Shifted quantum affine algebras and cluster algebras

Bernard Leclerc Université de Caen

ICRA 21

Shanghai 05/08/2024

1. Motivations and overview of main results

- 1. Motivations and overview of main results
- 2. Shifted quantum affine sl₂

- 1. Motivations and overview of main results
- 2. Shifted quantum affine \mathfrak{sl}_2
- 3. General case

• Fomin-Zelevinsky : $\mathscr{A} \cong \mathbb{C}[N]$, where

$$N = \left\{ egin{pmatrix} 1 & * & * & * \ 0 & 1 & * & * \ 0 & 0 & 1 & * \ 0 & 0 & 0 & 1 \end{pmatrix} \in SL(4,\mathbb{C})
ight\}$$

• Fomin-Zelevinsky : $\mathscr{A} \cong \mathbb{C}[N]$, where

$$N = \left\{ egin{pmatrix} 1 & * & * & * \ 0 & 1 & * & * \ 0 & 0 & 1 & * \ 0 & 0 & 0 & 1 \end{pmatrix} \in SL(4,\mathbb{C})
ight\}$$

• Hernandez-L : $\mathscr{A} \cong K_0(\mathscr{C}_Q)$, where \mathscr{C}_Q is a subcategory of $\mathscr{C} := \{\text{finite-dim}. U_q(\widehat{\mathfrak{sl}}_4)\text{-modules}\}$

Q1: Can we replace N by G?

Q1: Can we replace N by G?

A1: It seems so.

Q1: Can we replace N by G?

A1: It seems so.

But we have to use shifted quantum affine algebras,

Q1: Can we replace N by G?

A1: It seems so.

But we have to use shifted quantum affine algebras, and we have to allow infinite-dimensional representations.

• Hernandez-L : \mathcal{A}_{∞} contains cluster variables equal to the q-characters of all Kirillov-Reshetikhin modules of $\mathcal{C}_{\mathbb{Z}}$

- Hernandez-L : \mathscr{A}_{∞} contains cluster variables equal to the q-characters of all Kirillov-Reshetikhin modules of $\mathscr{C}_{\mathbb{Z}}$
- Most cluster variables are **not** q-characters of objects of $\mathscr{C}_{\mathbb{Z}}$

Second and third questions

Second and third questions

Q2: Which cluster variables/monomials are q-characters of simple objects of $\mathscr{C}_{\mathbb{Z}}$?

Second and third questions

Q2: Which cluster variables/monomials are q-characters of simple objects of $\mathscr{C}_{\mathbb{Z}}$?

Q3: What is the representation-theoretical meaning of the remaining ones ?

ullet g : simple complex Lie algebra

- ullet g : simple complex Lie algebra
- $U_q(\widehat{\mathfrak{g}})$: quantum affine algebra

- g : simple complex Lie algebra
- $U_q(\widehat{\mathfrak{g}})$: quantum affine algebra
- \mathscr{A}_{∞} : corresponding infinite rank cluster algebra

- g : simple complex Lie algebra
- $U_q(\widehat{\mathfrak{g}})$: quantum affine algebra
- ullet \mathscr{A}_{∞} : corresponding infinite rank cluster algebra
- \mathscr{A}_{∞} is \mathbb{Z} -graded by declaring that each initial cluster variable has degree 1.

- g : simple complex Lie algebra
- $U_q(\widehat{\mathfrak{g}})$: quantum affine algebra
- \mathscr{A}_{∞} : corresponding infinite rank cluster algebra
- \mathscr{A}_{∞} is \mathbb{Z} -graded by declaring that each initial cluster variable has degree 1.

Theorem (Hernandez-L 2016, Kashiwara-Kim-Oh-Park 2020, Hernandez 2020)

• Every cluster variable of \mathscr{A}_{∞} has a cluster expansion with respect to the initial cluster which is homogeneous of degree ≥ 0 .

- g : simple complex Lie algebra
- $U_q(\widehat{\mathfrak{g}})$: quantum affine algebra
- \mathscr{A}_{∞} : corresponding infinite rank cluster algebra
- \mathscr{A}_{∞} is \mathbb{Z} -graded by declaring that each initial cluster variable has degree 1.

Theorem (Hernandez-L 2016, Kashiwara-Kim-Oh-Park 2020, Hernandez 2020)

- Every cluster variable of \mathscr{A}_{∞} has a cluster expansion with respect to the initial cluster which is homogeneous of degree ≥ 0 .
- A cluster monomial m of \mathscr{A}_{∞} is the q-character of a (simple) object in $\mathscr{C}_{\mathbb{Z}}$ if and and only if deg m = 0.

- g : simple complex Lie algebra
- $U_q(\widehat{\mathfrak{g}})$: quantum affine algebra
- \mathcal{A}_{∞} : corresponding infinite rank cluster algebra
- \mathscr{A}_{∞} is \mathbb{Z} -graded by declaring that each initial cluster variable has degree 1.

Theorem (Hernandez-L 2016, Kashiwara-Kim-Oh-Park 2020, Hernandez 2020)

- Every cluster variable of \mathcal{A}_{∞} has a cluster expansion with respect to the initial cluster which is homogeneous of degree ≥ 0 .
- A cluster monomial m of \mathscr{A}_{∞} is the q-character of a (simple) object in $\mathscr{C}_{\mathbb{Z}}$ if and and only if deg m = 0.
- If $\mathfrak{g} \neq \mathfrak{sl}_2$, every one-step mutation has degree > 0, so it is **not** the q-character of an object in $\mathscr{C}_{\mathbb{Z}}$.

• In 2019 Finkelberg-Tsymbaliuk introduced : shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g}

• In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} ($U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} $(U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories :

$$\mathscr{O}^{\mu} := \mathscr{O}\left(U_q^{\mu}(\widehat{\mathfrak{g}})\right)$$

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} ($U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories :

$$\mathcal{O}^{\underline{\mu}} := \mathcal{O}\left(U_q^{\underline{\mu}}(\widehat{\mathfrak{g}})\right)$$
$$\mathcal{O}^{\operatorname{sh}} := \bigoplus_{\underline{\mu}} \mathcal{O}^{\underline{\mu}}$$

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} $(U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories :

$$\begin{split} \mathscr{O}^{\mu} &:= \mathscr{O}\left(U_q^{\mu}(\widehat{\mathfrak{g}})\right) \\ \mathscr{O}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{O}^{\mu} \\ \mathscr{C}^{\mu} &:= \left\{ V \in \mathscr{O}^{\mu} \mid \dim V < \infty \right\} \end{split}$$

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} ($U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories :

$$\begin{split} \mathscr{O}^{\mu} &:= \mathscr{O}\left(U_q^{\mu}(\widehat{\mathfrak{g}})\right) \\ \mathscr{O}^{\operatorname{sh}} &:= \bigoplus_{\mu} \mathscr{O}^{\mu} \\ \mathscr{C}^{\mu} &:= \left\{ V \in \mathscr{O}^{\mu} \mid \dim V < \infty \right\} \\ \mathscr{C}^{\operatorname{sh}} &:= \bigoplus_{\mu} \mathscr{C}^{\mu} \end{split}$$

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} $(U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories :

$$\begin{split} \mathscr{O}^{\mu} &:= \mathscr{O}\left(U_q^{\mu}(\widehat{\mathfrak{g}})\right) \\ \mathscr{O}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{O}^{\mu} \\ \mathscr{C}^{\mu} &:= \{V \in \mathscr{O}^{\mu} \mid \dim V < \infty\} \\ \mathscr{C}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{C}^{\mu} \\ \mathscr{O}^{\mathrm{sh}}_{\mathbb{Z}} &\subset \mathscr{O}^{\mathrm{sh}}, \quad \mathscr{C}^{\mathrm{sh}}_{\mathbb{Z}} &\subset \mathscr{C}^{\mathrm{sh}} \end{split}$$

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} ($U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories :

$$\begin{split} \mathscr{O}^{\mu} &:= \mathscr{O}\left(U_q^{\mu}(\widehat{\mathfrak{g}})\right) \\ \mathscr{O}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{O}^{\mu} \\ \mathscr{C}^{\mu} &:= \{V \in \mathscr{O}^{\mu} \mid \dim V < \infty\} \\ \mathscr{C}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{C}^{\mu} \\ \mathscr{O}^{\mathrm{sh}}_{\mathbb{Z}} &\subset \mathscr{O}^{\mathrm{sh}}, \quad \mathscr{C}^{\mathrm{sh}}_{\mathbb{Z}} &\subset \mathscr{C}^{\mathrm{sh}} \end{split}$$

Theorem (Hernandez 2020)

• $K_0(\mathscr{C}_{\mathbb{Z}}^{\operatorname{sh}})\cong\mathscr{A}_{\infty}$

- In 2019 Finkelberg-Tsymbaliuk introduced: shifted quantum affine algebras $U_q^{\mu}(\widehat{\mathfrak{g}})$, μ integral coweight of \mathfrak{g} ($U_q^0(\widehat{\mathfrak{g}})$ is a central extension of $U_q(L\mathfrak{g})$)
- In 2020 Hernandez introduced categories:

$$\begin{split} \mathscr{O}^{\mu} &:= \mathscr{O}\left(U_q^{\mu}(\widehat{\mathfrak{g}})\right) \\ \mathscr{O}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{O}^{\mu} \\ \mathscr{C}^{\mu} &:= \{V \in \mathscr{O}^{\mu} \mid \dim V < \infty\} \\ \mathscr{C}^{\mathrm{sh}} &:= \bigoplus_{\mu} \mathscr{C}^{\mu} \\ \mathscr{O}^{\mathrm{sh}}_{\mathbb{Z}} &\subset \mathscr{O}^{\mathrm{sh}}, \quad \mathscr{C}^{\mathrm{sh}}_{\mathbb{Z}} &\subset \mathscr{C}^{\mathrm{sh}} \end{split}$$

Theorem (Hernandez 2020)

- $K_0(\mathscr{C}_{\mathbb{Z}}^{\,\mathrm{sh}})\cong\mathscr{A}_{\infty}$
- A cluster monomial m of \mathscr{A}_{∞} is the q-character of a (simple) object in \mathscr{C}^{μ} if and and only if $\mathbf{deg} m = \mu$.

Fourth question

Q4: What about infinite-dimensional modules and category $\mathscr{O}_{\mathbb{Z}}^{\operatorname{sh}}$? Can we find a cluster algebra structure on $K_0(\mathscr{O}_{\mathbb{Z}}^{\operatorname{sh}})$?

Theorem (Geiss-Hernandez-L 2023)

There is an explicit injective homomorphism $F: \mathscr{B}_{\infty} \to K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$, such that $\overline{F(\mathscr{B}_{\infty})} = K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$

Theorem (Geiss-Hernandez-L 2023)

There is an explicit injective homomorphism $F: \mathscr{B}_{\infty} \to K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$, such that $\overline{F(\mathscr{B}_{\infty})} = K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$

Conjecture

For every cluster monomial m of \mathscr{B}_{∞} with $\operatorname{deg} m = \mu$, F(m) is the class a simple object in $\mathscr{O}_{\mu}^{\operatorname{sh}}$.

Theorem (Geiss-Hernandez-L 2023)

There is an explicit injective homomorphism $F: \mathscr{B}_{\infty} \to K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$, such that $\overline{F(\mathscr{B}_{\infty})} = K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$

Conjecture

For every cluster monomial m of \mathscr{B}_{∞} with $\operatorname{deg} m = \mu$, F(m) is the class a simple object in $\mathscr{O}_{\mu}^{\operatorname{sh}}$.

Theorem (Geiss-Hernandez-L 2023)

Conjecture holds for $\mathfrak{g} = \mathfrak{sl}_2$.

Theorem (Geiss-Hernandez-L 2023)

There is an explicit injective homomorphism $F: \mathscr{B}_{\infty} \to K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$, such that $\overline{F(\mathscr{B}_{\infty})} = K_0\left(\mathscr{O}_{\mathbb{Z}}^{sh}\right)$

Conjecture

For every cluster monomial m of \mathscr{B}_{∞} with $\operatorname{deg} m = \mu$, F(m) is the class a simple object in $\mathscr{O}_{\mu}^{\operatorname{sh}}$.

Theorem (Geiss-Hernandez-L 2023)

Conjecture holds for $g = \mathfrak{sl}_2$.

Theorem (Geiss-Hernandez-L 2023)

Let \mathfrak{g} be of type A, D, E.

 $K_0(\mathscr{O}_{\mathbb{Z}}^{\operatorname{sh}})$ contains a cluster subalgebra \mathscr{B} isomorphic to the coordinate ring of the open double Bruhat cell $\mathbb{C}[G^{w_0,w_0}]$.

Drinfeld presentation of $U_q(L\mathfrak{sl}_2)$: generators: $x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$

Drinfeld presentation of
$$U_q(L\mathfrak{sl}_2)$$
: generators: $x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$ relations: $[h_k, h_l] = 0, \ [h_k, K] = [h_k, \overline{K}] = 0, \ K\overline{K} = 1,$ $[x_k, y_l] = \frac{1}{q - q^{-1}} \left(\phi_{k+l}^+ - \phi_{k+l}^- \right),$ where:
$$\phi^+(u) = \sum_{a \ge 0} \phi_a^+ u^a = K \exp\left((q - q^{-1}) \sum_{k > 0} h_k u^k \right)$$

$$\phi^-(u) = \sum_{h \le 0} \phi_h^- u^b = \overline{K} \exp\left((q^{-1} - q) \sum_{l \le 0} h_l u^l \right)$$

Drinfeld presentation of $U_q(L\mathfrak{sl}_2)$:

generators:
$$x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$$

relations:
$$[h_k, h_l] = 0$$
, $[h_k, K] = [h_k, \overline{K}] = 0$, $K\overline{K} = 1$,

$$[x_k, y_l] = \frac{1}{q-q^{-1}} \left(\phi_{k+l}^+ - \phi_{k+l}^- \right),$$

where:

$$\phi^{+}(u) = \sum_{a \ge 0} \phi_{a}^{+} u^{a} = K \exp\left((q - q^{-1}) \sum_{k > 0} h_{k} u^{k}\right)$$
$$\phi^{-}(u) = \sum_{b < 0} \phi_{b}^{-} u^{b} = \overline{K} \exp\left((q^{-1} - q) \sum_{l < 0} h_{l} u^{l}\right)$$

Classical limit $q \rightarrow 1$:

$$x_k \to x \otimes t^k, \quad y_k \to y \otimes t^k, \quad h_k \to h \otimes t^k,$$

 $\frac{K - \overline{K}}{q - q^{-1}} \to h \otimes 1, \quad \frac{\phi_a^+}{q - q^{-1}} \to h \otimes t^a, \quad \frac{\phi_b^-}{q - q^{-1}} \to h \otimes t^b$

Fix $m \in \mathbb{Z}$

Shifted quantum loop algebras: \mathfrak{sl}_2 case

Fix $m \in \mathbb{Z}$

Presentation of $U_q^m(\widehat{\mathfrak{sl}}_2)$:

Fix $m \in \mathbb{Z}$

Presentation of $U_q^m(\widehat{\mathfrak{sl}}_2)$:

generators:
$$x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$$

relations:
$$[h_k, h_l] = 0$$
, $[h_k, K] = [h_k, \overline{K}] = 0$,

$$[x_k, y_l] = \frac{1}{q-q^{-1}} \left(\phi_{k+l}^+ - \phi_{k+l}^- \right),$$

$$\phi^{+}(u) = \sum_{a \ge 0} \phi_{a}^{+} u^{a} = K \exp\left((q - q^{-1}) \sum_{k > 0} h_{k} u^{k}\right)$$
$$\phi^{-}(u) = \sum_{b \le m} \phi_{b}^{-} u^{b} = \overline{K} u^{m} \exp\left((q^{-1} - q) \sum_{l < 0} h_{l} u^{l}\right)$$

Fix $m \in \mathbb{Z}$

Presentation of $U_q^m(\widehat{\mathfrak{sl}}_2)$:

generators:
$$x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$$

relations:
$$[h_k, h_l] = 0$$
, $[h_k, K] = [h_k, \overline{K}] = 0$,

$$[x_k, y_l] = \frac{1}{q-q^{-1}} \left(\phi_{k+l}^+ - \phi_{k+l}^- \right),$$

$$\phi^{+}(u) = \sum_{a \geq 0} \phi_a^{+} u^a = K \exp\left((q - q^{-1}) \sum_{k > 0} h_k u^k\right)$$
$$\phi^{-}(u) = \sum_{b \leq \mathbf{m}} \phi_b^{-} u^b = \overline{K} u^{\mathbf{m}} \exp\left((q^{-1} - q) \sum_{l < 0} h_l u^l\right)$$

•
$$U_q(L\mathfrak{sl}_2) = U_q^0(\widehat{\mathfrak{sl}}_2)/(K\overline{K} = 1)$$

Fix $m \in \mathbb{Z}$

Presentation of $U_q^m(\widehat{\mathfrak{sl}}_2)$:

generators:
$$x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$$

relations:
$$[h_k, h_l] = 0$$
, $[h_k, K] = [h_k, \overline{K}] = 0$,

$$[x_k, y_l] = \frac{1}{q-q^{-1}} \left(\phi_{k+l}^+ - \phi_{k+l}^- \right),$$

$$\phi^{+}(u) = \sum_{a \geq 0} \phi_a^{+} u^a = K \exp\left((q - q^{-1}) \sum_{k > 0} h_k u^k\right)$$
$$\phi^{-}(u) = \sum_{b \leq \mathbf{m}} \phi_b^{-} u^b = \overline{K} u^{\mathbf{m}} \exp\left((q^{-1} - q) \sum_{l < 0} h_l u^l\right)$$

- $U_q(L\mathfrak{sl}_2) = U_q^0(\widehat{\mathfrak{sl}}_2)/(K\overline{K} = 1)$
- If m > 0, $U_q^m(\widehat{\mathfrak{sl}}_2)$ has non-trivial finite-dim. representations

Fix $m \in \mathbb{Z}$

Presentation of $U_q^m(\widehat{\mathfrak{sl}}_2)$:

generators:
$$x_k, y_k \ (k \in \mathbb{Z}), \ h_k \ (k \in \mathbb{Z} \setminus \{0\}), \ K, \overline{K}$$

relations:
$$[h_k, h_l] = 0$$
, $[h_k, K] = [h_k, \overline{K}] = 0$,

$$[x_k, y_l] = \frac{1}{q-q^{-1}} \left(\phi_{k+l}^+ - \phi_{k+l}^- \right),$$

$$\phi^{+}(u) = \sum_{a \geq 0} \phi_{a}^{+} u^{a} = K \exp\left((q - q^{-1}) \sum_{k > 0} h_{k} u^{k}\right)$$
$$\phi^{-}(u) = \sum_{b \leq m} \phi_{b}^{-} u^{b} = \overline{K} u^{m} \exp\left((q^{-1} - q) \sum_{l \leq 0} h_{l} u^{l}\right)$$

- $U_q(L\mathfrak{sl}_2) = U_q^0(\widehat{\mathfrak{sl}}_2)/(K\overline{K} = 1)$
- If m > 0, $U_q^m(\widehat{\mathfrak{sl}}_2)$ has non-trivial finite-dim. representations
- If m < 0, $U_q^m(\widehat{\mathfrak{sl}}_2)$ has no non-trivial finite-dim. representation

A $U_q^m(\widehat{\mathfrak{sl}}_2)$ -module V such that there is $v \in V$ and $\Psi_k \in \mathbb{C}$ with

- $U_a^{\mathbf{m}}(\widehat{\mathfrak{sl}}_2)v = V$
- $x_k v = 0$ $(k \in \mathbb{Z})$
- $\bullet \ \phi_k^+ v = \Psi_k v, \quad (k \in \mathbb{Z}_{\geq 0})$

is called a highest ℓ -weight module.

A $U_q^m(\widehat{\mathfrak{sl}}_2)$ -module V such that there is $v \in V$ and $\Psi_k \in \mathbb{C}$ with

- $U_a^{\mathbf{m}}(\widehat{\mathfrak{sl}}_2)v = V$
- $x_k v = 0$ $(k \in \mathbb{Z})$
- $\bullet \ \phi_k^+ v = \Psi_k v, \quad (k \in \mathbb{Z}_{\geq 0})$

is called a highest ℓ -weight module.

The highest ℓ -weight is $\Psi(z) := \sum_{k \geq 0} \Psi_k z^k \in \mathbb{C}[[z]]$.

A $U_q^m(\widehat{\mathfrak{sl}}_2)$ -module V such that there is $v \in V$ and $\Psi_k \in \mathbb{C}$ with

- $U_a^{\mathbf{m}}(\widehat{\mathfrak{sl}}_2)v = V$
- $x_k v = 0 \quad (k \in \mathbb{Z})$
- $\bullet \ \phi_k^+ v = \Psi_k v, \quad (k \in \mathbb{Z}_{\geq 0})$

is called a highest ℓ -weight module.

The highest ℓ -weight is $\Psi(z) := \sum_{k>0} \Psi_k z^k \in \mathbb{C}[[z]].$

Theorem (Hernandez 2020)

• Every simple object of $\mathscr{O}^m := \mathscr{O}(U_q^m(\widehat{\mathfrak{sl}}_2))$ is a highest ℓ -weight module with rational highest ℓ -weight $\Psi(z) \in \mathbb{C}(z)$ of degree m, regular at z = 0.

A $U_q^m(\widehat{\mathfrak{sl}}_2)$ -module V such that there is $v \in V$ and $\Psi_k \in \mathbb{C}$ with

- $U_{\alpha}^{\mathbf{m}}(\widehat{\mathfrak{sl}}_2)v = V$
- $x_k v = 0$ $(k \in \mathbb{Z})$
- $\bullet \ \phi_k^+ v = \Psi_k v, \quad (k \in \mathbb{Z}_{>0})$

is called a highest ℓ -weight module.

The highest ℓ -weight is $\Psi(z) := \sum_{k>0} \Psi_k z^k \in \mathbb{C}[[z]].$

Theorem (Hernandez 2020)

- Every simple object of $\mathscr{O}^m := \mathscr{O}(U_q^m(\widehat{\mathfrak{sl}}_2))$ is a highest ℓ -weight module with rational highest ℓ -weight $\Psi(z) \in \mathbb{C}(z)$ of degree m, regular at z = 0.
- Conversely, for each $\Psi(z) \in \mathbb{C}(z)$ of degree m, regular at z = 0, there is a unique simple $L(\Psi) \in \mathcal{O}^m$ with highest ℓ -weight Ψ .

• $\mathscr{R}_{\mathbf{m}} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = \mathbf{m}, \Psi \text{ is regular at } z = 0 \}.$

- $\mathscr{R}_{\mathbf{m}} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = \mathbf{m}, \Psi \text{ is regular at } z = 0 \}.$
- Every $V \in \mathcal{O}^{\mathbf{m}}$ decomposes as $V = \bigoplus_{\Phi \in \mathcal{R}_{\mathbf{m}}} V_{\Phi}$ where V_{Φ} is the common generalized eigenspace of ϕ_k^+ ($k \ge 0$) with eigenvalue Φ .

- $\mathcal{R}_{\mathbf{m}} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = \mathbf{m}, \Psi \text{ is regular at } z = 0 \}.$
- Every $V \in \mathcal{O}^{\mathbf{m}}$ decomposes as $V = \bigoplus_{\Phi \in \mathcal{R}_{\mathbf{m}}} V_{\Phi}$ where V_{Φ} is the common generalized eigenspace of ϕ_k^+ $(k \ge 0)$ with eigenvalue Φ .

 $\chi_q(\mathit{V}) := \sum_{\Phi \in \mathscr{R}_m} \dim(\mathit{V}_\Phi)[\Phi]$ (power series in formal variables $[\Phi]$)

- $\mathscr{R}_{\mathbf{m}} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = \mathbf{m}, \Psi \text{ is regular at } z = 0 \}.$
- Every $V \in \mathcal{O}^{\mathbf{m}}$ decomposes as $V = \bigoplus_{\Phi \in \mathcal{R}_{\mathbf{m}}} V_{\Phi}$ where V_{Φ} is the common generalized eigenspace of ϕ_k^+ $(k \ge 0)$ with eigenvalue Φ .

$$\chi_q(\mathit{V}) := \sum_{\Phi \in \mathscr{R}_m} \dim(\mathit{V}_\Phi)[\Phi]$$
 (power series in formal variables $[\Phi]$)

Theorem (Hernandez 2020)

The map $V \mapsto \chi_q(V)$ induces an injective map on $K_0(\mathcal{O}^m)$.

- $\mathscr{R}_{m} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = m, \Psi \text{ is regular at } z = 0 \}.$
- Every $V \in \mathcal{O}^{\mathbf{m}}$ decomposes as $V = \bigoplus_{\Phi \in \mathcal{R}_{\mathbf{m}}} V_{\Phi}$ where V_{Φ} is the common generalized eigenspace of ϕ_k^+ $(k \ge 0)$ with eigenvalue Φ .

$$\chi_q(\mathit{V}) := \sum_{\Phi \in \mathscr{R}_m} \dim(\mathit{V}_\Phi)[\Phi]$$
 (power series in formal variables $[\Phi]$)

Theorem (Hernandez 2020)

The map $V \mapsto \chi_q(V)$ induces an injective map on $K_0(\mathcal{O}^m)$.

Prefundamental modules:

- $\mathscr{R}_{m} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = m, \Psi \text{ is regular at } z = 0 \}.$
- Every $V \in \mathcal{O}^{\mathbf{m}}$ decomposes as $V = \bigoplus_{\Phi \in \mathcal{R}_{\mathbf{m}}} V_{\Phi}$ where V_{Φ} is the common generalized eigenspace of ϕ_k^+ $(k \ge 0)$ with eigenvalue Φ .

$$\chi_q(V) := \sum_{\Phi \in \mathscr{R}_m} \dim(V_{\Phi})[\Phi]$$
 (power series in formal variables $[\Phi]$)

Theorem (Hernandez 2020)

The map $V \mapsto \chi_{\alpha}(V)$ induces an injective map on $K_0(\mathcal{O}^{\mathbf{m}})$.

Prefundamental modules:

• m=1: Take $\Psi_a(z):=1-az$ $(a\in\mathbb{C}^*)$. Then $\chi_q(L(\Psi_a))=[\Psi_a]$

- $\mathscr{R}_{m} := \{ \Psi(z) \in \mathbb{C}(z) \mid \deg(\Psi) = m, \Psi \text{ is regular at } z = 0 \}.$
- Every $V \in \mathcal{O}^{\mathbf{m}}$ decomposes as $V = \bigoplus_{\Phi \in \mathcal{R}_{\mathbf{m}}} V_{\Phi}$ where V_{Φ} is the common generalized eigenspace of ϕ_k^+ $(k \ge 0)$ with eigenvalue Φ .

 $\chi_q(\mathit{V}) := \sum_{\Phi \in \mathscr{R}_m} \dim(\mathit{V}_\Phi)[\Phi]$ (power series in formal variables $[\Phi]$)

Theorem (Hernandez 2020)

The map $V \mapsto \chi_a(V)$ induces an injective map on $K_0(\mathcal{O}^{\mathbf{m}})$.

Prefundamental modules:

- m=1: Take $\Psi_a(z):=1-az$ $(a\in\mathbb{C}^*)$. Then $\chi_q(L(\Psi_a))=[\Psi_a]$
- m = -1: Then $\chi_q(L(\Psi_a^{-1})) = [\Psi_a^{-1}](1 + A_a^{-1} + A_a^{-1}A_{aq^{-2}}^{-1} + \cdots)$ where $A_a^{-1} := [q^{-2}\Psi_{aq^2}\Psi_{aq^{-2}}^{-1}].$

$$\longrightarrow$$
 ring structure on $K_0(\mathscr{O}^{\operatorname{sh}}) = \bigoplus_{m \in \mathbb{Z}} K_0(\mathscr{O}^m)$

such that:
$$\chi_q(V*W) = \chi_q(V)\chi_q(W)$$
.

ring structure on $K_0(\mathscr{O}^{\operatorname{sh}}) = \bigoplus_{m \in \mathbb{Z}} K_0(\mathscr{O}^m)$ such that: $\chi_q(V * W) = \chi_q(V)\chi_q(W)$.

Theorem (sl₂ case)

• $K_0(\mathcal{O}^{sh})$ is topologically generated by $\chi_q(L(\Psi_a))$, $\chi_q(L(\Psi_a^{-1}))$, $(a \in \mathbb{C}^*)$.

ring structure on $K_0(\mathscr{O}^{\operatorname{sh}}) = \bigoplus_{m \in \mathbb{Z}} K_0(\mathscr{O}^m)$ such that: $\chi_q(V * W) = \chi_q(V)\chi_q(W)$.

Theorem (sl₂ case)

- $K_0(\mathcal{O}^{sh})$ is topologically generated by $\chi_q(L(\Psi_a))$, $\chi_q(L(\Psi_a^{-1}))$, $(a \in \mathbb{C}^*)$.
- Set $Q_k^+ := \chi_q(L(\Psi_{q^k})), \ Q_k^- := \chi_q(L(\Psi_{q^k}^{-1})), (k \in 2\mathbb{Z}).$

Hernandez constructs a fusion product $*: \mathcal{O}^m \times \mathcal{O}^n \to \mathcal{O}^{m+n}$.

ring structure on $K_0(\mathscr{O}^{\operatorname{sh}}) = \bigoplus_{m \in \mathbb{Z}} K_0(\mathscr{O}^m)$ such that: $\chi_q(V * W) = \chi_q(V) \chi_q(W)$.

Theorem (sl₂ case)

- $K_0(\mathcal{O}^{sh})$ is topologically generated by $\chi_q(L(\Psi_a))$, $\chi_q(L(\Psi_a^{-1}))$, $(a \in \mathbb{C}^*)$.
- $\begin{array}{l} \bullet \ \, \mathrm{Set} \,\, Q_k^+ := \chi_q(L(\Psi_{q^k})), \, Q_k^- := \chi_q(L(\Psi_{q^k}^{-1})), (k \in 2\mathbb{Z}). \\ \mathrm{Then} \,\, F(\mathscr{B}_\infty) \subset \mathcal{K}_0(\mathscr{O}_\mathbb{Z}^{\mathrm{sh}}) \end{array}$
 - is presented by :

generators : Q_k^+ , $Q_k^$ relations : $Q_k^+Q_k^- = 1 + Q_{k+2}^+Q_{k-2}^-$ Hernandez constructs a fusion product $*: \mathcal{O}^m \times \mathcal{O}^n \to \mathcal{O}^{m+n}$.

ring structure on $K_0(\mathscr{O}^{\operatorname{sh}}) = \bigoplus_{m \in \mathbb{Z}} K_0(\mathscr{O}^m)$ such that: $\chi_q(V * W) = \chi_q(V)\chi_q(W)$.

Theorem (sl₂ case)

- $K_0(\mathcal{O}^{\text{sh}})$ is topologically generated by $\chi_q(L(\Psi_a))$, $\chi_q(L(\Psi_a^{-1}))$, $(a \in \mathbb{C}^*)$.
- $\bullet \ \operatorname{Set} \ Q_k^+ := \chi_q(L(\Psi_{q^k})), \ Q_k^- := \chi_q(L(\Psi_{q^k}^{-1})), (k \in 2\mathbb{Z}).$ Then $F(\mathscr{B}_{\infty}) \subset K_0(\mathscr{O}_{\mathbb{Z}}^{\operatorname{sh}})$
 - is presented by : generators : Q_k^+ , $Q_k^$ relations : $Q_k^+Q_k^- = 1 + Q_{k+2}^+Q_{k-2}^-$
 - has cluster variables : $Q_k^+, \ Q_k^-, \ (k \in 2\mathbb{Z}), \chi_q\left(L(\Psi_{q^r}\Psi_{q^s}^{-1})\right), \ (r < s \in 2\mathbb{Z}).$

Hernandez constructs a fusion product $*: \mathcal{O}^m \times \mathcal{O}^n \to \mathcal{O}^{m+n}$.

ring structure on $K_0(\mathscr{O}^{\operatorname{sh}}) = \bigoplus_{m \in \mathbb{Z}} K_0(\mathscr{O}^m)$ such that: $\chi_q(V * W) = \chi_q(V)\chi_q(W)$.

Theorem (sl₂ case)

- $K_0(\mathcal{O}^{sh})$ is topologically generated by $\chi_q(L(\Psi_a))$, $\chi_q(L(\Psi_a^{-1}))$, $(a \in \mathbb{C}^*)$.
- $\begin{array}{l} \bullet \ \, \mathrm{Set} \,\, Q_k^+ := \chi_q(L(\Psi_{q^k})), \, Q_k^- := \chi_q(L(\Psi_{q^k}^{-1})), (k \in 2\mathbb{Z}). \\ \mathrm{Then} \,\, F(\mathscr{B}_\infty) \subset \mathcal{K}_0(\mathscr{O}_\mathbb{Z}^{\,\mathrm{sh}}) \end{array}$
 - is presented by : generators : Q_k^+ , $Q_k^$ relations : $Q_k^+Q_k^- = 1 + Q_{k+2}^+Q_{k-2}^-$
 - has cluster variables : $Q_k^+, \ Q_k^-, \ (k \in 2\mathbb{Z}), \chi_q\left(L(\Psi_{q^r}\Psi_{q^s}^{-1})\right), \ (r < s \in 2\mathbb{Z}).$

$$L(\Psi_{q'}\Psi_{q'}^{-1}) \in \mathcal{O}^{0}$$
: Kirillov-Reshetikhin modules (finite-dim.).

$$\vdots & \uparrow^{+}_{Q_{6}} & \uparrow^{+}_{Q_{4}} & \uparrow^{+}_{Q_{2}} & \uparrow^{-}_{Q_{0}} & \uparrow^{-}_{Q_{-2}} & \uparrow^{-}_{Q_{-4}} & \uparrow^{-}_{Q_{-6}} & \uparrow^{-$$

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} ,

$$C = (c_{ij})_{i,j \in I}$$
: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\alpha}_j$,

$$C = (c_{ij})_{i,j \in I}$$
: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i W: Weyl group, $s_i = s_{\alpha_i}$

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1, \dots, 1, 1 - az, 1, \dots, 1) \in (\mathbb{C}(z))^I$ $(i \in I, a \in \mathbb{C}^*)$.

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1, \dots, 1, 1 - az, 1, \dots, 1) \in (\mathbb{C}(z))^I$ $(i \in I, a \in \mathbb{C}^*)$.

$$\Psi \leadsto L(\Psi)$$

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1, \dots, 1, 1 - az, 1, \dots, 1) \in (\mathbb{C}(z))^I$ $(i \in I, a \in \mathbb{C}^*)$.

$$\Psi \leadsto L(\Psi)$$

Positive prefundamental modules : $L(\Psi_{i,a})$ of dimension 1

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1, \dots, 1, 1 - az, 1, \dots, 1) \in (\mathbb{C}(z))^I$ $(i \in I, a \in \mathbb{C}^*)$.

$$\Psi \leadsto L(\Psi)$$

Positive prefundamental modules : $L(\Psi_{i,a})$ of dimension 1 Negative prefundamental modules : $L(\Psi_{i,a}^{-1})$ of infinite dimension

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1, \dots, 1, 1 - az, 1, \dots, 1) \in (\mathbb{C}(z))^I$ $(i \in I, a \in \mathbb{C}^*)$.

$$\Psi \rightsquigarrow L(\Psi)$$

Positive prefundamental modules : $L(\Psi_{i,a})$ of dimension 1 Negative prefundamental modules : $L(\Psi_{i,a}^{-1})$ of infinite dimension $K_0(\mathcal{O}^{\text{sh}})$ is a ring (via fusion product) topologically generated by classes of positive and negative prefundamental modules

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\omega}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1, \dots, 1, 1 - az, 1, \dots, 1) \in (\mathbb{C}(z))^I$ $(i \in I, a \in \mathbb{C}^*)$.

$$\Psi \leadsto L(\Psi)$$

Positive prefundamental modules : $L(\Psi_{i,a})$ of dimension 1 Negative prefundamental modules : $L(\Psi_{i,a}^{-1})$ of infinite dimension $K_0(\mathcal{O}^{sh})$ is a ring (via fusion product) topologically generated by classes of positive and negative prefundamental modules $\chi_a: K_0(\mathcal{O}^{sh}) \hookrightarrow \Pi$, a power series ring in formal variables $[\Psi]$

 $C = (c_{ij})_{i,j \in I}$: Cartan matrix of \mathfrak{g} , $\alpha_i = \sum_{j \in I} c_{ji} \overline{\alpha}_j$, d_i : length of α_i

W: Weyl group, $s_i = s_{\alpha_i}$

Finkelberg-Tsymbaliuk + Hernandez : $\mathcal{O}^{sh} = \mathcal{O}^{sh}(\mathfrak{g})$

Theorem (Hernandez 2020)

simple objects of \mathcal{O}^{sh} are parametrized by Laurent monomials Ψ in variables $\Psi_{i,a} := (1,\ldots,1,1-az,1,\ldots,1) \in (\mathbb{C}(z))^I$ $(i \in I,a \in \mathbb{C}^*)$.

$$\Psi \rightsquigarrow L(\Psi)$$

Positive prefundamental modules : $L(\Psi_{i,a})$ of dimension 1 Negative prefundamental modules : $L(\Psi_{i,a}^{-1})$ of infinite dimension $K_0(\mathcal{O}^{sh})$ is a ring (via fusion product) topologically generated by classes of positive and negative prefundamental modules $\chi_q: K_0(\mathcal{O}^{sh}) \hookrightarrow \Pi$, a power series ring in formal variables $[\Psi]$ $\chi_q(L(\Psi_{i,a})) = [\Psi_{i,a}]$

Weyl group action and $Q\widetilde{Q}$ -system

Theorem (Frenkel-Hernandez 2022)

There is an action $\Theta: W \curvearrowright \Pi$ such that for $V \in \mathscr{C} \subset \mathscr{C}^{\operatorname{sh}} \subset \mathscr{O}^{\operatorname{sh}}$:

$$\Theta_w(\chi_q(V)) = \chi_q(V), \quad (w \in W).$$

Theorem (Frenkel-Hernandez 2022)

There is an action $\Theta: W \curvearrowright \Pi$ such that for $V \in \mathscr{C} \subset \mathscr{C}^{\mathrm{sh}} \subset \mathscr{O}^{\mathrm{sh}}$: $\Theta_W(\chi_{\sigma}(V)) = \chi_{\sigma}(V), \quad (w \in W).$

Definition

$$Q_{w(\varpi_{i}^{\vee}),a} := \Theta_{w}\left([\Psi_{i,a}]\right), \qquad (w \in W, i \in I, a \in \mathbb{C}^{*}).$$

Theorem (Frenkel-Hernandez 2022)

There is an action $\Theta: W \curvearrowright \Pi$ such that for $V \in \mathscr{C} \subset \mathscr{C}^{\mathrm{sh}} \subset \mathscr{O}^{\mathrm{sh}}$: $\Theta_W(\chi_{\sigma}(V)) = \chi_{\sigma}(V), \quad (w \in W).$

Definition

$$Q_{w(\varpi_i^{\vee}),a} := \Theta_w([\Psi_{i,a}]), \qquad (w \in W, i \in I, a \in \mathbb{C}^*).$$

 $Q_{w(\varpi_i^{\vee}),a}$ depends only on the chamber coweight $w(\varpi_i^{\vee})$ (and on a).

Theorem (Frenkel-Hernandez 2022)

There is an action $\Theta: W \curvearrowright \Pi$ such that for $V \in \mathscr{C} \subset \mathscr{C}^{\mathrm{sh}} \subset \mathscr{O}^{\mathrm{sh}}$: $\Theta_W(\chi_{\sigma}(V)) = \chi_{\sigma}(V), \quad (w \in W).$

Definition

$$Q_{w(\varpi_i^{\vee}),a} := \Theta_w([\Psi_{i,a}]), \qquad (w \in W, i \in I, a \in \mathbb{C}^*).$$

 $Q_{w(\varpi_i^\vee),a}$ depends only on the chamber coweight $w(\varpi_i^\vee)$ (and on a).

Theorem (Frenkel-Hernandez)

The $Q_{w(\varpi_i^{\vee}),a}$ satisfy the $Q\widetilde{Q}$ -system: for $ws_i > w$,

$$Q_{ws_i(\varpi_i^{\vee}),aq^{d_i}}Q_{w(\varpi_i^{\vee}),aq^{-d_i}}-Q_{ws_i(\varpi_i^{\vee}),aq^{-d_i}}Q_{w(\varpi_i^{\vee}),aq^{d_i}}=M_{w,i,a}$$

where $M_{w,i,a}$ is a monomial in the $Q_{w(\varpi_i^{\vee}),b}$ for $c_{ij} < 0$.

Theorem (Frenkel-Hernandez 2022)

There is an action $\Theta: W \curvearrowright \Pi$ such that for $V \in \mathscr{C} \subset \mathscr{C}^{\operatorname{sh}} \subset \mathscr{O}^{\operatorname{sh}}$: $\Theta_W(\chi_{\sigma}(V)) = \chi_{\sigma}(V), \quad (w \in W).$

Definition

$$Q_{w(\varpi_i^{\vee}),a} := \Theta_w([\Psi_{i,a}]), \qquad (w \in W, i \in I, a \in \mathbb{C}^*).$$

 $Q_{w(\varpi_i^{\vee}),a}$ depends only on the chamber coweight $w(\varpi_i^{\vee})$ (and on a).

Theorem (Frenkel-Hernandez)

The $Q_{w(\varpi_i^{\vee}),a}$ satisfy the $Q\widetilde{Q}$ -system: for $ws_i > w$,

$$Q_{ws_i(\varpi_i^{\vee}),aq^{d_i}}Q_{w(\varpi_i^{\vee}),aq^{-d_i}}-Q_{ws_i(\varpi_i^{\vee}),aq^{-d_i}}Q_{w(\varpi_i^{\vee}),aq^{d_i}}=M_{w,i,a}$$

where $M_{w,i,a}$ is a monomial in the $Q_{w(\varpi_i^{\vee}),b}$ for $c_{ij} < 0$.

In type A, D, E, one has: $M_{w,i,a} = \prod_{j:c_{ij}<0} Q_{w(\varpi_i),a}$.

Main result

Main result

We attach to C an explicitly defined cluster algebra \mathcal{B}_{∞} .

Main result

We attach to C an explicitly defined cluster algebra \mathcal{B}_{∞} .

Theorem (Geiss-Hernandez-L 2023)

- There is an injective ring homomorphism $F: \mathscr{B}_{\infty} \to K_0(\mathscr{O}_{\mathbb{Z}}^{\operatorname{sh}})$ such that $\overline{F(\mathscr{B}_{\infty})} = K_0(\mathscr{O}_{\mathbb{Z}}^{\operatorname{sh}})$
- For every reduced decomposition $w_0 = s_{i_1} \cdots s_{i_r}$ there is an explicit initial seed of \mathscr{B}_{∞} with cluster variables of the form:

$$Q_{s_{i_1}\cdots s_{i_k}(\varpi_i^{\vee}),q^n},\ (0\leq k\leq r,\ i\in I,\ n\in\mathbb{Z})$$

Type A₂

 $w_0 = s_1 s_2 s_1$

