On Utumi rings

(joint work with Cosmin Roman, Nguyen Khanh Tung, and Xiaoxiang Zhang)

Gangyong Lee

Chungnam National University, Associate Professor

International Conference on Representations of Algebras (ICRA 21) Shanghai Jiao Tong University, Shanghai, China August 09, 2024

- * *Q*(*R*) is a maximal right ring of quotients of a ring *R*.
- * *E*(*R*) is an injective hull of a ring *R*.
- $*$ **r**_{*R*}(*I*) = {*s* ∈ *R*| *Is* = 0} for *I* ≤ *R*.
- * **l***R*(*J*) = *{t ∈ R |tJ* = 0*}* for *J ≤ R*.
- $*$ For $x \in R$, $x^{-1}K = \{r \in R | xr \in K\}$ $\leq R_R$ for $K \leq R$.
- ^{*} *I* is a right essential ideal of *R*: $I \leq^{ess} R_R$,
- * *J* is a right dense ideal of *R*: *J ≤*den *R*,
- * Note that $R \leq^{\text{den}} Q(R) \leq^{\text{ess}} E(R)$.

- * *Q*(*R*) is a maximal right ring of quotients of a ring *R*.
- * *E*(*R*) is an injective hull of a ring *R*.
- * $\mathbf{r}_R(I) = \{ s \in R \mid I s = 0 \}$ for $I \leq R$.
- * **l**_{*R*}(*J*) = {*t* \in *R*| *tJ* = 0} for *J* \leq *R*.
- $*$ For $x \in R$, $x^{-1}K = \{r \in R | xr \in K\}$ $\leq R_R$ for $K \leq R$.
- ^{*} *I* is a right essential ideal of *R*: $I \leq^{ess} R_R$,
- * *J* is a right dense ideal of *R*: *J ≤*den *R*,
- * Note that $R \leq^{\text{den}} Q(R) \leq^{\text{ess}} E(R)$.

- * *Q*(*R*) is a maximal right ring of quotients of a ring *R*.
- * *E*(*R*) is an injective hull of a ring *R*.
- * $\mathbf{r}_R(I) = \{ s \in R \mid I s = 0 \}$ for $I \leq R$.
- * **l**_{*R*}(*J*) = {*t* \in *R*| *tJ* = 0} for *J* \leq *R*.
- $*$ For $x \in R$, $x^{-1}K = \{r \in R | xr \in K\}$ $\leq R_R$ for $K \leq R$.
- * *I* is a right essential ideal of *R*: *I ≤*ess *RR*, *∀*0 *̸*= *x ∈ R*, *∃r ∈ R* such that 0 *̸*= *xr ∈ I*.
- * *J* is a right dense ideal of *R*: *J ≤*den *R*, *∀x,* 0 *̸*= *y ∈ R*, *∃r ∈ R* such that *xr ∈ J* and 0 *̸*= *yr*.
- * Note that $R \leq^{\text{den}} Q(R) \leq^{\text{ess}} E(R)$.

As we know that a commutative integral domain can be embedded in a field, called its field of fractions.

As we know that a commutative integral domain can be embedded in a field, called its field of fractions.

Definition

Let *R* be a commutative ring and let *S* be the set of elements which are not zero divisors in R ; then \overline{S} is a multiplicatively closed set.

As we know that a commutative integral domain can be embedded in a field, called its field of fractions.

Definition

Let *R* be a commutative ring and let *S* be the set of elements which are not zero divisors in R ; then \overline{S} is a multiplicatively closed set.

Hence we may localize the ring *R* at the set *S* to obtain the total quotient ring *RS−*¹ .

*as−*¹ *bt−*¹ *∈*? *RS−*¹

*as−*¹ *bt−*¹ *∈*? *RS−*¹

Definition

A set *S* is called right permutable (or right Ore) if $aS \cap sR \neq \emptyset$ for any $a \in R$ and $s \in S$.

A set *S* is called right reversible

$$
as^{-1}bt^{-1}\in RS^{-1}
$$

A set *S* is called right permutable (or right Ore) if $aS \cap sR \neq \emptyset$ for any $a \in R$ and $s \in S$. A set *S* is called right reversible i *f s'* $a = 0$ for some $s' \in S$ implies that $as = 0$ for some $s \in S$.

$$
as^{-1}bt^{-1}\in RS^{-1}
$$

A set *S* is called right permutable (or right Ore) if $aS \cap sR \neq ∅$ for any $a \in R$ and $s \in S$. A set *S* is called right reversible i *f s'* $a = 0$ for some $s' \in S$ implies that $as = 0$ for some $s \in S$.

A multiplicative set *S ⊆ R* is called a right denominator set if *S* is both right permutable and right reversible.

$$
as^{-1}bt^{-1}\in RS^{-1}
$$

A set *S* is called right permutable (or right Ore) if $aS \cap sR \neq ∅$ for any $a \in R$ and $s \in S$. A set *S* is called right reversible i *f s'* $a = 0$ for some $s' \in S$ implies that $as = 0$ for some $s \in S$.

A multiplicative set *S ⊆ R* is called a right denominator set if *S* is both right permutable and right reversible.

Definition

Let *S* be the multiplicative set of all regular elements.

$$
as^{-1}bt^{-1}\in RS^{-1}
$$

A set *S* is called right permutable (or right Ore) if *aS* ∩ *sR* \neq *Ø* for any *a* \in *R* and *s* \in *S*. A set *S* is called right reversible i *f s'* $a = 0$ for some $s' \in S$ implies that $as = 0$ for some $s \in S$.

A multiplicative set *S ⊆ R* is called a right denominator set if *S* is both right permutable and right reversible.

Definition

Let *S* be the multiplicative set of all regular elements. We say that *R* is a right Ore ring iff *S* is right permutable iff *RS−*¹ exists.

$$
as^{-1}bt^{-1}\notin RS^{-1}
$$

A set *S* is called right permutable (or right Ore) $\text{if } aS \cap sR \neq \emptyset \text{ for any } a \in R \text{ and } s \in S.$ A set *S* is called right reversible i *f s'* $a = 0$ for some $s' \in S$ implies that $as = 0$ for some $s \in S$.

A multiplicative set *S ⊆ R* is called a right denominator set if *S* is both right permutable and right reversible.

Definition

Let *S* be the multiplicative set of all regular elements. We say that *R* is a right Ore ring iff *S* is right permutable iff *RS−*¹ exists.

In this case, we speak of *RS−*¹ as the (total) classical right ring of quotients of R , and denote it by $Q_{c\ell}^r(R)$.

$$
as^{-1}bt^{-1}\in RS^{-1}
$$

A set *S* is called right permutable (or right Ore) if $aS \cap sR \neq ∅$ for any $a \in R$ and $s \in S$. A set *S* is called right reversible i *f s'* $a = 0$ for some $s' \in S$ implies that $as = 0$ for some $s \in S$.

A multiplicative set *S ⊆ R* is called a right denominator set if *S* is both right permutable and right reversible.

Definition

Let *S* be the multiplicative set of all regular elements. We say that *R* is a right Ore ring iff *S* is right permutable iff *RS−*¹ exists.

In this case, we speak of *RS−*¹ as the (total) classical right ring of quotients of *R*, and denote it by $Q_{c\ell}^r(R)$. Similarly, $\textsf{Q}^{\ell}_{c\ell}(R) = S^{-1}R$ is called the (total) classical left ring of quotients of *R*

Theorem (Lee)

The following are equivalent for right R-modules M, F and M ⊆ F:

(a) *F is maximal dense over M;*

(b) *F is rationally complete, and is dense over M;*

(c) *F is minimal rationally complete, and is essential over M.*

Theorem (Lee)

The following are equivalent for right R-modules M, F and M ⊆ F:

(a) *F is maximal dense over M;*

(b) *F is rationally complete, and is dense over M;*

(c) *F is minimal rationally complete, and is essential over M.*

Note that a right R-module F is exactly the rational hull of a module M if F satisfies any one of the above equivalent conditions. It is denoted by $E(M)$ *.*

Theorem (Lee)

The following are equivalent for right R-modules M, F and M ⊆ F:

- (a) *F is maximal dense over M;*
- (b) *F is rationally complete, and is dense over M;*
- (c) *F is minimal rationally complete, and is essential over M.*

Note that a right R-module F is exactly the rational hull of a module M if F satisfies any one of the above equivalent conditions. It is denoted by $E(M)$ *.*

 $\mathsf{Thus,}\ \ E(R)=\{x\in E(R)\,|\,\vartheta(R)=0\,\,\text{with}\,\,\vartheta\in\mathsf{End}_R(E(R))\,\,\Rightarrow\,\,\vartheta(x)=0\}.$

Theorem (Lee)

The following are equivalent for right R-modules M, F and M ⊆ F:

- (a) *F is maximal dense over M;*
- (b) *F is rationally complete, and is dense over M;*
- (c) *F is minimal rationally complete, and is essential over M.*

Note that a right R-module F is exactly the rational hull of a module M if F satisfies any one of the above equivalent conditions. It is denoted by $E(M)$ *.*

Thus, $\widetilde{E}(R) = \{x \in E(R) | \vartheta(R) = 0 \text{ with } \vartheta \in \text{End}_{R}(E(R)) \Rightarrow \vartheta(x) = 0\}.$ We say $\widetilde{E}(R) = Q(R)$ the maximal right ring of quotients of a ring R.

Theorem (Lee)

The following are equivalent for right R-modules M, F and M ⊆ F:

- (a) *F is maximal dense over M;*
- (b) *F is rationally complete, and is dense over M;*
- (c) *F is minimal rationally complete, and is essential over M.*

Note that a right R-module F is exactly the rational hull of a module M if F satisfies any one of the above equivalent conditions. It is denoted by $E(M)$ *.*

Thus, $\widetilde{E}(R) = \{x \in E(R) | \vartheta(R) = 0 \text{ with } \vartheta \in \text{End}_{R}(E(R)) \Rightarrow \vartheta(x) = 0\}.$ We say $\widetilde{E}(R) = Q(R)$ the maximal right ring of quotients of a ring R.

Similarly, $Q^{\ell}(R)$ is called the maximal left ring of quotients of a ring R .

Several characterizations for the maximal right ring of quotients of a ring are provided.

Theorem (Lee) *Let* R *be a ring and* $H = End_R(E(R))$ *. Then the following statements hold true:* (i) $Q(R) = r_{E(R)}(I_H(R)).$

-
-

Several characterizations for the maximal right ring of quotients of a ring are provided.

Theorem (Lee)

Let R *be a ring and* $H = End_R(E(R))$ *. Then the following statements hold true:* (i) $Q(R) = \mathbf{r}_{E(R)} (\mathbf{I}_{H}(R)).$ (ii) *([4, Exercises 5])* $Q(R) = \{x \in E(R) | \vartheta|_R = 1_R \text{ with } \vartheta \in H \implies \vartheta(x) = x\}.$ (iii) *([3, Proposition 8.16])* $Q(R) = \{x \in E(R) | \forall y \in E(R) \setminus \{0\}, y \cdot x^{-1}R \neq 0\}.$

Several characterizations for the maximal right ring of quotients of a ring are provided.

Theorem (Lee)

Let R *be a ring and* $H = End_R(E(R))$ *. Then the following statements hold true:* (i) $Q(R) = \mathbf{r}_{E(R)} (\mathbf{I}_{H}(R)).$ (ii) *([4, Exercises 5])* $Q(R) = \{x \in E(R) | \vartheta|_R = 1_R \text{ with } \vartheta \in H \implies \vartheta(x) = x\}.$ (iii) *([3, Proposition 8.16])* $Q(R) = \{x \in E(R) | \forall y \in E(R) \setminus \{0\}, y \cdot x^{-1}R \neq 0\}.$ (V) $Q(R) = \{x \in E(R) \mid x^{-1}R \leq^{den} R\}.$ $(Q \cap \{Q(R) = \{x \in E(R) \mid \mathbf{I}_{E(R)}(x^{-1}R) = 0\}.$ $Q(R) = \{x \in E(R) | Hom_R(R/x^{-1}R, E(R)) = 0\}.$

Example

Consider $R = \{(a_n) \in \prod_{n=1}^{\infty} \mathbb{Z} \mid a_n \text{ is eventually constant }\}.$

- (i) Total right ring of quotients: $\{(a_n) \in \prod_{n=1}^{\infty} \mathbb{Q} \mid a_n$ is even. constant $\}$.
- (i) Classical right ring of quotients: $\{(a_n) \in \prod_{n=1}^{\infty} \mathbb{Q} \mid a_n$ is even. constant $\}$.
- (iii) Maximal right ring of quotients: ∏*[∞] ⁿ*=¹ Q.

A ring *R* is called right nonsingular if $\mathbf{r}_R(t) \leq^{\text{ess}} R_R \Longrightarrow t = 0$.

Note that $0 ∈ R t ⊆ I_R(r_R(t))$ but $I_R(r_R(t)) = 0$ if *R* is right nonsingular.

A ring *R* is called right nonsingular if $\mathbf{r}_R(t) \leq^{ess} R_R \Longrightarrow t = 0$. Note that 0 ∈ Rt ⊆ $I_R(r_R(t))$ but $I_R(r_R(t)) = 0$ if *R* is right nonsingular.

A ring *R* is called right nonsingular if $\mathbf{r}_R(t) \leq^{ess} R_R \Longrightarrow t = 0.$ Note that 0 ∈ Rt ⊆ **l**_{*R*}(**r**_{*R*}(*t*)) but **l**_{*R*}(**r**_{*R*}(*t*)) = 0 if *R* is right nonsingular. A ring *R* is called right cononsingular if for any right ideal *I*, $I_R(I) = 0 \implies I \leq^{ess} R_R$.

A ring *R* is called right nonsingular if $\mathbf{r}_R(t) \leq^{\text{ess}} R_R \Longrightarrow t = 0$. $\mathsf{Note that } 0 \in \mathsf{R}t \subseteq \mathsf{I}_{\mathsf{R}}(\mathsf{r}_{\mathsf{R}}(t)) \text{ but } \mathsf{I}_{\mathsf{R}}(\mathsf{r}_{\mathsf{R}}(t)) = 0 \text{ if } \mathsf{R} \text{ is right nonsingular.}$ A ring *R* is called right cononsingular if for any right ideal *I*, $I_R(I) = 0 \implies I \leq^{ess} R_R$.

The left version of (co)nonsingularity is defined similarly.

Definition

A ring *R* is called right Utumi if *R* is a right nonsingular, right cononsingular ring. The notion of the left-sided is defined similarly.

-
-
-
-

A ring *R* is called right nonsingular if $\mathbf{r}_R(t) \leq^{\text{ess}} R_R \Longrightarrow t = 0$. $\mathsf{Note that } 0 \in \mathsf{R}t \subseteq \mathsf{I}_{\mathsf{R}}(\mathsf{r}_{\mathsf{R}}(t)) \text{ but } \mathsf{I}_{\mathsf{R}}(\mathsf{r}_{\mathsf{R}}(t)) = 0 \text{ if } \mathsf{R} \text{ is right nonsingular.}$ A ring *R* is called right cononsingular if for any right ideal *I*, $I_R(I) = 0 \implies I \leq^{ess} R_R$.

The left version of (co)nonsingularity is defined similarly.

Definition

A ring *R* is called right Utumi if *R* is a right nonsingular, right cononsingular ring. The notion of the left-sided is defined similarly. A ring *R* is called Utumi if *R* is right and left Utumi.

Example

(i) The product of fields is an Utumi ring.

(ii) Every finite matrix ring over a right and left self-injective regular ring is an Utumi ring.

A ring *R* is called right nonsingular if $\mathbf{r}_R(t) \leq^{\text{ess}} R_R \Longrightarrow t = 0$. $\mathsf{Note that } 0 \in \mathsf{R}t \subseteq \mathsf{I}_{\mathsf{R}}(\mathsf{r}_{\mathsf{R}}(t)) \text{ but } \mathsf{I}_{\mathsf{R}}(\mathsf{r}_{\mathsf{R}}(t)) = 0 \text{ if } \mathsf{R} \text{ is right nonsingular.}$ A ring *R* is called right cononsingular if for any right ideal *I*, $I_R(I) = 0 \implies I \leq^{ess} R_R$.

The left version of (co)nonsingularity is defined similarly.

Definition

A ring *R* is called right Utumi if *R* is a right nonsingular, right cononsingular ring. The notion of the left-sided is defined similarly. A ring *R* is called Utumi if *R* is right and left Utumi.

Example

(i) The product of fields is an Utumi ring.

(ii) Every finite matrix ring over a right and left self-injective regular ring is an Utumi ring.

(iii) Every right and left Ore domain is an Utumi ring.

(iv) Any semiprime PI-ring is an Utumi ring.

Theorem (1951, Johnson)

Let Q(*R*) *be a maximal right ring of quotients of a ring R. Then the following conditions are equivalent:*

- (a) *A ring R is right nonsingular;*
- (b) *Q*(*R*) *is a (von Neumann) regular ring.*

Theorem (1951, Johnson)

Let Q(*R*) *be a maximal right ring of quotients of a ring R. Then the following conditions are equivalent:*

- (a) *A ring R is right nonsingular;*
- (b) *Q*(*R*) *is a (von Neumann) regular ring.*

Theorem (1980, Chatters-Khuri)

Let R be a ring. Then the following conditions are equivalent:

- (a) *R is a right nonsingular, right extending ring;*
- (b) *R is a right cononsingular Baer ring.*

It shows that for even a right and left nonsingular ring *R*, the maximal right and left rings of quotients of *R* are different.

It shows that for even a right and left nonsingular ring *R*, the maximal right and left rings of quotients of *R* are different.

Example ([3, Example 7.14c] and [3, Example 13.26(4)]) Let $R = \begin{bmatrix} F & F & F \\ 0 & F & 0 \\ 0 & 0 & F \end{bmatrix}$ $\overline{}$ be a ring with a field $\overline{}$. Then *R* is a right and left nonsingular ring. \overline{A} lso, $\overline{Q}(R) \cong \overline{{\rm Mat}_2(\overline{F})} \times {\rm Mat}_2(\overline{F}) \not\cong {\rm Mat}_3(F) \cong \overline{Q}^{\ell}$

It shows that for even a right and left nonsingular ring *R*, the maximal right and left rings of quotients of *R* are different.

Example ([3, Example 7.14c] and [3, Example 13.26(4)]) Let $R = \begin{bmatrix} F & F & F \\ 0 & F & 0 \\ 0 & 0 & F \end{bmatrix}$ $\overline{}$ be a ring with a field $\overline{}$. Then *R* is a right and left nonsingular ring. Also, $Q(R) \cong \text{Mat}_2(F) \times \text{Mat}_2(F) \ncong \text{Mat}_3(F) \cong Q^{\ell}(R)$.

Example

Consider $R = \text{CFM}_{\mathbb{N}}(F)$, the column finite matrix ring over a field *F*. Then *R* is a right self-injective regular ring. Then $Q(R) = R$. Hence *R* is a right Utumi ring. Also, R is left nonsingular. Hence $Q^{\ell}(R)$ is a left self-injective ring.
It shows that for even a right and left nonsingular ring *R*, the maximal right and left rings of quotients of *R* are different.

Example ([3, Example 7.14c] and [3, Example 13.26(4)]) Let $R = \begin{bmatrix} F & F & F \\ 0 & F & 0 \\ 0 & 0 & F \end{bmatrix}$ $\overline{}$ be a ring with a field $\overline{}$. Then *R* is a right and left nonsingular ring. Also, $Q(R) \cong \text{Mat}_2(F) \times \text{Mat}_2(F) \ncong \text{Mat}_3(F) \cong Q^{\ell}(R)$.

Example

Consider $R = \text{CFM}_{\mathbb{N}}(F)$, the column finite matrix ring over a field *F*. Then *R* is a right self-injective regular ring. Then $Q(R) = R$. Hence *R* is a right Utumi ring. Also, R is left nonsingular. Hence $Q^{\ell}(R)$ is a left self-injective ring. However, $_R R$ is not left injective. Therefore $Q(R) \neq Q^{\ell}(R)$

In 1963, Utumi established the condition of rings of which maximal any 1-sided rings of quotients of rings are two-sided.

Theorem (1963, Utumi)

Let R be a nonsingular ring. Then $Q(R) = Q^{\ell}(R)$ *if and only if R is a cononsingular ring.*

Every right Utumi ring is left nonsingular.

Using the above proposition, we extend the previous theorem.

Theorem

Let R be any one-sided nonsingular ring. Then $Q(R) = Q^{\ell}(R)$ *if and only if R is a cononsingular ring.*

Every right Utumi ring is left nonsingular.

Using the above proposition, we extend the previous theorem.

Theorem

Let R be any one-sided nonsingular ring. Then $Q(R) = Q^{\ell}(R)$ *if and only if R is a cononsingular ring.*

Theorem (1963, Utumi)

Let R be a nonsingular ring. Then $Q(R) = Q^{\ell}(R)$ *if and only if R is a cononsingular ring.*

Let R be a right nonsingular ring, but not left nonsingular. Then the maximal right and left rings of quotients of R are different, i.e., $Q(R) \neq Q^{\ell}(R)$ *.*

Let R be a right nonsingular ring, but not left nonsingular. Then the maximal right and left rings of quotients of R are different, i.e., $Q(R) \neq Q^{\ell}(R)$ *.*

The next example illustrates the above corollary.

Example ([3, Example 7.6(5)])

Let the ring $R = \left[\begin{smallmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \ 0 & \mathbb{Z} \end{smallmatrix} \right]$. Then R is left nonsingular but not right nonsingular with a right singular ideal $\begin{bmatrix} \bar{0} & \bar{z}_2 \\ 0 & 0 \end{bmatrix}$. Then

$$
Q'_{c\ell}(R)=Q^\ell_{c\ell}(R)=\left[\begin{smallmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_{(2)} \end{smallmatrix}\right]
$$

Let R be a right nonsingular ring, but not left nonsingular. Then the maximal right and left rings of quotients of R are different, i.e., $Q(R) \neq Q^{\ell}(R)$ *.*

The next example illustrates the above corollary.

Example ([3, Example 7.6(5)])

Let the ring $R = \left[\begin{smallmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \ 0 & \mathbb{Z} \end{smallmatrix} \right]$. Then R is left nonsingular but not right nonsingular with a right singular ideal $\begin{bmatrix} \bar{0} & \bar{z}_2 \\ 0 & 0 \end{bmatrix}$. Then

$$
Q'_{c\ell}(R)=Q^\ell_{c\ell}(R)=\left[\begin{smallmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_{(2)} \end{smallmatrix}\right]
$$

where $Q_{c\ell}^r(R)$ (resp., $Q_{c\ell}^\ell(R)$) is the classical right (resp., left) ring of quotients and $\mathbb{Z}_{(2)} = \{ \frac{m}{n} \in \mathbb{Q} \mid m, n \in \mathbb{Z} \text{ and } (n, 2) = 1 \}.$ By the calculation, $\mathsf{Q}(R) \cong \mathsf{Q}_{c\ell}^r(R) = \mathsf{Q}_{c\ell}^{\ell}(R).$

Let R be a right nonsingular ring, but not left nonsingular. Then the maximal right and left rings of quotients of R are different, i.e., $Q(R) \neq Q^{\ell}(R)$ *.*

The next example illustrates the above corollary.

Example ([3, Example 7.6(5)])

Let the ring $R = \left[\begin{smallmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \ 0 & \mathbb{Z} \end{smallmatrix} \right]$. Then R is left nonsingular but not right nonsingular with a right singular ideal $\begin{bmatrix} \bar{0} & \bar{z}_2 \\ 0 & 0 \end{bmatrix}$. Then

$$
Q'_{c\ell}(R)=Q^{\ell}_{c\ell}(R)=\left[\begin{smallmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_{(2)} \end{smallmatrix}\right]
$$

where $Q_{c\ell}^r(R)$ (resp., $Q_{c\ell}^\ell(R)$) is the classical right (resp., left) ring of quotients and $\mathbb{Z}_{(2)} = \{ \frac{m}{n} \in \mathbb{Q} \mid m, n \in \mathbb{Z} \text{ and } (n, 2) = 1 \}.$ By the calculation, $\mathsf{Q}(R) \cong \mathsf{Q}_{c\ell}^r(R) = \mathsf{Q}_{c\ell}^{\ell}(R).$ However, $Q(R) \neq Q^{\ell}(R)$ because $Q(R)$ is not left injective, while $Q^{\ell}(R)$ is a left self-injective ring.

In contrast to the previous proposition, a right Utumi ring does not imply left cononsingular, in general, even though it is left nonsingular.

Example

Consider $R = \text{CFM}_\mathbb{N}(F)$, the column finite matrix ring over a field *F*.

Then *R* is a right self-injective regular ring and left nonsingular.

In contrast to the previous proposition, a right Utumi ring does not imply left cononsingular, in general, even though it is left nonsingular.

Example

Consider $R = \text{CFM}_{\mathbb{N}}(F)$, the column finite matrix ring over a field F. Then *R* is a right self-injective regular ring and left nonsingular. Hence *R* is a right Utumi ring and left nonsingular.

In contrast to the previous proposition,

a right Utumi ring does not imply left cononsingular, in general, even though it is left nonsingular.

Example

Consider $R = \text{CFM}_{\mathbb{N}}(F)$, the column finite matrix ring over a field F. Then *R* is a right self-injective regular ring and left nonsingular. Hence *R* is a right Utumi ring and left nonsingular. $Q(R) = R$ is a right injective ring and $Q^{\ell}(R)$ is a left injective ring.

In contrast to the previous proposition,

a right Utumi ring does not imply left cononsingular, in general, even though it is left nonsingular.

Example

Consider $R = \text{CFM}_{\text{N}}(F)$, the column finite matrix ring over a field *F*. Then *R* is a right self-injective regular ring and left nonsingular. Hence *R* is a right Utumi ring and left nonsingular. $Q(R) = R$ is a right injective ring and $Q^{\ell}(R)$ is a left injective ring. However, *R* is not left cononsingular because it is not unit-regular.

In contrast to the previous proposition,

a right Utumi ring does not imply left cononsingular, in general, even though it is left nonsingular.

Example

Consider $R = \text{CFM}_{\text{N}}(F)$, the column finite matrix ring over a field *F*. Then *R* is a right self-injective regular ring and left nonsingular. Hence *R* is a right Utumi ring and left nonsingular. $Q(R) = R$ is a right injective ring and $Q^{\ell}(R)$ is a left injective ring. However, *R* is not left cononsingular because it is not unit-regular.

It is a well-known result.

Theorem (Goodearl)

Every right and left continuous regular ring is unit-regular

Theorem (Lam, Theorem 6.48)

Every right and left extending ring is directly finite.

Theorem (Lam, Theorem 6.48)

Every right and left extending ring is directly finite.

Example

```
Let R = \text{CFM}_{\mathbb{N}}(F).
Let eij be a matrix unit, that is, (i, j)-entry is 1, otherwise 0.
```
Theorem (Lam, Theorem 6.48)

Every right and left extending ring is directly finite.

Example

Let $R = \mathsf{CFM}_{\mathbb{N}}(F)$. Let *eij* be a matrix unit, that is, (*i, j*)-entry is 1, otherwise 0. Let $A = \sum_{i=1}^n e_{i,i+1} =$ $\sqrt{ }$ \mathbf{I} 0 1 0 ...
0 0 1 ...
.
. . . . 0 0 0 *···* Ī. and $B = \sum_{i=1}^n e_{i+1,i} =$ $\sqrt{ }$ $\overline{}$ 0 0 0 ···
1 0 0 ···
0 1 0 ···
. 0 0 0 *···* l. $\vert \cdot$ Then $AB = I$ but $BA =$ $\sqrt{ }$ $\overline{}$ 0 0 0 ···
0 1 0 ···
0 0 1 ···
. 0 0 0 *···* Ī. \neq *I*.

Theorem (Lam, Theorem 6.48)

Every right and left extending ring is directly finite.

Example

Let $R = \mathsf{CFM}_{\mathbb{N}}(F)$. Let *eij* be a matrix unit, that is, (*i, j*)-entry is 1, otherwise 0. Let $A = \sum_{i=1}^n e_{i,i+1} =$ $\sqrt{ }$ \mathbf{I} 0 1 0 ...
0 0 1 ...
.
. . . . 0 0 0 *···* Ī. and $B = \sum_{i=1}^n e_{i+1,i} =$ $\sqrt{ }$ $\overline{}$ 0 0 0 ···
1 0 0 ···
0 1 0 ···
. 0 0 0 *···* l. $\vert \cdot$ Then $AB = I$ but $BA =$ $\sqrt{ }$ $\overline{}$ 0 0 0 ···
0 1 0 ···
0 0 1 ···
. 0 0 0 *···* Ī. \neq *I*. Thus, *R* is not directly finite.

Theorem

Every left cononsingular, right extending ring is directly finite.

Theorem

Every left cononsingular, right extending ring is directly finite.

The standard observation of Shepherdson for a directly infinite ring.

Example

Let *R* be not directly finite.

Theorem

Every left cononsingular, right extending ring is directly finite.

The standard observation of Shepherdson for a directly infinite ring.

Example

```
Let R be not directly finite.
Then there exist a, b \in R such that ab = 1 \neq ba.
\text{Take } e_{ij} = b^i(1 - ba)a^j \quad (i, j \geq 1),nonzero elements of R satisfying the matrix units' equations:
e_{ij}e_{k\ell}=\delta_{jk}e_{i\ell}.
```
Theorem

Every left cononsingular, right extending ring is directly finite.

The standard observation of Shepherdson for a directly infinite ring.

Example

Let *R* be not directly finite. Then there exist $a, b \in R$ such that $ab = 1 \neq ba$. $\text{Take } e_{ij} = b^i(1 - ba)a^j \quad (i, j \geq 1),$ nonzero elements of *R* satisfying the matrix units' equations: $e_{ij}e_{k\ell}=\delta_{jk}e_{i\ell}.$ Actually, note that $R = \text{CFM}_{\mathbb{N}}(F)$ is not directly finite. Then there exist $A = \sum_{i=1}^{} \mathsf{e}_{i,i+1}, B = \sum_{i=1}^{} \mathsf{e}_{i+1,i} \in R$ such that

Theorem

Every left cononsingular, right extending ring is directly finite.

The standard observation of Shepherdson for a directly infinite ring.

Example

Let *R* be not directly finite. Then there exist $a, b \in R$ such that $ab = 1 \neq ba$. $\text{Take } e_{ij} = b^i(1 - ba)a^j \quad (i, j \geq 1),$ nonzero elements of *R* satisfying the matrix units' equations: $e_{ij}e_{k\ell}=\delta_{jk}e_{i\ell}.$ Actually, note that $R = \mathsf{CFM}_{\Bbb{N}}(F)$ is not directly finite. Then there exist $A = \sum_{i=1}^{} e_{i,i+1}, B = \sum_{i=1}^{} e_{i+1,i} \in R$ such that $AB = I$, $BA \neq I$.

Theorem

Every left cononsingular, right extending ring is directly finite.

The standard observation of Shepherdson for a directly infinite ring.

Example

Let *R* be not directly finite. Then there exist $a, b \in R$ such that $ab = 1 \neq ba$. $\text{Take } e_{ij} = b^i(1 - ba)a^j \quad (i, j \geq 1),$ nonzero elements of *R* satisfying the matrix units' equations: $e_{ij}e_{k\ell}=\delta_{jk}e_{i\ell}.$ Actually, note that $R = \mathsf{CFM}_{\Bbb{N}}(F)$ is not directly finite. Then there exist $A = \sum_{i=1}^{} e_{i,i+1}, B = \sum_{i=1}^{} e_{i+1,i} \in R$ such that $AB = I, BA \neq I.$ Take $e_{i+1,j+1} = B^{i}(1 – BA)A^{j}$ (*i*, *j* ≥ 0).

Theorem

Every left cononsingular, right extending ring is directly finite.

The standard observation of Shepherdson for a directly infinite ring.

Example

Let *R* be not directly finite. Then there exist $a, b \in R$ such that $ab = 1 \neq ba$. $\text{Take } e_{ij} = b^i(1 - ba)a^j \quad (i, j \geq 1),$ nonzero elements of *R* satisfying the matrix units' equations: $e_{ij}e_{k\ell}=\delta_{jk}e_{i\ell}.$ Actually, note that $R = \mathsf{CFM}_{\Bbb{N}}(F)$ is not directly finite. Then there exist $A = \sum_{i=1}^{} e_{i,i+1}, B = \sum_{i=1}^{} e_{i+1,i} \in R$ such that $AB = I$, $BA \neq I$. Take $e_{i+1,j+1} = B^{i}(1 – BA)A^{j}$ (*i*, *j* ≥ 0). Then $e_{i+1,j+1}$ $(i,j \ge 0)$ are matrix units of CFM_N(*F*).

Every Utumi ring is directly finite.

Every Utumi ring is directly finite.

Theorem (Lam, Theorem 6.48)

Every right and left extending ring is directly finite.

Every Utumi ring is directly finite.

Theorem (Lam, Theorem 6.48)

Every right and left extending ring is directly finite.

From the previous theorem and proposition, we have the natural question:

Question

Is every right and left cononsingular ring directly finite?

Theorem

Every left cononsingular, right nonsingular, right continuous ring is a unit-regular ring.

because there is no idempotent $e \in R$ such that $\mathbf{r}_R(\alpha) = eR$

Theorem

Every left cononsingular, right nonsingular, right continuous ring is a unit-regular ring.

Corollary (Goodearl, Corollary 13.23)

Every right and left continuous regular ring is a unit-regular ring.

because there is no idempotent $e \in R$ such that $\mathbf{r}_R(\alpha) = eR$

Theorem

Every left cononsingular, right nonsingular, right continuous ring is a unit-regular ring.

Corollary (Goodearl, Corollary 13.23)

Every right and left continuous regular ring is a unit-regular ring.

The converse of the previous corollary does not hold true, in general.

Example

Let $R = \{ (a_n) \in \prod_{n=1}^{\infty} \mathbb{Z}_2 \mid a_n \text{ is eventually constant} \}.$ Then *R* is a unit-regular ring but not a Baer ring because there is no idempotent $e \in R$ such that $\mathbf{r}_R(\alpha) = eR$ where $\alpha = (a_n)$ with $a_n = 1$ if $n = 2k$, otherwise $a_n = 0$.

The maximal right ring of quotients of an Utumi ring is a right and left self-injective unit-regular ring.

The maximal right ring of quotients of an Utumi ring is a right and left self-injective unit-regular ring.

The converse of the above corollary does not hold true, in general.

Example (Goodearl, Exercises 2.C.3)

Let *F* be a field, *K* a proper subfield of *F*, and $R = \begin{bmatrix} K & F \\ 0 & F \end{bmatrix}$ a ring. While $Q(R) = \left[\begin{smallmatrix} F & F \\ F & F \end{smallmatrix}\right]$ is a right and left self-injective unit-regular ring, *R* is not an Utumi ring because $Q(R) \neq Q^{\ell}(R)$.

The maximal right ring of quotients of an Utumi ring is a right and left self-injective unit-regular ring.

The converse of the above corollary does not hold true, in general.

Example (Goodearl, Exercises 2.C.3)

Let *F* be a field, *K* a proper subfield of *F*, and $R = \begin{bmatrix} K & F \\ 0 & F \end{bmatrix}$ a ring. While $Q(R) = \left[\begin{smallmatrix} F & F \\ F & F \end{smallmatrix}\right]$ is a right and left self-injective unit-regular ring, *R* is not an Utumi ring because $Q(R) \neq Q^{\ell}(R)$.

Because for $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix} \in Q(R)$ where $\alpha \in F \setminus K$, $\mathsf{there \ is \ no} \ \begin{bmatrix} \times \beta \\ \delta \gamma \end{bmatrix} \in R \ \text{such that} \ 0 \neq \begin{bmatrix} \times \beta \\ 0 \ \gamma \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \ \text{and} \ \begin{bmatrix} \times \beta \\ 0 \ \gamma \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix} \in R,$ i.e., R is not dense in $Q(R)$ as a left \overline{R} -submodule. Note that *R* is a right Utumi ring but not left Utumi.

Thank you for your ATTENTION.

- A.W. Chatters; S.M. Khuri, Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc., **1980** *21(2)*, 434–444
- K.R. Goodearl, *Von Neumann Regular Rings*, Pitman, London (1979); 2nd edn, Krieger (1991)
- T.Y. Lam, *Lectures on Modules and Rings*, GTM 189, Berlin-Heidelberg-New York: Springer Verlag (1999)
- J. Lambek, *Lectures on Rings and Modules*, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London (1966)
- G. Lee; C.S. Roman; N.K. Tung; X. Zhang, On Utumi rings and continuous regular Baer rings, Algebra and Coding Theory, Contem. Mathematics **785** (edited by A. Leroy, S.K. Jain), Amer. Math. Soc., Providence, RI (2023), 151–162
- B.L. Osofsky, Noninjective cyclic modules, Proc. Amer. Math. Soc., **1968** *19*, 1383–1384
- **J.C.** Shepherdson, Inverses and zero divisors in matrix rings, Proc. London Math. Soc., **1951** *3(1)*, 71–85.

- Yuzo Utumi, On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc., **1963** *14*, 141–147
- X. Zhang; G. Lee, Modules whose endomorphism rings are unit-regular, Comm. Algebra, **2016** *44(2)*, 697–709