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 ∈ SL(4,C)


Hernandez-L : A ∼= K0(CQ), where
CQ is a subcategory of C := {finite-dim.Uq(ŝl4)-modules}
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First question/motivation

Q1: Can we replace N by G ?

A1: It seems so.

But we have to use shifted quantum affine algebras,

and we have to allow infinite-dimensional representations.
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q-characters of all Kirillov-Reshetikhin modules of CZ

Most cluster variables are not q-characters of objects of CZ
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Second and third questions

Q2: Which cluster variables/monomials are q-characters of simple
objects of CZ ?

Q3: What is the representation-theoretical meaning of the remaining
ones ?
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Answer to Q2

• g : simple complex Lie algebra

• Uq(ĝ) : quantum affine algebra

• A∞ : corresponding infinite rank cluster algebra

• A∞ is Z-graded by declaring that each initial cluster variable has
degree 1.

Theorem (Hernandez-L 2016, Kashiwara-Kim-Oh-Park 2020,
Hernandez 2020)

Every cluster variable of A∞ has a cluster expansion with respect
to the initial cluster which is homogeneous of degree ≥ 0.

A cluster monomial m of A∞ is the q-character of a (simple)
object in CZ if and and only if degm = 0.

• If g 6= sl2, every one-step mutation has degree > 0, so it is not the
q-character of an object in CZ.
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Answer to Q3

In 2019 Finkelberg-Tsymbaliuk introduced :
shifted quantum affine algebras U µ

q (ĝ), µ integral coweight of g

(U 0
q (ĝ) is a central extension of Uq(Lg))

In 2020 Hernandez introduced categories :
Oµ := O

(
U µ

q (ĝ)
)

O sh :=
⊕

µ Oµ

C µ := {V ∈ Oµ | dimV < ∞}
C sh :=

⊕
µ C µ

O sh
Z ⊂O sh, C sh

Z ⊂ C sh

Theorem (Hernandez 2020)

K0(C sh
Z )∼= A∞

A cluster monomial m of A∞ is the q-character of a (simple)
object in C µ if and and only if degm = µ .
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)

O sh :=
⊕

µ Oµ

C µ := {V ∈ Oµ | dimV < ∞}
C sh :=

⊕
µ C µ

O sh
Z ⊂O sh, C sh

Z ⊂ C sh

Theorem (Hernandez 2020)

K0(C sh
Z )∼= A∞

A cluster monomial m of A∞ is the q-character of a (simple)
object in C µ if and and only if degm = µ .



Answer to Q3

In 2019 Finkelberg-Tsymbaliuk introduced :
shifted quantum affine algebras U µ
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Fourth question

Q4: What about infinite-dimensional modules and category O sh
Z ?

Can we find a cluster algebra structure on K0(O sh
Z ) ?
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Main results

Theorem (Geiss-Hernandez-L 2023)

There is an explicit injective homomorphism F : B∞→ K0
(
O sh

Z
)
,

such that F (B∞) = K0
(
O sh

Z
)

Conjecture

For every cluster monomial m of B∞ with degm = µ , F (m) is the
class a simple object in O sh

µ .

Theorem (Geiss-Hernandez-L 2023)
Conjecture holds for g = sl2.

Theorem (Geiss-Hernandez-L 2023)
Let g be of type A,D,E .
K0
(
O sh

Z
)

contains a cluster subalgebra B isomorphic to the
coordinate ring of the open double Bruhat cell C[Gw0,w0 ].
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2. Shifted quantum affine algebras: sl2 case

Drinfeld presentation of Uq(Lsl2):
generators: xk ,yk (k ∈ Z), hk (k ∈ Z\{0}), K ,K

relations: [hk ,hl ] = 0, [hk ,K ] = [hk ,K ] = 0, K K = 1,
. . . . . . . . . . . .

[xk ,yl ] = 1
q−q−1

(
φ

+
k+l −φ

−
k+l

)
,

where:
φ +(u) = ∑a≥0 φ

+
a ua = K exp

(
(q−q−1)∑k>0 hkuk)

φ−(u) = ∑b≤0 φ
−
b ub = K exp

(
(q−1−q)∑l<0 hlul)

Classical limit q→ 1:

xk → x⊗ tk , yk → y ⊗ tk , hk → h⊗ tk ,

K −K
q−q−1 → h⊗1,

φ
+
a

q−q−1 → h⊗ ta,
φ
−
b

q−q−1 → h⊗ tb
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Fix m ∈ Z
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If m > 0, Um
q (ŝl2) has non-trivial finite-dim. representations

If m < 0, Um
q (ŝl2) has no non-trivial finite-dim. representation
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q (ŝl2)/(K K = 1)

If m > 0, Um
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q (ŝl2):

generators: xk ,yk (k ∈ Z), hk (k ∈ Z\{0}), K ,K

relations: [hk ,hl ] = 0, [hk ,K ] = [hk ,K ] = 0,
. . . . . . . . . . . .

[xk ,yl ] = 1
q−q−1

(
φ

+
k+l −φ

−
k+l

)
,

where:
φ +(u) = ∑a≥0 φ

+
a ua = K exp

(
(q−q−1)∑k>0 hkuk)

φ−(u) = ∑b≤m φ
−
b ub = K um exp

(
(q−1−q)∑l<0 hlul)

Uq(Lsl2) = U0
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Definition

A Um
q (ŝl2)-module V such that there is v ∈ V and Ψk ∈ C with

Um
q (ŝl2)v = V

xkv = 0 (k ∈ Z)

φ
+
k v = Ψkv , (k ∈ Z≥0)

is called a highest `-weight module.

The highest `-weight is Ψ(z) := ∑k≥0 Ψkzk ∈ C[[z]].

Theorem (Hernandez 2020)

Every simple object of Om := O(Um
q (ŝl2)) is a highest `-weight

module with rational highest `-weight Ψ(z) ∈ C(z) of degree m,
regular at z = 0.

Conversely, for each Ψ(z) ∈ C(z) of degree m, regular at z = 0,
there is a unique simple L(Ψ) ∈ Om with highest `-weight Ψ.
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• Rm := {Ψ(z) ∈ C(z) | deg(Ψ) = m,Ψ is regular at z = 0}.

• Every V ∈ Om decomposes as V =
⊕

Φ∈Rm
VΦ where VΦ is the

common generalized eigenspace of φ
+
k (k ≥ 0) with eigenvalue Φ.

Definition
χq(V ) := ∑Φ∈Rm dim(VΦ)[Φ] (power series in formal variables [Φ])

Theorem (Hernandez 2020)

The map V 7→ χq(V ) induces an injective map on K0(Om).

Prefundamental modules:

• m = 1 : Take Ψa(z) := 1−az (a ∈C∗). Then χq(L(Ψa)) = [Ψa]

• m =−1 : Then χq(L(Ψ−1
a )) = [Ψ−1

a ](1 + A−1
a + A−1

a A−1
aq−2 + · · ·)

where A−1
a := [q−2Ψaq2Ψ−1

aq−2 ].
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Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).



Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).



Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).



Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).



Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).



Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).



Hernandez constructs a fusion product ∗ : Om×On→ Om+n.

 ring structure on K0(O sh) =
⊕

m∈ZK0(Om)

such that: χq(V ∗W ) = χq(V )χq(W ).

Theorem (sl2 case)

K0(O sh) is topologically generated by χq(L(Ψa)), χq(L(Ψ−1
a )),

(a ∈ C∗).

Set Q+
k := χq(L(Ψqk )), Q−k := χq(L(Ψ−1

qk )),(k ∈ 2Z).

Then F (B∞)⊂ K0(O sh
Z )

• is presented by :
generators : Q+

k , Q−k
relations : Q+

k Q−k = 1 + Q+
k+2Q−k−2

• has cluster variables :
Q+

k , Q−k , (k ∈ 2Z), χq

(
L(Ψqr Ψ−1

qs )
)
, (r < s ∈ 2Z).

L(Ψqr Ψ−1
qs ) ∈ O0 : Kirillov-Reshetikhin modules (finite-dim.).
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3. Shifted quantum affine algebras: general case

C = (cij)i ,j∈I : Cartan matrix of g, αi = ∑j∈I cjiϖj , di : length of αi

W : Weyl group, si = sαi

Finkelberg-Tsymbaliuk + Hernandez : O sh = O sh(g)

Theorem (Hernandez 2020)

simple objects of O sh are parametrized by Laurent monomials Ψ in
variables Ψi ,a := (1, . . . ,1,1−az,1, . . . ,1) ∈ (C(z))I (i ∈ I,a ∈ C∗).

Ψ L(Ψ)

Positive prefundamental modules : L(Ψi ,a) of dimension 1

Negative prefundamental modules : L
(

Ψ−1
i ,a

)
of infinite dimension

K0(O sh) is a ring (via fusion product) topologically generated by
classes of positive and negative prefundamental modules
χq : K0(O sh) ↪→ Π, a power series ring in formal variables [Ψ]

χq(L(Ψi ,a)) = [Ψi ,a]
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Weyl group action and QQ̃-system

Theorem (Frenkel-Hernandez 2022)

There is an action Θ : W y Π such that for V ∈ C ⊂ C sh ⊂O sh:
Θw (χq(V )) = χq(V ), (w ∈W ).

Definition

Qw(ϖ∨i ),a := Θw
(
[Ψi ,a]

)
, (w ∈W , i ∈ I, a ∈ C∗).

Qw(ϖ∨i ),a depends only on the chamber coweight w(ϖ∨i ) (and on a).

Theorem (Frenkel-Hernandez)

The Qw(ϖ∨i ),a satisfy the QQ̃-system: for wsi > w ,

Qwsi (ϖ∨i ),aqdi Qw(ϖ∨i ),aq−di −Qwsi (ϖ∨i ),aq−di Qw(ϖ∨i ),aqdi = Mw ,i ,a

where Mw ,i ,a is a monomial in the Qw(ϖ∨j ),b for cij < 0.

In type A,D,E , one has: Mw ,i ,a = ∏j:cij<0 Qw(ϖj ),a.
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Main result

We attach to C an explicitly defined cluster algebra B∞.

Theorem (Geiss-Hernandez-L 2023)

There is an injective ring homomorphism F : B∞→ K0(O sh
Z )

such that F (B∞) = K0(O sh
Z )

For every reduced decomposition w0 = si1 · · ·sir there is an
explicit initial seed of B∞ with cluster variables of the form:

Qsi1
···sik

(ϖ∨i ),qn , (0≤ k ≤ r , i ∈ I, n ∈ Z)



Main result

We attach to C an explicitly defined cluster algebra B∞.

Theorem (Geiss-Hernandez-L 2023)

There is an injective ring homomorphism F : B∞→ K0(O sh
Z )

such that F (B∞) = K0(O sh
Z )

For every reduced decomposition w0 = si1 · · ·sir there is an
explicit initial seed of B∞ with cluster variables of the form:

Qsi1
···sik

(ϖ∨i ),qn , (0≤ k ≤ r , i ∈ I, n ∈ Z)



Main result

We attach to C an explicitly defined cluster algebra B∞.

Theorem (Geiss-Hernandez-L 2023)

There is an injective ring homomorphism F : B∞→ K0(O sh
Z )

such that F (B∞) = K0(O sh
Z )

For every reduced decomposition w0 = si1 · · ·sir there is an
explicit initial seed of B∞ with cluster variables of the form:

Qsi1
···sik

(ϖ∨i ),qn , (0≤ k ≤ r , i ∈ I, n ∈ Z)



...
...

Q
ϖ1,q

2

**

OO

Qϖ2,q

tt

OO

Q
ϖ1,q

0

OO

��
Qs1(ϖ1),q0

))
Type A2 Qs1(ϖ2),q−1

OO

��
w0 = s1s2s1 Qs1s2(ϖ2),q−1

tt
Qs1s2(ϖ1),q−2

OO

��
Qs1s2s1(ϖ1),q−2

**
Qs1s2s1(ϖ2),q−3

OO

tt
Qs1s2s1(ϖ1),q−4

OO

...
OO ...

OO



ϖ∨1 ,q7

**

ϖ∨2 ,q7

**
ϖ∨2 ,q5

tt

OO

ϖ∨1 ,q5

tt
ϖ∨1 ,q3

OO

��
ϖ∨2 ,q3

OO

**
s1(ϖ∨1 ),q3

**
ϖ∨1 ,q

OO

��
s1(ϖ∨2 ),q

OO

tt
s1(ϖ∨1 ),q

tt
Type B2 s1(ϖ1),q−1

OO

%%

// s1(ϖ∨2 ),q−1

��

OO

w0 = s1s2s1s2 s1s2(ϖ∨2 ),q−1

jj

**
s1s2(ϖ∨2 ),q−3

tt

OO

s1s2(ϖ∨1 ),q−3

OO

��
s1s2(ϖ∨1 ),q−5

OO

��
s1s2s1(ϖ∨1 ),q−3

tt
s1s2s1(ϖ∨1 ),q−5

**
s1s2s1(ϖ∨2 ),q−5

OO

**
s1s2s1(ϖ∨2 ),q−7

OO

��
s1s2s1(ϖ∨1 ),q−7oo

zz

OO

s1s2s1s2(ϖ∨2 ),q−7

tt

44

s1s2s1s2(ϖ∨1 ),q−9

OO

s1s2s1s2(ϖ∨2 ),q−9

OO


