split} & \mathcal{W}_{\widetilde{\mathsf{C}},\widetilde{\mathsf{F}}} = \{ M \mid \exists \textit{ s.e.s } M \rightarrowtail A \twoheadrightarrow B \textit{ with } A \in \widetilde{\mathsf{F}} \textit{ and } B \in \widetilde{\mathsf{C}} \} \\ &= \{ M \mid \exists \textit{ s.e.s } A' \rightarrowtail B' \twoheadrightarrow M \textit{ with } A' \in \widetilde{\mathsf{F}} \textit{ and } B' \in \widetilde{\mathsf{C}} \}. \end{split}$$

THEOREM (GILLESPIE, 2015)

 (C,\widetilde{F}) and (\widetilde{C},F) are two compatible hereditary complete cotorsion pairs in A. Then \exists an unique $W_{\widetilde{C},\widetilde{F}}$ for which $(C,W_{\widetilde{C},\widetilde{F}},F)$ forms a Hovey triple. Moreover,

$$\begin{split} \mathsf{W}_{\widetilde{\mathsf{C}},\widetilde{\mathsf{F}}} &= \{ M \mid \exists \textit{ s.e.s } M \rightarrowtail A \twoheadrightarrow B \textit{ with } A \in \widetilde{\mathsf{F}} \textit{ and } B \in \widetilde{\mathsf{C}} \} \\ &= \{ M \mid \exists \textit{ s.e.s } A' \rightarrowtail B' \twoheadrightarrow M \textit{ with } A' \in \widetilde{\mathsf{F}} \textit{ and } B' \in \widetilde{\mathsf{C}} \}. \end{split}$$

THEOREM (DI-LI-LIANG, 2024)

 $(\mathfrak{C}, \widetilde{\mathfrak{F}})$ and $(\widetilde{\mathfrak{C}}, \mathfrak{F})$ are two compatible weak factorization systems on E such that $(\widetilde{\mathfrak{C}}, \mathfrak{F})$ satisfies the Frobenius property, and \mathfrak{C} and $\widetilde{\mathfrak{C}}$ satisfy the left cancellation property. Then \exists an unique $\mathcal{W}_{\widetilde{\mathfrak{C}}, \widetilde{\mathfrak{F}}}$ for which $(\mathfrak{C}, \mathcal{W}_{\widetilde{\mathfrak{C}}, \widetilde{\mathfrak{F}}}, \mathfrak{F})$ forms a model structure on E. Moreover,

$$\mathcal{W}_{\widetilde{\mathfrak{C}},\widetilde{\mathfrak{F}}} = \{ \alpha \mid \alpha = \textit{fc with } c \in \widetilde{\mathfrak{C}} \textit{ and } f \in \widetilde{\mathfrak{F}} \}$$

DEFINITION (GAMBINO AND SATTLER, 2017)

A weak factorization system $(\mathcal{C}, \mathcal{F})$ is said to satisfy the Frobenius property if the morphisms in \mathcal{C} are preserved under pullback along the morphisms in \mathcal{F} .

DEFINITION (GAMBINO AND SATTLER, 2017)

A weak factorization system $(\mathcal{C}, \mathcal{F})$ is said to satisfy the Frobenius property if the morphisms in \mathcal{C} are preserved under pullback along the morphisms in \mathcal{F} .

THEOREM (DI-LI-LIANG, 2024)

Let (C, F) be a complete cotorsion pair in A. Then (Mon(C), Epi(F)) is a weak factorization system satisfying the Frobenius property.

THEOREM (DI-LI-LIANG, 2024)

 $(\mathfrak{C}, \widetilde{\mathfrak{F}})$ and $(\widetilde{\mathfrak{C}}, \mathfrak{F})$ are two compatible weak factorization systems on E such that $(\widetilde{\mathfrak{C}}, \mathfrak{F})$ satisfies the Frobenius property, and \mathfrak{C} and $\widetilde{\mathfrak{C}}$ satisfy the left cancellation property. Then \exists an unique $\mathcal{W}_{\widetilde{\mathfrak{C}}, \widetilde{\mathfrak{F}}}$ for which $(\mathfrak{C}, \mathcal{W}_{\widetilde{\mathfrak{C}}, \widetilde{\mathfrak{F}}}, \mathfrak{F})$ forms a model structure on E.

THEOREM (DI-LI-LIANG, 2024)

 $(\mathfrak{C}, \widetilde{\mathfrak{F}})$ and $(\widetilde{\mathfrak{C}}, \mathfrak{F})$ are two compatible weak factorization systems on E such that $(\widetilde{\mathfrak{C}}, \mathfrak{F})$ satisfies the Frobenius property, and \mathfrak{C} and $\widetilde{\mathfrak{C}}$ satisfy the left cancellation property. Then \exists an unique $\mathcal{W}_{\widetilde{\mathfrak{C}}, \widetilde{\mathfrak{F}}}$ for which $(\mathfrak{C}, \mathcal{W}_{\widetilde{\mathfrak{C}}, \widetilde{\mathfrak{F}}}, \mathfrak{F})$ forms a model structure on E.

EXAMPLE

Let (C, \widetilde{F}) and (\widetilde{C}, F) be compatible complete hereditary cotorsion pairs in an abelian category A. Then

$(Mon(C), Epi(\widetilde{F}))$ and $(Mon(\widetilde{C}), Epi(F))$

are compatible weak factorization systems such that $(\operatorname{Mon}(\widetilde{\mathsf{C}}),\operatorname{Epi}(\mathsf{F}))$ satisfies the Frobenius property and $\operatorname{Mon}(\mathsf{C})$ and $\operatorname{Mon}(\widetilde{\mathsf{C}})$ satisfy the left cancellation property.

EXAMPLE

Consider the category $Ch_{\geq 0}(R)$, which is a bicomplete abelian category. Let

- C: the monomorphisms f : X → Y in Ch_{≥0}(R) such that each cokernel of f_k : X_k → Y_k is a projective R-module for k ≥ 0;
- \mathcal{W} : the quasi-isomorphisms in $Ch_{\geq 0}(R)$;
- \mathcal{F} : the morphisms $f : X \to Y$ in $Ch_{\geq 0}(R)$ such that all $f_k : X_k \to Y_k$ are epimorphisms for k > 0.

Then $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are compatible weak factorization systems such that $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ satisfies the Frobenius property and \mathcal{C} and $\mathcal{C} \cap \mathcal{W}$ satisfy the left cancellation property.

EXAMPLE

Let sSet denote the category of simplicial sets, defined as usual to be the category of presheaves over the simplex category \triangle . Let

- C: monomorphisms, i.e., morphisms $f : X \to Y$ in sSet such that $f_k : X_k \to Y_k$ is an injection of sets for each $k \in \mathbb{N}$;
- W: morphisms $f : X \to Y$ in sSet whose geometric realization |f| is a weak homotopy equivalence of topological spaces;
- 𝔅: the Kan fibrations, i.e., morphisms f : X → Y in sSet that have the right lifting property with respect to all horn inclusions.

Then $(\mathcal{C}, \mathcal{F} \cap \mathcal{W})$ and $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ are compatible weak factorization systems such that $(\mathcal{C} \cap \mathcal{W}, \mathcal{F})$ satisfies the Frobenius property and \mathcal{C} and $\mathcal{C} \cap \mathcal{W}$ satisfy the left cancellation property.

A METHOD TO CONSTRUCT MODEL STRUCTURES JOINT WORK WITH ZHENXING DI AND LIPING LI

Li Liang

Lanzhou Jiaotong University

Zhenxing Di, Liping Li and Li Liang, Compatible weak factorization systems and model structures, arXiv: 2405.00312.