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@ Hernandez-L : o/ = Ky(%¢q), where
©q is a subcategory of € := {finite-dim. Uq(5A[4)—modules}
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First question/motivation

Q1: Can we replace Nby G ?

A1: It seems so.

But we have to use shifted quantum affine algebras,

and we have to allow infinite-dimensional representations.
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@ Hernandez-L : o7, contains cluster variables equal to the
g-characters of all Kirillov-Reshetikhin modules of €7,

@ Most cluster variables are not g-characters of objects of €7,
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Q2: Which cluster variables/monomials are g-characters of simple
objects of 67 ?

Q3: What is the representation-theoretical meaning of the remaining
ones ?
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Answer to Q2

e g : simple complex Lie algebra
e Ug(g) : quantum affine algebra
e a7, : corresponding infinite rank cluster algebra

e o7, is Z-graded by declaring that each initial cluster variable has
degree 1.

Theorem (Hernandez-L 2016, Kashiwara-Kim-Oh-Park 2020,

Hernandez 2020)

@ Every cluster variable of .27, has a cluster expansion with respect
to the initial cluster which is homogeneous of degree > 0.

@ A cluster monomial m of .7, is the g-character of a (simple)
object in 47 if and and only if degm = 0.

e If g # slp, every one-step mutation has degree > 0, so it is not the
g-character of an object in 67.
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Answer to Q3

@ In 2019 Finkelberg-Tsymbaliuk introduced :

shifted quantum affine algebras Ué‘ (9), i integral coweight of g
(Ug (9) is a central extension of Ug(Lg))

@ In 2020 Hernandez introduced categories :
ot =0 (Uq(9))

ﬁSh::EB#ﬁ“
¢t ={VeO"|dmV <o}
G =@, "

oshc o ghcet

Theorem (Hernandez 2020)

o Ko((gZSh) > A,
@ A cluster monomial m of .7, is the g-character of a (simple)
object in €* if and and only if degm = L.




Fourth question

Q4: What about infinite-dimensional modules and category ﬁz*h ?

Can we find a cluster algebra structure on Ko(O5") ?
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Theorem (Geiss-Hernandez-L 2023)

There is an explicit injective homomorphism F : %., — Ky (ﬁZSh),
such that F(%..) = Ko (O3")

Conjecture

For every cluster monomial m of %.. with degm = 1, F(m) is the
class a simple object in ﬁﬁh.

Theorem (Geiss-Hernandez-L 2023)

Conjecture holds for g = sl».

Theorem (Geiss-Hernandez-L 2023)

Let g be of type A, D, E.
Ko (ﬁZSh) contains a cluster subalgebra 4 isomorphic to the
coordinate ring of the open double Bruhat cell C[G":"0].
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2. Shifted quantum affine algebras: sl, case

Drinfeld presentation of Ug(Lsly):
generators: Xg, Yk (kK € Z), hy (k € Z\{0}), K,K
relations: [k, h] =0, [k, K] = [hk, K] =0, KK =1,

where:
0 (U) =Y a007 U?=Kexp((9—q ") Lk hkuk)
0~ (U) =Ypeo 0, UP=Kexp (7' —q) Lo i)
Classical limit g — 1:
Xk =Xtk ye—yoatk, hx — he t,

K-K 07 ‘Pb

— — heté
q-—
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FixmeZ

Presentation of Uj’ (sA[g):

generators: X, Yk (k € Z), hx (k € Z\ {0}), K,K
relations: [hx, hj] = 0, [hx, K] = [hx, K] =0,

where:
0 (U) =Y a004 u?=Kexp ((q—q ") Lk hktk)
¢~ (U) = Lpem®, UP = Ku"exp (71— q) Ljco Miu')
® Ug(Lslp) = U3(slp) /(KK = 1)
@ Ifm>0, Ug”(; has non-trivial finite-dim. representations

o)
@ If m <0, Ug'(sl2) has no non-trivial finite-dim. representation
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AUy (slp)-module V such that there is v € V and W € C with
o Ul (slo)v =V
@ xxv=0 (keZ)
° g fv=Nv, (k€EZso)

is called a highest /-weight module.
The highest (-weight is W(Z2) 1= Y0 Vx2¥ € C[[2]].

Theorem (Hernandez 2020)

@ Every simple object of 0 := O'(Ug' (;[2)) is a highest /-weight
module with rational highest /-weight W(z) € C(z) of degree m,
regular at Z = 0.

@ Conversely, for each W(Zz) € C(z) of degree m), regular at z =0,
there is a unique simple L(W) € &' with highest ¢-weight W.
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o Zm:={V(z) € C(z)|deg(V)=m,V is regular at z = 0}.
e Every V € 0" decomposes as V = D¢c,, Vo Where Vi is the
common generalized eigenspace of (l),;F (k > 0) with eigenvalue ®.

Definition
Xq(V) :=Yocz, dim(Ve)[®] (power series in formal variables [®])

Theorem (Hernandez 2020)
The map V — yx4(V) induces an injective map on Ko(&").

Prefundamental modules:
e m=1:Take V4(2) :=1—az (aec C*¥). Then xq(L(Va)) =[V4]
o m=—1:Then xq(L(V5"))=[Va 1(1+ A" +A3'A_J o +--)

where A7" = [q*2waq2w;c;,2].
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Theorem (sl, case)
@ Ky(0*h) is topologically generated by xq(L(V2)), )(C,(L(\IJ‘;1 ),
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Hernandez constructs a fusion product * : 0" x 6" — ™",
~~ ring structure on Ko(O*") = @ ey Ko(O™)
such that: Xg(Vx W) = xq(V)xg(W).

Theorem (sl, case)
@ Ky(0*h) is topologically generated by xq(L(V2)), )(C,(L(\IJ‘;1 ),
(aeCh).
@ Set Q) = Xq(L(V ), Q = )(q(L(\II(;,(1 ), (k € 27Z).
Then F(%-) C Ko(O5")
e is presented by :
generators : QF, Q;
relations : Q,J(r Q =1+ Q;;Q o
e has cluster variables :
Qf, O, (ke22), 2 (LW d)), (r<se2z).

L(\Uqr\llgg) € 0° : Kirillov-Reshetikhin modules (finite-dim.).
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W : Weyl group, S; = Sg,
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Theorem (Hernandez 2020)

simple objects of ¢! are parametrized by Laurent monomials W in
variables V; 5 :=(1,...,1,1—az,1,...,1) € (C(2)) (i € l,ae C).

W L(W)

Positive prefundamental modules : L(W; ;) of dimension 1
Negative prefundamental modules : L (lll,*;) of infinite dimension

Ko(0*) is a ring (via fusion product) topologically generated by
classes of positive and negative prefundamental modules

Xq : Ko(O"") < T, a power series ring in formal variables [V]
Xq(L(Via)) = [Vial
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Weyl group action and QCNQ-system

Theorem (Frenkel-Hernandez 2022)

There is an action © : W ~ I such that for V € € c € c o
O (1s(V)) = 24(V). (we W). /

Qu(aY).a = Ow ([Via), (weW,iel aeC*).

Qu(@).a depends only on the chamber coweight w(®@;’) (and on a).

Theorem (Frenkel-Hernandez)

The QW(&I,-V),a satisfy the Qé—system: for ws; > w,

Q 5 Q -Q We)

where My, ; 5 is a monomial in the QW(a,ijb for ¢; < 0.

wsi(@;}),aq% “w(@y),aq % wsi(@).aq” W(W,V),aqdf:MW”va

Intype A, D, E, one has: My, j 2 =[1}.c;<0 Qu(a;).a-
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Main result

We attach to C an explicitly defined cluster algebra Z...

Theorem (Geiss-Hernandez-L 2023)
@ There is an injective ring homomorphism F: Z.. — Ko(O5")
such that F(%..) = Ko(O31)

@ For every reduced decomposition Wy = Sj, - - - §j, there is an
explicit initial seed of Z., with cluster variables of the form:

QSi1"'3ik(07,-V)7q"7 (0 S k S I’, I€ I7 ne Z)




Cor \
T _— O
Qm1,q0
Q, (ovmqo
Type Az \051 (@).q7"
Wo = S1S251 !

QS1 sp(@1),g72

Q

518051 (571 ),q—2

QS1 984

QS1 5084 (W1 ),q—4
A

(@p).q73




oy.q o).

v
o (W¥)7q3 \ T EY’q

i
s1(@y).q s1(@)).q
A
Type BZ sy(@y).g7 " —> sy (@y).q"

\ ‘V
Wp = S§1525152 s152(@3).q
A T~

51 sz(ta%’),q*3 51 52(w¥),q’3
— 4
B sz(m}/),q*5 T 518251 (1211\/),(1*3
] =
51555 (ai1v),q_5 B (wg),q_‘r’ T
T~ A T~ ,

15281 (@y).a77 <= sysp81(@Y).a~

Y —
s1525152(03).q 7
— A

s1525152(@)).a72  sysp8y5p(@y).q7°



